图像变换 实验报告
第三次实验报告数字图像处理实验 —图像的几何变换

数字图像处理实验—图像得几何变换姓名:张慧班级:信息10-1学号:36号实验三、图像得几何变换一、实验目得1.学习几种常见得图像几何变换,并通过实验体会几何变换得效果;2.掌握图像平移、剪切、缩放、旋转、镜像、错切等几何变换得算法原理及编程实现3.掌握matlab编程环境中基本得图像处理函数4.掌握图像得复合变换二、实验原理1初始坐标为(, )得点经过平移(,),坐标变为(,),两点之间得关系为:,以矩阵形式表示为:2 图像得镜像变换就是以图象垂直中轴线或水平中轴线交换图像得变换,分为垂直镜像变换与水平镜像变换,两者得矩阵形式分别为:3图像缩小与放大变换矩阵相同:当时,图像缩小;时,图像放大。
4 图像旋转定义为以图像中某一点为原点以逆时针或顺时针方向旋转一定角度。
其变换矩阵为:该变换矩阵就是绕坐标轴原点进行得,如果就是绕一个指定点()旋转,则现要将坐标系平移到该点,进行旋转,然后再平移回到新得坐标原点。
三、实验步骤1启动MATLAB程序,对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放与旋转操作,与实验箱运行结果进行比对;2记录与整理实验报告四、实验程序X=imread(’E:\test、jpg’);figure,imshow(X);title('原图')%缩放A=[0、5 00;0 2 0;0 0 1];T=maketform(’affine’,A);Z=imtransform(X,T);figure,imshow(Z),title('图像缩放');%图像旋转A=[cos(pi/4)sin(pi/4)0;-sin(pi/4)cos(pi/4)0;0 01]; T=maketform(’affine’,A);Z=imtransform(X,T);figure,imshow(Z);title('图像旋转');%水平剪切A=[10 0;0、5 1 0;0 0 1];T=maketform('affine’,A);Z=imtransform(X,T);figure,imshow(Z);title('水平剪切');%垂直剪切A=[10、50;0 1 0;0 0 1];T=maketform('affine’,A);Z=imtransform(X,T);figure,imshow(Z);title(’垂直剪切’);%水平镜像A=[-10 0;0 1 0;10 1];T=maketform('affine’,A);Z=imtransform(X,T);figure,imshow(Z);title('水平镜像');%垂直镜像A=[1 00;0 —1 0;0 11];T=maketform('affine',A);Z=imtransform(X,T);figure,imshow(Z);title('垂直镜像');五、实验结果图原图图像缩放图像旋转水平剪切垂直剪切水平镜像垂直镜像六、结果分析1.图像得平移。
图像的灰度变换增强实验报告

图像的灰度变换增强实验报告一、实验目的1、 理解数字图像处理中点运算的基本作用;2、 掌握对比度调整与灰度直方图均衡化的方法。
二、实验原理1、对比度调整如果原图像f (x , y )的灰度范围是[m , M ],我们希望对图像的灰度范围进行线性调整,调整后的图像g (x , y )的灰度范围是[n , N ],那么下述变换:[]n m y x f mM n N y x g +---=),(),( 就可以实现这一要求。
MATLAB 图像处理工具箱中提供的imadjust 函数,可以实现上述的线性变换对比度调整。
imadjust 函数的语法格式为:J = imadjust(I,[low_in high_in], [low_out high_out])J = imadjust(I, [low_in high_in], [low_out high_out])返回原图像I 经过直方图调整后的新图像J ,[low_in high_in]为原图像中要变换的灰度范围,[low_out high_out]指定了变换后的灰度范围,灰度范围可以用 [ ] 空矩阵表示默认范围,默认值为[0, 1]。
不使用imadjust 函数,利用matlab 语言直接编程也很容易实现灰度图像的对比度调整。
但运算的过程中应当注意以下问题,由于我们读出的图像数据一般是uint8型,而在MATLAB 的矩阵运算中要求所有的运算变量为double 型(双精度型)。
因此读出的图像数据不能直接进行运算,必须将图像数据转换成双精度型数据。
MATLAB 中提供了这样的数据类型转换函数:im2double 函数,其语法格式为:I2 = im2double(I1)运算之后的图像数据再显示时可以再转化成uint8型,格式为:I3 = uint8 (I2)2、直方图均衡化直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将一已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。
python图像变换实验心得

python图像变换实验心得python 图像变换实验心得, Python 图像变换实验心得实验一:用 pytho 制作一张可以让鼠标移动的图片,要求是让鼠标在图片上面能够随意移动。
实验二:利用模块对图片进行缩放和旋转处理,最终得到让鼠标在图片上移动不同角度的图片。
这两个任务其实都很简单,大家也应该比较熟悉,因此我就不多说了。
看了实验要求后我们开始写代码来实现我们的实验目标,首先我们使用 opencv 来对图片进行缩放操作,使得鼠标可以移动到图片的每一个位置,然后我们使用 cursor 函数来获取鼠标当前的位置,接着我们再次使用 opencv 来完成对图片的旋转操作,让鼠标始终指向图片中心点,最后我们使用 shapeatrof 函数来将图片进行对齐,然后将图片保存起来。
我还记得刚接触 Python 时,那会儿我的第一个 Python 项目就是用它来做图像处理的,这个图像处理包括图片缩放、旋转、图片的对齐等功能,现在看来我的那个项目基本已经过时了,不过还好,我在这里又学习了新知识,而且这些知识都非常实用。
这几天我在学习Python 的过程中发现它是一门非常强大的编程语言,而且这种编程语言不仅能够解决图形图像处理问题,还能够解决一些复杂的数据分析与运算问题,比如数据库、网络通信、自然语言处理、机器人控制、人工智能等等。
而且 Python 的数据结构非常灵活,这样就给我们提供了很多可选择的编程范式,从而为我们解决各类问题带来更多的便捷性。
然而这个命令并没有什么特别的地方,只是一个简单的缩放命令,我们只需要按照实际情况输入合适的数值就可以了。
但是当我们想把图片旋转或者放大时,就需要用到 modulolphide 函数了,这个函数的作用就是让图片沿水平轴旋转或者垂直轴翻转。
图像的傅里叶变换实验报告

图像的傅里叶变换实验报告GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-计算机科学与技术系实验报告专业名称计算机科学与技术课程名称数字图像处理项目名称 Matlab语言、图像的傅里叶变换班级 14计科2班学号姓名卢爱胜同组人员张佳佳、王世兜、张跃文实验日期一、实验目的与要求:(简述本次实验要求达到的目的,涉及到的相关知识点,实验的具体要求。
)实验目的:1了解图像变换的意义和手段;2熟悉傅立叶变换的基本性质;3熟练掌握FFT变换方法及应用;4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLAB编程实现数字图像的傅立叶变换。
6评价人眼对图像幅频特性和相频特性的敏感度。
实验要求:应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
二、实验内容(根据本次实验项目的具体任务和要求,完成相关内容,可包括:实验目的、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其他)1.傅立叶(Fourier)变换的定义对于二维信号,二维Fourier变换定义为:逆变换:二维离散傅立叶变换为:逆变换:图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。
实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。
2.利用MATLAB软件实现数字图像傅立叶变换的程序:I=imread(‘原图像名.gif’);%读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2); %计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化figure; %设定窗口imshow(A); %显示原图像的频谱四、源代码clc;clear allI=imread('Fig0707(a)(Original).tif.tif'); %读入原图像文件imshow(I); %显示原图像title('原始图像')fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2); %计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化figure; %设定窗口imshow(A); %显示原图像的频谱title('原始图像的频谱')f1=ifft2(A); %用Fourier系数的幅度进行Fourier反变换f2=ifft2(angle(fftI)); %用Fourier系数的相位进行Fourier反变换;figuresubplot 121;imshow(f1,[])title('幅度进行Fourier反变换')subplot 122;imshow(f2,[])title('相位进行Fourier反变换')五、实验结果及分析实验分析:本次试验研究了有关傅里叶算法方面的知识,将傅里叶变换应用在图像的处理上,让我学习到了傅里叶算法方面的知识,实践才是成长的好道路。
实验二 图像变换

实验二图像变换
一、实验内容
1.对图像进行平移,掌握图像的傅里叶频谱和平移后的傅里叶频谱的对应关系;
2.对图像进行旋转,掌握图像的傅里叶频谱和旋转后的傅里叶频谱的对应关系。
2、实验原理
如果F(u,v)的频率变量u,v各移动了u0,v0距离,f(x,y)的变量x,y各移动了x0,y0距离,则傅里叶变换如下所示
因此傅里叶变换的平移性质表明函数与一个指数项相乘等于将变换后的空域中心移到新的位置,平移不改变频谱的幅值。
傅里叶旋转可以通过下面变换得到:
对f(x,y)旋转一个角度对应于将其傅里叶变换F(u,v)也旋转相同的角度。
3、实验方法和程序
1. 选取一副图像,进行离散傅里叶变换,将其中心移到零点,得到
其离散傅里叶变换。
参考例4.10
2. 选取一副图像,进行离散余弦变换,并对其进行离散余弦反变
换。
参考例4.13
3. 选取一副图像,采用butterworth高通滤波器对图像进行高通滤
波。
参考例5.7
4、实验结果与分析
Matlab代码以及结果图
5、思考题
1. 将图像分别进行X轴与Y轴上的平移,所得傅里叶频谱与原图像
的傅里叶频谱有什么变换?。
实验一 图像变换

实验一 图像变换一、 实验目的1.了解图像变换的意义和手段;2.熟悉离散傅里叶变换、离散余弦变换的基本性质;3. 熟练掌握图像变换的方法及应用;4.通过实验了解二维频谱的分布特点;5.通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。
二、 实验原理1.应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
2、图像变换的基本原理(1)傅立叶(Fourier )变换的定义对于二维连续信号,二维Fourier 变换定义为:正变换:⎰⎰∞∞-∞∞-+-=dxdy ey x f v u F vy ux j )(2),(),(π反变换:⎰⎰∞∞-∞∞-+=dudv e v u F y x f vy ux j )(2),(),(π 二维离散傅立叶变换为: 正变换:∑∑-=-=+-=101)//(2),(1),(M x N y N vy M ux j e y x f MN v u F π 反变换:∑∑-=-=+=1010)//(2),(),(M u N v N vy M ux j e v u F y x f π图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法。
实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。
(2)离散余弦变换(DCT )的定义正变换为∑∑-=-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=1010)21(cos )21(cos ),(2)()(),(M x N y y v N x u M y x f MN v C u C v u F ππ 其逆变换为∑∑-=-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=1010)21(cos )21(cos ),()()(2),(N v M u y v N x u M v u F v C u C MN y x f ππ 离散余弦变换是图像压缩中常用的一种变换方法,任何实对称函数的傅里叶变换中只含余弦项,就成为余弦变换,因此余弦变换是傅里叶变换的特例。
图像空域变换实验报告

实验报告(2014~ 2015 学年度第二学期)班级:学号:姓名:同组试验者:实验名称:图像空域变换日期: 2015.04.22一、实验目的:1.掌握图像的线性和非线性变换和直方图均衡化的原理和应用;2. 理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用;3.了解噪声模型及对图像添加噪声的基本方法。
二、实验原理1.灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。
2.直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像,按照图像概率密度函数PDF的定义。
三、实验内容1.灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。
将一幅256X256的灰度图像,将0~60灰度级压缩到0~30范围内,压缩比1/2;60~180的灰度级扩大到30~240,比率为190/120;将180~255灰度级压缩到240~255范围内,压缩比为15/75.实验程序:X1=imread('1234.png');figure,imshow(X1)f0=0;g0=0;f1=60;g1=30;f2=180;g2=240;f3=255;g3=255;%绘制变换曲线figure,plot([f0,f1,f2,f3],[g0,g1,g2,g3])axis tight,xlabel('f'),ylabel('g')%xlable,ylable加坐标轴文字标注title('intensity transformation')%给图形窗口加标题r1=(g1-g0)/(f1-f0);%求0~60灰度级范围内的压缩比b1=g0-r1*f0;r2=(g2-g1)/(f2-f1);%求60~180灰度级范围内的压缩比b2=g1-r2*f1;r3=(g3-g2)/(f3-f2);%求180~255灰度级范围内的压缩比b3=g2-r3*f2;[m,n]=size(X1); %求矩阵的行数m,列数nX2=double(X1); %将数据类型转换为双精度型%变换矩阵中的每个元素for j=1:nf=X2(i,j);g(i,j)=0;if (f>=0)&(f<=f1); %找出灰度级范围在0~60的元素g(i,j)=r1*f+b1; %灰度级在0~30的进行灰度变换elseif (f>=f1)&(f<=f2) %找出灰度级范围在60~180的元素g(i,j)=r2*f+b2; %灰度级在60~180的进行灰度变换elseif (f>=f2)&(f<=f3) %找出灰度级范围在180~255的元素g(i,j)=r3*f+b3; %灰度级在180~255的进行灰度变换endendendfigure,imshow(mat2gray(g)) %函数mat2gray( )将数据矩阵转换成灰度图像2.对数变换实验程序:I=imread('peppers.png');%读入图像figure;imshow(I);F=fft2(im2double(I));%FFTF=fftshift(F);%FFT频谱平移F=abs(F);T=log(F+1);%频谱对数变换figure;imshow(F,[]);title('未经变换的频谱'); figure;imshow(T,[]);title('对数变换后');3.幂次变换实验程序:I=imread('pout.tif');subplot(1,4,1);imshow(I);title('原图像','fontsize',9);subplot(1,4,2);imshow(imadjust(I,[],[],0.5));title('Gamma=0.5'); subplot(1,4,3);imshow(imadjust(I,[],[],1));title('Gamma=1'); subplot(1,4,4);imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');4.直方图变换实验程序:I = imread('tire.tif'); J = histeq(I);imshow(I)figure, imshow(J); figure,imhist(I,64) figure,imhist(J,64)5.图像平移实验程序:(1)I=imread('cameraman.tif');subplot(1,2,1);imshow(I);title('原始图像');[M,N,]=size(I);g=zeros(M,N);a=20;b=20;for i=1:Mfor j=1:N;if ((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N))g(i,j)=I(i-a,j-b);elseg(i,j)=0;endendendsubplot(1,2,2);imshow(uint8(g));title('平移后的图像');(2)F=imread('123.jpg');subplot(1,2,1);imshow(F);title('原始图像');se = translate(strel(1), [5 5]);%参数[0 20]可以修改,修改后平移距离对应改变J = imdilate(F,se);subplot(1,2,2);imshow(J,[]);title('平移后图形');6.水平镜像实验程序:I=imread('123.jpg');subplot(1,2,1);imshow(I);title('原始图像');[M,N]=size(I);g=zeros(M,N);for i=1:Mfor j=1:N;g(i,j)=I(i,N-j+1);endendsubplot(1,2,2);imshow(uint8(g));title('水平镜像');7.垂直镜像实验程序:I=imread('123.jpg'); subplot(1,2,1); imshow(I);title('原始图像'); image=I(end:-1:1,:); subplot(1,2,2); imshow(image);8.加噪求平均实验程序:(1)I=imread('eight.tif');J=imnoise(I,'gaussian',0,0.02);subplot(1,3,1),imshow(I);title('原图'); subplot(1,3,2),imshow(J);title('加噪声');K=zeros(242,308);for i=1:100J=imnoise(I,'gaussian',0,0.02);J1=im2double(J);K=K+J1;endK=K/100;subplot(1,3,3);imshow(K);title('平滑图');(2)%导入图像的同时将图像分为行和列元素[I,M]=imread('123.jpg');%对图像进行加噪声J=imnoise(I,'gaussian',0,0.02);%显示图像subplot(1,3,1),imshow(I,M),title('原始图像'); subplot(1,3,2),imshow(J,M),title('加噪图像'); %创建与原图像一样维数的全0矩阵J1=im2double(J);K=ones(size(J1));%循环100对图像加噪声然后累加for i=1:1:100J=imnoise(I,'gaussian',0,0.02);J1=im2double(J);K=K+J1;end%求图像的平均K=K/100;%显示处理过的图像subplot(1,3,3),imshow(K),title('平滑图像');四、实验中遇到的问题水平变换、垂直变换时彩色图片不能按照要求进行变换=====WORD完整版----可编辑----专业资料分享=====。
图像变换实验报告

实验一图像变换一、实验目的:1、巩固二维离散傅立叶变换的基本原理;2、掌握应用MATLAB语言对二维图像进行FFT及逆变换;掌握傅立叶变换的应用:线性滤波器的频率响应和图像特征定位;3、巩固离散余弦变换理论,掌握应用MATLAB语言对图像进行离散余弦变换,掌握离散余弦变换在JPEG编码中的应用;4、巩固离散沃尔什-哈达玛变换理论,掌握应用MATLAB语言对图像进行沃尔什-哈达玛变换。
二、实验内容:1.二维离散傅立叶变换1)参考实验书,用Matlab程序完成图5.5(a)中图形及其傅立叶变换,显示图形和三维图;2)读入一幅图像(LENA128.bmp),生成其傅立叶谱图,将此图像旋转45度,生成旋转45度后的谱图。
2.傅立叶变换的应用线性滤波器的频率响应产生二维矩形低通滤波器(滤波器参数自选),做此滤波器的频率响应图和空间域图形。
3.傅立叶变换的应用图像特征定位从图像text1.tif中选取一个特征(“图象”这两个字),在图像text2.tif中找出该特征的位置。
4.图像离散余弦变换及在JPEG中的应用1)对输入图像进行离散余弦变换,DCT系数门限值分别取0.6和4,显示变换后的系数图,显示DCT压缩后的图像。
2)DCT变换在JPEG压缩中的应用:将给定的图像harbour.tif划分为16×16的小块,做JPEG中DCT运算,并重构图像。
每小块的DCT系数保留左上角21个。
显示过程中图像DCT系数图,显示重构后的图像。
5.图像离散沃尔什-哈达玛变换读入一幅图像,对图像进行沃尔什-哈达玛变换。
并显示变换结果三.实验结果&结果分析:1.解答:(1)A=[];A(1:500,1:300)=0;for x=1:500for y=1:300;b=(x-250).^2/250^2+(y-150).^2/150^2; c=(x-250).^2/225^2+(y-150).^2/125^2; if (b<1 && c>1);A(x,y)=1;endendendimshow(A)F1=fft2(A,500,500);F=fftshift(F1);F2=log(abs(F));figure(2)imshow(F2,[0.1,5],'notruesize');colorbar figure(3)x=1:500;y=1:500;mesh(x,y,log(F(x,y)));colormap(gray);colorbar 图形及其傅立叶变换如下:(2)A=imread('LENA128.bmp');F1=fft2(A);F11=fftshift(F1);F111=log(abs(F11));B=imrotate(A,45);F2=fft2(B);F22=fftshift(F2);F222=log(abs(F22));subplot(2,2,1),imshow(A);subplot(2,2,2),imshow(F111,[]);subplot(2,2,3),imshow(B);subplot(2,2,4),imshow(F222,[]);图像的傅立叶谱图和旋转45度后的谱图如下:2.解答A=[];A(1:25,1:25)=0;for x=1:25for y=1:25b=(x-3).^2+(y-3).^2;if (b<10);A(x,y)=1;endendendsubplot(2,1,1),mesh(A);subplot(2,1,2),freqz2(A);滤波器的频率响应图和空间域图形如下:3.解答:bw=imread('text1.tif');A=bw(243:259,255:283);figure(1)imshow(A)bw1=imread('text2.tif');B=bw1(39:52,227:251);bw1=255-bw1;B=255-B;c=real(ifft2(fft2(bw1).*fft2(rot90(B,2),512,512))); figure(2)imshow(c,[])max(c(:))figure(3)imshow(c> ((4.7293e+006)-10));在图像中找出该特征的位置如下:4.解答:[A,map]=imread('LENA128.bmp');GRAY=mat2gray(A);D=dct2(GRAY);figure(1),subplot(3,1,1),imshow(log(abs(D)),[]); colormap(gray(4));colorbar;D(abs(D)<0.6)=0;I1=idct2(D)/255;subplot(3,1,2),imshow(I1);D1=dct2(GRAY);D1(abs(D1)<4)=0;I2=idct2(D1)/255;subplot(3,1,2),imshow(I2);(2)I=imread('harbour.tif');I=im2double(I);T=dctmtx(16);B=blkproc(I,[16 16],'P1*x*P2',T,T');mask=[];mask(1:16,1:16)=0;mask(1:5,1:4)=1;B2=blkproc(B,[16 16],'P1.*x',mask);I2=blkproc(B2,[16 16],'P1*x*P2',T',T);figure(2),subplot(2,1,1),imshow(I);subplot(2,1,2),imshow(I2);5.解答:[A,map]=imread('LENA128.bmp');GRAY=mat2gray(A);subplot(2,1,1),colormap(gray(128)),imagesc(GRAY);[m n]=size(GRAY)for k=1:nwht(:,k)=hadamard(m)*GRAY(:,k)/m;endfor j=1:mwh(:,j)=hadamard(n)*wht(j,:)'/nendwh=wh';subplot(2,1,2),colormap(gray(128)),imagesc(wh);四、实验分析由实验结果可知,在图像灰度转换过程中,其图像的清晰度随着灰度级的降低而降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称医学图像处理实验名称图像变换
专业班级
姓名
学号
实验日期
实验地点
2015—2016学年度第 2 学期
图1 原图像图2 灰度变换后的图像
分析:图像的灰度变换处理是图像增强处理技术中基础的空间域图像处理方法。
灰度灰度变换是指根据某种目标条件按照一定变换关系逐点改变原图像中每个像素灰度值的方法。
灰度变换法又可分为三种:线性、分段线性及非线性变换。
目的是为了改善画质,使图像的显示效果更加清晰。
2直方图均衡化
I=imread('skull.tif'); %读取图像
J=histeq(I); %指定直方图均匀化后的灰度级数n,默认值为64 imshow(I); %显示原图像
title('原图像'); %图像标题为‘原图像’
图3 原图像 图4 直方图均衡化所得图像 分析:直方图均衡化后的图像在整个灰度值动态变化范围内分布均匀化,改善了原图像的亮度
分布状态,增强图像的视觉效果。
它是非线性灰度变换。
1.52
2.53x 10
5原图像直方图010020001.5
2
2.5
3x 10
5均衡化变换后的直方图0100200
050100150200250图6直方图规定化所得图像
分析:直方图规定化就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。
直方图规定化变换后是亮图像的直方图。
直方图的低端已右移向灰度级的较亮区域4利用matlab软件实现数字图像傅里叶变换
I=imread('skull.tif'); %
imshow(I); %
fftI=fft2(I); %
sfftI=fftshift(fftI); %
RR=real(sfftI); %
II=imag(sfftI); %
图8 原图像图9 归一化后的图像
分析:利用matlab软件实现数字图像傅里叶变换。
二维离散傅立叶变换将傅里叶变化的中心
为。