图像灰度变换实验报告
数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。
二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。
(2)图像的直方图处理算法。
四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。
图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。
本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。
一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。
二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。
2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。
3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。
4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。
5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。
三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。
首先,我们对该图像进行了直方图均衡化处理。
结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。
然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。
接下来,我们采用了拉普拉斯算子增强方法。
通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。
然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。
最后,我们尝试了灰度变换方法。
通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。
与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。
综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。
实验一 灰度直方图

实验一灰度直方图1.1实验介绍直方图是对图像中灰度级分布的统计,是将数字图像中的所有像素,按照灰度值的大小,统计其所出现的频率。
灰度直方图可看作为灰度级的函数,表示为y=f(x),x是灰度级的取值,y是取该灰度值的像素个数。
直方图具有以下几条重要的性质,表征图像的一维信息,不能提供定位;可以与多个图像对应,但一幅图像只能有唯一的直方图;可以用来计算物体的面积;计算的图像面积可用来得到图像的概率密度函数和累积分布函数;子图直方图之和为整图直方图。
由于直方图能够渐简便直观地表征图像特性的信息,因此在图像处理中起着非常重要的作用,可以用来作为图像数字化的参数和确定分割图像阈值的依据。
本次实验目的通过对几幅8-bit的灰度图像的灰度直方图的比较与分析,理解灰度直方图的性质,然后利用直方图实现简单的图像分割,了解它的用途。
1.2数据介绍Test 文件夹中有如下图像:其中RGB.jpg为RGB彩色图像,在实验RGB图像基本操作中使用;Index.gif为索引图像,在实验索引图像基本操作中使用;Dark.jpg和low_contrast.jpg为灰度图像做对比度线性展宽操作中使用;Lung.jpg在灰级窗及灰级窗切片中使用;Light在综合操作中使用;1.3实验内容1)RGB图像基本操作用数码相机拍摄几幅数字图像,要求目标单一背景单一、简单。
如果处理的图像是RGB 图像,采用下面的处理步骤:1.用下列函数将它们转换成不同灰度级的图像,>>I=imread(‘<图像名>.<文件后缀>’); %打开的一般是彩色图像>>Ig=rgb2gray(I) %将彩色图像转化为灰度图像2.绘制图像>>figure;imshow(Ig); %在新窗口中绘制图像3.绘制直方图>>figure;imhist(Ig); %在新窗口中绘制Ig的直方图如果要在同一窗口中绘制图像和它的直方图,用下面的方式:>>subplot(3,1,1); imshow(Ig); %subplot指明窗口绘图区划分为3行1%列的区域,第三个参数1规定紧接着后%面的绘图结果在第1个区域中显示>>subplot(3,1,2);imhist(Ig); %在第2个区域显示直方图4.根据直方图,分析图像的亮度和对比度。
图像处理实验报告

图像处理实验报告实验⼀基于matlab 的⼈脸识别技术⼀、实验⽬的1.熟悉⼈脸识别的⼀般流程与常见识别⽅法;2.熟悉不同的特征提取⽅法在⼈脸识别的应⽤;3.了解在实际的⼈脸识别中,学习样本数等参数对识别率的影响;4.了解⾮⼈脸学习样本库的构建在⼈脸识别的重要作⽤。
使⽤MATLAB 平台编程,采⽤K-L 变换、特征提取及图像处理技术,实现⼈脸识别⼆、实验内容与实验仪器、设备1.构建⾮⼈脸学习样本库;2.观测不同的特征提取⽅法对⼈脸识别率的影响;3.观测不同的学习样本数对⼈脸识别率的影响;1. PC 机-系统最低配置 512M 内存、P4 CPU ;2. Matlab 仿真软件- 7.0 / 7.1 / 2006a 等版本的Matlab 软件。
3. CBCL ⼈脸样本库三、实验原理1.⼈脸特征提取的算法通过判别图像中所有可能区域是否属于“⼈脸模式”的⽅法来实现⼈脸检测。
这类⽅法有:特征脸法、⼈⼯神经⽹络法、⽀持向量机法;积分图像法。
本次使⽤的是PCA(主成分分析法)其原理是:利⽤K-L 变换抽取⼈脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到⼀组投影系数,通过与各个⼈脸图像⽐较进⾏识别。
对于⼀幅M*N 的⼈脸图像,将其每列相连构成⼀个⼤⼩为D=M*N 维的列向量。
D 就是⼈脸图像的维数,即是图像空间的维数。
设n 是训练样本的数⽬;X j 表⽰第j 幅⼈脸图像形成的⼈脸向量,则所需样本的协⽅差矩阵为:1()()m Ti i i S x u x u ==--∑ (1)其中U 为训练样本的平均图像向量:11mi i u x n ==∑ (2)令A=[x 1-u,x 2-u,...x n -u],则有S r =AA T ,其维数为D ×D 。
根据K-L 变换原理,需要求得的新坐标系由矩阵AA T 的⾮零特征值所对应的特征向量组成。
直接计算的计算量⽐较⼤,所以采⽤奇异值分解(SVD)定理,通过求解A T A 的特征值和特征向量来获得AA T 的特征值和特征向量。
医学图像处理实验报告

d、分别对其进行10*10、5*5、2*2的均值滤波;
e、显示原图像和选用不同大小模版处理后的图像。
(3)高斯滤波
a、读入图像;
b、对数字图像进行直方图均衡化处理;
c、选择高斯滤波参数(标准差)sigma为1.6;
d、选择滤波器尺寸为5*5;
i、显示原图像和处理后的图像。
(2)四八领域均值滤波
a、读入图像;
b、转换图像矩阵为双精度型;
c、创建4邻域平均滤波模版[0 1 0; 1 0 1; 0 1 0];
创建8邻域平均滤波模版[1 1 1; 1 0 1; 1 1 1];
d、进行滤波;
e、显示原图像和处理后图像。
(3)巴特沃斯高通滤波
a、读取图像;
e、创建高斯滤波器进行滤波;
f、显示原图像和处理后的图像。
3
(1)同态滤波
a、读入图像;
b、对数字图像进行直方图均衡化处理;
c、转换图像矩阵为双精度型;
d、取对数;
e、对其做傅里叶变换;
f、选择参数,截止频率为10,锐化系数为2, =1.5, =2.0;
g、进行高斯同态滤波;
h、滤波之后进行傅里叶逆变换;
c、显示原图像和经过均衡化处理过的图像;
d、记录和整理实验报告。
(2)中值滤波加直方图均衡化
a、将模板在图中漫游,并将模板中心与图中某个像素位置重合;
b、读取模板下各对应像素的灰度值;
c、将这些灰度值从小到大排成1列;
d、找出这些值中排在中间的1个;
e、将这个中间值赋给对应模板中心位置的像素;
f、中值滤波之后的像素值进行直方图均衡化处理;
灰度对数变换

灰度对数变换
灰度对数变换是一种在数字图像处理中广泛使用的图像增强技术,它
可以通过对图像的灰度进行变换来实现对图像质量的提升。
在灰度对
数变换中,图像的灰度值被转换为对数空间中的值,从而达到增强图
像的目的。
灰度对数变换的具体步骤如下:
1. 将图像的灰度范围限定在0到1之间,这可以通过将灰度值除以255来实现。
2. 对图像的灰度进行对数变换,具体公式为s = c*log(1+r),其中,s 表示转换后的灰度值,r表示原始灰度值,c为常数。
3. 将灰度值范围恢复到0到255之间,这可以通过将转换后的灰度值乘以255来实现。
通过灰度对数变换,可以使得图像中低灰度值区域的对比度得到增加,从而使得图像的细节更加突出。
同时,由于该技术能够有效抑制噪声,因此在图像增强中应用非常广泛,例如在医学影像领域中常用于增强
X光图像的细节。
需要注意的是,灰度对数变换的常数c需要根据具体应用的图像进行选择。
在选择c值时,应该考虑到灰度级数的大小、灰度对数变换的灵敏度以及应用后图像的亮度和对比度等因素。
总之,灰度对数变换是一种简单而有效的图像增强技术。
在实际应用中,我们需要根据具体情况选择合适的常数c值,从而能够达到目标效果。
同时,需要注意该技术的局限性,例如对于梯度较强的图像,可能需要采用其他增强技术。
东北大学matlab计算机图像处理实验报告

计算机图像处理实验报告学院:信息学院班级:姓名:学号:实验内容:数字图像处理1、应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换;(1)、显示一副真彩RGB图像代码:I=imread('mikasa.jpg');>>imshow(I);效果:(2)、RGB转灰度图像代码:graycat=rgb2gray(I);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(graycat);效果:(3)、RGB转索引图像代码:[indcat,map]=rgb2ind(I,0.7);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(indcat,map);效果:(4)、索引图像转RGB代码:I1=ind2rgb(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(I1);效果:(5)、索引转灰度图像代码:i2gcat=ind2gray(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2gcat);效果:(6)、灰度转索引图像代码:[g2icat,map]=gray2ind(graycat,64);>>subplot(1,2,1);>>subimage(graycat);>>subimage(g2icat,map);效果:(7)、RGB转二值图像代码:r2bwcat=im2bw(I,0.5);>>subplot(1,2,1);>>subimage(I);>>subplot(1,2,2);>>subimage(r2bwcat);效果:(8)灰度转二值图像代码:g2bwcat=im2bw(graycat,0.5); subplot(1,2,1);>>subimage(graycat);>>subplot(1,2,2);>>subimage(g2bwcat);效果:(9)、索引转二值图像代码:>> i2bwcat=im2bw(indcat,map,0.7);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2bwcat);效果:2、应用MATLAB工具箱演示一幅图像的傅里叶变换、离散余弦变换,观察其频谱图。
[数字图像处理](一)彩色图像转灰度图像的三种方式与效果分析
彩色图像转灰度图像的三种方式与效果分析](https://img.taocdn.com/s3/m/a9ad791dbb1aa8114431b90d6c85ec3a87c28bdb.png)
[数字图像处理](⼀)彩⾊图像转灰度图像的三种⽅式与效果分析图像处理(⼀)彩⾊图⽚转灰度图⽚三种实现⽅式最⼤值法imMax=max(im(i,j,1),im(i,j,2),im(i,j,3))平均法imEva=im(i,j,1)3+im(i,j,2)3+im(i,j,3)3加权平均值法imKeyEva=0.2989×im(i,j,1)+0.5870×im(i,j,2)+0.1140×im(i,j,3)matlba实现clc;close all;clear all;% 相对路径读⼊图⽚(和代码在同⼀⽂件夹下)im = imread('p2.jpg');%---查看图⽚,检测是否成功读⼊% 对显⽰的图⽚进⾏排版subplot(2,3,4);imshow(im);% 对图⽚进⾏命名title('原图');[col,row,color] = size(im);%col为图⽚的⾏数,row为图⽚的列数,color对于彩⾊图⽚⼀般为3,每层对应RGB %利⽤matlab⾃带的函数进⾏ rgb_to_gray;im_matlab = rgb2gray(im);subplot(2,3,1);imshow(im_matlab);title('matlab⾃带rgb2gray');%--------------------------------------------------------%---⽤最⼤值法% 创建⼀个全为1的矩阵,长宽等同于原图的im_max = ones(col,row);for i = 1:1:colfor j = 1:1:rowim_max(i,j) = max( im(i,j,:) );endend% 将矩阵变为8byte⽆符号整型变量(不然⽆法显⽰图⽚)% 最好在计算操作结束后再变化,不然会有精度问题!!im_max = uint8(im_max);subplot(2,3,2);imshow(im_max);title('最⼤值法');%--------------------------------------------------------% 平均值法im_eva = ones(col,row);for i = 1:1:colfor j = 1:1:rowim_eva(i,j) = im(i,j,1)/3 + im(i,j,2)/3 + im(i,j,3)/3 ;% 两种的结果其实⼀样,但是如果先转换为uint8就会出现精度问题%sum1 = im(i,j,1)/3 + im(i,j,2)/3 + im(i,j,3)/3%sum2 = ( im(i,j,1) + im(i,j,2)+ im(i,j,3) )/3;%fprintf( " %.4f %.4f \n",sum1 ,sum2 ) ;endendim_eva = uint8(im_max);subplot(2,3,3);imshow(im_eva);title('平均值法');%--------------------------------------------------------% 加权平均法(rgb2gray所使⽤的权值)im_keyeva = ones(col,row);% 加权算法先转换为uint8计算效果更好im_keyeva = uint8(im_max);for i = 1:1:colfor j = 1:1:rowim_keyeva(i,j) = 0.2989*im(i,j,1) + 0.5870*im(i,j,2) + 0.1140*im(i,j,3) ;endendsubplot(2,3,5);imshow(im_keyeva);title('加权平均法');Processing math: 100%附matlab——rgb2gray源码function I = rgb2gray(X)%RGB2GRAY Convert RGB image or colormap to grayscale.% RGB2GRAY converts RGB images to grayscale by eliminating the% hue and saturation information while retaining the% luminance.%% I = RGB2GRAY(RGB) converts the truecolor image RGB to the% grayscale intensity image I.%% NEWMAP = RGB2GRAY(MAP) returns a grayscale colormap% equivalent to MAP.%% Class Support% -------------% If the input is an RGB image, it can be of any numeric type. The output% image I has the same class as the input image. If the input is a% colormap, the input and output colormaps are both of class double.%% Notes% -----% RGB2GRAY converts RGB values to grayscale values by forming a weighted % sum of the R, G, and B components:%% 0.2989 * R + 0.5870 * G + 0.1140 * B%% The coefficients used to calculate grayscale values in RGB2GRAY are% identical to those used to calculate luminance (E'y) in% Rec.ITU-R BT.601-7 after rounding to 3 decimal places.%% Rec.ITU-R BT.601-7 calculates E'y using the following formula:%% 0.299 * R + 0.587 * G + 0.114 * B%% Example% -------% I = imread('example.tif');%% J = rgb2gray(I);% figure, imshow(I), figure, imshow(J);%% indImage = load('clown');% gmap = rgb2gray(indImage.map);% figure, imshow(indImage.X,indImage.map), figure, imshow(indImage.X,gmap);%% See also RGB2IND, RGB2LIGHTNESS.% Copyright 1992-2020 The MathWorks, Inc.narginchk(1,1);isRGB = parse_inputs(X);if isRGBI = matlab.images.internal.rgb2gray(X);else% Color map% Calculate transformation matrixT = inv([1.0 0.956 0.621; 1.0 -0.272 -0.647; 1.0 -1.106 1.703]);coef = T(1,:);I = X * coef';I = min(max(I,0),1);I = repmat(I, [1 3]);end%--------------------------------------------------------------------------function is3D = parse_inputs(X)is3D = (ndims(X) == 3);if is3D% RGBif (size(X,3) ~= 3)error(message('MATLAB:images:rgb2gray:invalidInputSizeRGB'))end% RGB can be single, double, int8, uint8,% int16, uint16, int32, uint32, int64 or uint64validateattributes(X, {'numeric'}, {}, mfilename, 'RGB');elseif ismatrix(X)% MAPif (size(X,2) ~= 3 || size(X,1) < 1)error(message('MATLAB:images:rgb2gray:invalidSizeForColormap'))end% MAP must be doubleif ~isa(X,'double')error(message('MATLAB:images:rgb2gray:notAValidColormap'))endelseerror(message('MATLAB:images:rgb2gray:invalidInputSize'))end总结通过上⾯的代码结合实际的测试,果然,matlab⾃带的rgb2gray也就是加权平均的⽅法,对光线明暗的处理是最好的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像灰度变换报告
一.实验目的
1.学会使用Matlab ;
2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响;
二.实验内容
1.熟悉Matlab 中的一些常用处理函数
读取图像:img=imread('filename');
//支持TIF,JPEG,GIF,BMP,PNG 等文件格式。
显示图像:imshow(img,G);
//G 表示显示该图像的灰度级数,如省略则默认为256。
保存图片:imwrite(img,'filename');
//不支持GIF 格式,其他与imread 相同。
亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]);
//将low_in 至high_in 之间的值映射到low_out 至high_out 之
间,low_in 以下及high_in 以上归零。
绘制直方图:imhist(img);
直方图均衡化:histeq(img,newlevel);
//newlevel 表示输出图像指定的灰度级数。
2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。
3 .产生灰度变换函数T1,使得:
0.3r
r < 0.35 s =
0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65
1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。
4.产生灰度变换函数T2,使得:
s = 5.用T2imwrite 保存处理后的新图像。
6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。
为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。
7.对circuit.jpg 图像实施反变换(Negative Transformation )。
s =1-r; 使
用imwrite保存处理后的新图像。
8.对rice.jpg图像实施灰度切片
当0.2 ≤ r ≤ 0.4时,将r置为0.6, 当r位于其他区间时, 保持其灰度与原图像一样。
使用imwrite保存处理后的新图像。
9.利用灰度变换对Picture.jpg做增强处理,突出图中的人物,改善整个图像过于灰暗的背景。
通过调节参数,观察变换后的图像与原始图像的变化,寻找出最佳的灰度变换结果。
写出所采用的拉伸表达式。
三.实验结果与分析
1.采用T1函数
变换前变换后
函数图像
该方法采用分段函数对图像进行处理,对灰度值大的进行拉伸,使灰度增大,而灰度值小的,也进行拉伸,使灰度值更小,从而产生如图所示的结果。
2.采用T2函数
变换前变换后
T2函数图
T2函数也比较好的完成了T1函数所达到的效果,但是T2函数更加平滑一点,对于图像的边界处理的较好一些。
3.
变换前图像变换前灰度图
采用s = r0.6变换采用s = r0.4变换采用s = r0.3变换
三种函数的对比
三种变换方式都对图像的每一个像素灰度作线性拉伸,有效地改善图像的视觉效果,但如果选择的拉伸尺度过大,会引起图像的失真,利用s = r0.4变换是比较适合的。
4.对灰度图进行反变换
变换前图像变换后图像
由图可以看出,该方法将灰度值进行翻转,是输出图像的灰度值随输入图像的灰度值增加而减小,如黑图像变成白图像。
这样可以增强灰暗背景下的白色细节的亮度。
5.对图像实施灰度切片
变换前图像变换后图像
函数图
经过灰度切片变化,图像中有很大一部分灰度统一为0.6,这样导致了很多不必要的失真,可以再进行调节,使范围更加的准确。
6. 利用灰度变换对Picture.jpg做增强处理,利用分段函数突出图中的人物,改善整个图像过于灰暗的背景。
通过调节参数,观察变换后的图像与原始图像的变化,寻找出最佳的灰度变换结果。
原图通过变换后
分段线性变换的公式如下:
1.1r r < 0.3
s = 0.11+ 1.6r 0.3 ≤ r ≤ 0.65
0.8r r > 0.65
原图直方图
均衡化后的直方图
函数图
由于图中的人的灰度与背景的灰度有部分是相似的,所以在改变背景灰度的同时,也会影响人物的灰度,而且这是难以避免的。
如果要解决这个问题,就得学会将人从图像中切割出来,然后再对背景进行处理,才能达到题中所要求的效果。
四.实验结论
通过上述六种方法的图像灰度变换法,了解掌握了一般图像处理所要达到的效果,明确了图像处理在生活中的作用。
但是以上几种方法采用的基本都是线性变换法,在实际应用中存在着很多的缺陷。
它只能处理一些黑白分明的一些图像,而对于一些颜色丰富或者图像比较复杂的图像时,往往于心不足,难以解决更高层次的问题,所以需要更多的图像处理方法来完善图像。