图像灰度变换增强
图像增强技术—灰度变换及应用实例

就是按照线性函数的映射关系对灰度进行变换,图 像取反、增加或者减小对比度、增加或者减小亮度都是 灰度线性变换的一种。
下图是用halcon做的图像取反的灰度变换。
原 图
灰 度 直
方
图
反
反Байду номын сангаас
变
变
换
化 后
后 的 灰
的
度
图
直
像
方
图
2.2 非线性灰度变换
非线性灰度变换就是构造一种非线性映射函数常见的变换有 :对数变换、指数变换等。比如说:对数变换主要就是低灰度区扩展, 高灰度区压缩;灰度变换除了线性变换,非线性变换,还有分段线 性变换:这个主要是为了突出感兴趣的部位。下图为以10为底的对 数变换图像。
乳腺原图
去除部分背景后的图
采用了分段线性灰度变换突出乳腺信息。第二个峰值为乳腺信息,选取 两个转折点(80,20)(150,240),把乳腺的灰度值范围扩大, 实现了突出兴趣部位信息需求。
4 总结
灰度变换主要就是把原像素的值做了一个重新分 配来提高对比度,灰度变换很重要的一部分就是参 数的选择,可以在原有的算法的基础上进行改进, 得到自己更加需要的图像。
图像增强技 术—灰度变换
1 灰度变换的简单介绍
•
灰度变换是图像处理中的一个基本最基本技术技术之一,它
进行的是点运算,就是直接对像素点的值进行运算。灰度变换也是
图像增强技术中一种非常基础直接的空间域图像处理方式,根据自
的需要对图像进行灰度变换增强,增加对比度、突出感兴趣的区域
都是可以的。
2 常见的灰度变换
原 图
灰 度 直
方
图
指 数
图像增强的基本原理

图像增强的基本原理图像增强是一种用于改善图像视觉质量或提取目标特征的技术。
它通过改变图像的亮度、对比度、颜色、清晰度等属性来增强图像的可视性和可识别性。
图像增强的基本原理可以归纳为以下几点:1. 空域增强:采用空域操作,即对图像的每个像素进行操作。
常见的空域增强方法有直方图均衡化、灰度拉伸、滤波等。
直方图均衡化通过重新分布图像中像素的亮度来增加图像的对比度,灰度拉伸则通过线性转换将图像的亮度范围拉伸到整个灰度级范围内。
滤波则通过应用低通、高通、中通等滤波器来增强图像的细节和轮廓。
2. 频域增强:采用频域操作,即将图像转换到频域进行处理。
常见的频域增强方法有傅里叶变换、小波变换等。
傅里叶变换可以将图像从空域转换到频域,通过对频谱进行滤波操作来增强图像的细节和边缘。
小波变换则可以将图像分解为不同频率的子带,可以更加灵活地选择性地增强特定频率的信息。
3. 增强算法:通过应用特定的增强算法来增强图像的视觉效果。
常用的增强算法有Retinex算法、CLAHE算法等。
Retinex算法通过模拟人眼对光源的自适应调整能力来增强图像的亮度和对比度,CLAHE算法则通过分块对比度受限的直方图均衡化来增强图像的细节和纹理。
4. 机器学习方法:利用机器学习算法对图像进行增强。
通过训练模型,学习图像的特征和上下文信息,然后根据学习到的模型对图像进行增强处理。
常见的机器学习方法包括卷积神经网络、支持向量机等。
综上所述,图像增强的基本原理包括空域增强、频域增强、增强算法和机器学习方法等。
这些原理可以单独或结合使用,根据图像的特点和需求,选择合适的方法来对图像进行增强处理,以获得更好的图像视觉质量和目标特征提取效果。
4-1、图像增强之灰度变换和彩色增强

g=9*log(f+1)
作用:将暗的部分扩展,而将亮的部分抑制。(示例)
4、直方图均衡化
直方图均衡方法的基本思想是对 在图像中像素个数多的灰度级进行展 宽,而对像素个数少的灰度级进行缩 减。从而达到清晰图像的目的。 用以改变图像整体偏暗或整体偏亮, 灰度层次不丰富的情况,将直方图的 分布变成均匀分布
2、 对比度展宽(灰度线性变换)
一、对比度展宽的目的:
是一点对一点的灰度级的影射。设新、旧图的 灰度级分别为g和f,g和f 均在[0,255]间变化。 实质是旧图到新图的灰度级的逐点映射。 g=G(f) 目的:将人所关心的部分强调出来。 特点:变换前后像素个数不变,但不同像素之间的 灰度差变大,对比度加大,视觉效果增强gγຫໍສະໝຸດ 255gbβ
ga
β
α
a b 255
f
a
b 255
f
2、对比度展宽 三、灰级窗切片:
只保留感兴趣的部分,其余部分置为 0。如: 0
g
255
a
b
255
f
2、对比度展宽
四、二值化图像: 可将多灰度的图像转换成黑白二值 图像;方法是对图像取一阈值,大 于该阈值的像素赋予灰度1,小于该 阈值的像素赋予灰度0
I ( x, y) e( x, y) g ( x, y)
g ( x, y) e ( x, y) I ( x, y)
1
1、灰度级的修正
灰度级修正的方法: (1)先用该系统对一已知亮度均匀的图像进行 记录,得到一个实际的“非均匀曝光”的图像, 求得是图像发生畸变的比例因子 (2)当用同一系统对其他图像进行记录时,便 可通过该比例因子求出理想图像
51
3.图像增强—灰度变换 - 数字图像处理实验报告

计算机与信息工程学院验证性实验报告一、实验目的:1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2、学会对图像直方图的分析。
3、掌握直接灰度变换的图像增强方法。
二、实验原理及知识点术语‘空间域’指的是图像平面本身,在空间与内处理图像的方法是直接对图像的像素进行处理。
空间域处理方法分为两种:灰度级变换、空间滤波。
空间域技术直接对像素进行操作其表达式为g(x,y)=T[f(x,y)]其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定领域内。
定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域。
此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的领域。
T应用于每个位置(x,y),以便在该位置得到输出图像g。
在计算(x,y)处的g值时,只使用该领域的像素。
灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f 在该点处的亮度决定,T也变为一个亮度或灰度级变化函数。
当处理单设(灰度)图像时,这两个术语可以互换。
由于亮度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式:s=T(r)其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。
三、实验内容:1、图像数据读出2、计算并分析图像直方图3、利用直接灰度变换法对图像进行灰度变换下面给出灰度变化的MATLAB程序f=imread('medicine_pic.jpg');g=imhist(f,256); %显示其直方图g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像)figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1]g2=imadjust(f,[0.5 0.75],[0 1]);figure,imshow(g2)g=imread('point.jpg');h=log(1+double(g)); %对输入图像对数映射变换h=mat2gray(h); %将矩阵h转换为灰度图片h=im2uint8(h); %将灰度图转换为8位图figure,imshow(h)四、实验仪器PC一台,MATLAB软件五、实验图片columbia480.bmp Fig0704(Vase).tif.tif六、实验程序及结果clc;clear allf=imread('columbia480.bmp');subplot 121;imshow(f)title('原始图像')subplot 122;imhist(f,256)title('原始图像直方图')%灰度转换,实现明暗转换(负片图像)f1=imadjust(f,[0 1],[1 0]);figure(2)subplot 121,imshow(f1)title('明暗转换后的图像')subplot 122;imhist(f1,256) title('明暗转换直方图')%将0.5到0.75的灰度级扩展到范围[0 1] f2=imadjust(f,[0.5 0.75],[0 1]); figure(3)subplot 121;imshow(f2)title('0.5到0.75的灰度级扩展到范围[0 1]的图像') subplot 122;imhist(f2,256) title('灰度级扩展直方图')原始图像0原始图像直方图100200明暗转换后的图像明暗转换直方图1002000.5到0.75的灰度级扩展到范围[0 1]的图像04灰度级扩展直方图100200clc;clear allm=imread('Fig0704(Vase).tif.tif');h=log(1+double(m)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h 转换为灰度图片 h=im2uint8(h); %将灰度图转换为8位图 figuresubplot 221;imshow(m) title('原始图像') subplot 222;imhist(m) title('原始图像直方图') subplot 223;imshow(h)title('经log 变换后的图像') subplot 224;imhist(h)title('经log 变换后的图像直方图')原始图像原始图像直方图100200经log变换后的图像0经log 变换后的图像直方图100200教师签名:年 月 日。
如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪图像增强和降噪是数字图像处理中的重要任务之一。
它们的目的是改善图像的视觉质量和可视化细节,并消除图像中的不必要的噪声。
在本文中,我将介绍一些常用的图像增强和降噪技术,以及一些实现这些技术的高效算法。
一、图像增强技术1.灰度变换:灰度变换是一种调整图像亮度和对比度的常用技术。
它可以通过改变灰度级来增加图像的对比度和动态范围,提高图像的视觉效果。
2.直方图均衡化:直方图均衡化是通过重新分配图像灰度级来增加图像对比度的一种方法。
它通过改变图像的直方图来增强图像的细节和对比度。
3.双边滤波:双边滤波是一种能够保留图像边缘信息,同时消除噪声的滤波技术。
它能够通过平滑图像来改善图像的质量,同时保持图像的细节。
4.锐化增强:锐化增强是一种通过增加图像的高频分量来提高图像的清晰度和细节感的方法。
它可以通过增加图像的边缘强度来突出图像的边缘。
5.多尺度增强:多尺度增强是一种通过在多个尺度上对图像进行增强来提高图像视觉质量的方法。
它可以通过提取图像的不同频率分量来增强图像的细节和对比度。
二、图像降噪技术1.均值滤波:均值滤波是一种常见的降噪方法,它通过将像素值替换为其周围像素的均值来减少噪声。
然而,它可能会导致图像的模糊,特别是在对边缘等细节进行处理时。
2.中值滤波:中值滤波是一种基于排序统计理论的降噪方法,它通过将像素值替换为其周围像素的中值来消除噪声。
相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘细节。
3.小波降噪:小波降噪是一种利用小波变换的降噪方法,它在时频域上对图像进行分析和处理。
它能够通过消除噪声的高频分量来降低图像的噪声水平。
4.非局部均值降噪:非局部均值降噪是一种通过将像素值替换为与其相似的像素均值来减少噪声的方法。
它能够通过比较像素的相似性来区分图像中的噪声和细节,并有选择地进行降噪。
三、高效实现图像增强和降噪的算法1.并行计算:利用并行计算技术,如GPU加速、多线程等,在处理图像增强和降噪算法时,可以提高计算效率和算法的实时性。
图像处理中的图像去噪与图像增强技术

图像处理中的图像去噪与图像增强技术图像处理是一门广泛应用于多个领域的技术,其中图像去噪与图像增强技术是其中重要的两大方向。
图像去噪是指在图像处理过程中,将图像中的噪声去除,从而提高图像的质量和清晰度;而图像增强则是指通过各种算法和技术手段,改善图像的视觉效果,使得图像更加美观和易于分析。
本文将围绕图像去噪与图像增强技术展开,深入探讨它们的原理、应用与未来发展方向。
第一章:图像去噪技术1.1图像噪声的来源与分类图像噪声是指在采集、传输、存储等过程中由于各种因素引起的图像中的无意义的像素值。
图像噪声的来源主要包括传感器本身的噪声、传输过程中的干扰、存储设备的误差等。
根据噪声的性质,可以将图像噪声分为加性噪声、乘性噪声等不同类型。
1.2常用的图像去噪技术目前,常用的图像去噪技术包括空域滤波、频域滤波、小波去噪、基于深度学习的去噪等。
空域滤波是最早被应用于图像去噪的技术之一,主要包括均值滤波、中值滤波等。
频域滤波则通过利用图像的频谱信息,对图像进行滤波。
小波去噪利用小波变换的多尺度分析特性,可以有效地去除图像中的不同尺度的噪声。
基于深度学习的去噪技术则是近年来兴起的一种新技术,通过训练深度神经网络,可以实现高效的图像去噪效果。
1.3图像去噪技术的应用图像去噪技术在各个领域都有着广泛的应用。
在医学影像领域,图像去噪技术可以帮助医生更准确地诊断疾病;在无人驾驶领域,图像去噪技术可以提高驾驶辅助系统的精度和可靠性;在工业检测领域,图像去噪技术可以帮助工程师更准确地检测产品的质量等。
1.4图像去噪技术的挑战与发展方向尽管图像去噪技术取得了显著的进展,但是在实际应用中仍然存在一些挑战。
例如,对于复杂场景中的图像,传统的图像去噪技术往往效果不佳;另外,图像去噪技术的算法复杂度较高,需要大量的计算资源。
未来,如何进一步提高图像去噪技术的鲁棒性和实时性将成为重点研究方向。
第二章:图像增强技术2.1图像增强技术的分类图像增强技术根据不同的目的,可以分为对比度增强、边缘增强、细节增强等不同类型。
图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)

图像增强算法(直⽅图均衡化、拉普拉斯、Log、伽马变换)⼀、图像增强算法原理图像增强算法常见于对图像的亮度、对⽐度、饱和度、⾊调等进⾏调节,增加其清晰度,减少噪点等。
图像增强往往经过多个算法的组合,完成上述功能,⽐如图像去燥等同于低通滤波器,增加清晰度则为⾼通滤波器,当然增强⼀副图像是为最后获取图像有⽤信息服务为主。
⼀般的算法流程可为:图像去燥、增加清晰度(对⽐度)、灰度化或者获取图像边缘特征或者对图像进⾏卷积、⼆值化等,上述四个步骤往往可以通过不同的步骤进⾏实现,后续将针对此⽅⾯内容进⾏专题实验,列举其应⽤场景和处理特点。
本⽂章是⼀篇综合性⽂章,算是⼀篇抛砖引⽟的⽂章,有均衡化、提⾼对⽐度、降低对⽐度的算法。
1.1 基于直⽅图均衡化的图像增强图像对⽐度增强的⽅法可以分为两种:直接对⽐度增强⽅法,间接对⽐度增强⽅法。
直⽅图拉伸和直⽅图均衡化是常见的间接对⽐度增强⽅法。
直⽅图拉伸是利⽤对⽐度拉伸对直⽅图进⾏调整,扩⼤前景和背景灰度的差别,这种⽅法可以通过线性和⾮线性的⽅法来实现,其中ps中就是利⽤此⽅法提⾼对⽐度;直⽅图均衡化则是利⽤累积函数对灰度值进⾏调整,实现对⽐度的增强。
直⽅图均衡化处理原理:将原始图像的灰度图从⽐较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的⾮线性拉伸,重新分配图像像素值。
算法应⽤场景:1、算法的本质是重新分布图像的像素值,增加了许多局部的对⽐度,整体的对⽐度没有进⾏太⼤改变,所以应⽤图像为图像有⽤数据的对⽐度相近是,例如:X光图像,可以将曝光过度或曝光不⾜照⽚进⾏更好的显⽰,或者是背景及前景太亮或太暗的图像⾮常有⽤。
2、算法当然也有缺点,具体表现为:变换后的图像灰度级减少,某些细节减少;某些图像有⾼峰值,则处理后对⽐度不⾃然的过分增强。
算法实现特点:1、均衡化过程:直⽅图均衡化保证在图像像素映射过程中原来的⼤⼩关系保持不变,即较亮的区域依旧较亮,较暗的依旧较暗,只是对⽐度增加,不能明暗颠倒;保证像素映射函数的值域在0和255之间。
图像灰度变换 原理

图像灰度变换原理
图像灰度变换是一种图像处理的方法,通过改变图像的灰度级别来增强或调整图像的显示效果。
其原理是对图像中的每个像素点进行灰度级别的转换。
常用的灰度变换函数有线性灰度变换、非线性灰度变换和直方图均衡化。
线性灰度变换是指通过线性映射将原图像的灰度级别转换为新的灰度级别。
常见的线性灰度变换函数有平移、缩放和对比度调整。
平移是将当前灰度级别加上一个偏移量,从而改变整个图像的亮度。
缩放是将灰度级别乘上一个缩放因子,从而调整图像的对比度。
对比度调整是通过同时进行平移和缩放,改变图像的亮度和对比度。
非线性灰度变换是指通过非线性函数将原图像的灰度级别转换为新的灰度级别。
常见的非线性灰度变换函数有幂律变换和对数变换。
幂律变换是通过对原图像的每个像素点进行幂次运算,从而调整图像的亮度和对比度。
对数变换是将原图像的灰度级别取对数,从而改变图像的亮度和对比度。
直方图均衡化是一种将原图像的灰度级别映射到均匀分布的灰度级别上的方法。
其原理是通过计算原图像的灰度直方图,并根据直方图进行灰度级别的重新分布。
这样可以增强图像的对比度和细节,并改善图像的视觉效果。
通过灰度变换,可以调整图像的亮度、对比度、色彩等特性,从而改善图像的视觉效果、增强图像的细节和信息。
在图像处
理和计算机视觉领域,灰度变换是一种常用的图像增强和预处理方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像灰度变换增强
摘要:灰度变换是基于点操作的增强方法,它将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值,如增强处理中的对比度增强。
对比度增强可以采用线性拉伸和非线性拉伸。
线性拉伸可以将原始输入图像中的灰度值不加区别地扩展。
如果要求对局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理时,采用分段线性拉伸。
非线性拉伸常采用对数扩展和指数扩展。
对数扩展拉伸低亮度去,压缩高亮度区;指数扩展拉伸了高亮区,压缩了低亮度区。
关键词:图像增强,灰度变换,线性变换,分段线性变换,非线性变换
一. 概述
影响系统图像清晰程度的因素很多,例如室外光照度不够均匀就会造成图像灰度过于集中;由CCD (摄像头)获得的图像经过A/D (数/模转换,该功能在图像系统中由数字采集卡来实现)转换、线路传送都会产生噪声污染等等。
因此图像质量不可避免的降低了,轻者表现为图像不干净,难于看清细节;重者表现为图像模糊不清,连概貌也看不出来。
因此,在对图像进行分析之前,必须要对图像质量进行改善,一般情况下改善的方法有两类:图像增强和图像复原。
图像增强不考虑图像质量下降的原因,只将图像中感兴趣的特征有选择的突出,而衰减不需要的特征,它的目的主要是提高图像的可懂度。
图像复原技术与增强技术不同,它需要了解图像质量下降的原因,首先要建立"降质模型",再利用该模型,恢复原始图像。
根据图像增强处理过程所在的空间不同,图像增强可分为空余增强法和频域增强法两大类。
频域增强是在图像的某种变换域内,对图像的变换系数值进行运算,即作某种修正,然后通过逆变换获得增强了的图像。
空域增强则是指直接在图像所在的二维空间进行增强处理,既增强构成图像的像素。
空域增强法主要有灰度变换增强,直方图增强,图像平滑和图像锐化等。
图像的灰度变换处理是图像增强处理技术中一种非常基础,直接的空间域图像处理法,也是图像数字化软件和图像显示软件的一个重要组成部分。
灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。
目的是为了改善画质,使图像的显示效果更加清晰。
二. 灰度变换处理
灰度变换的过程可表示为:)],([),(y x f T y x g ,它是指将输入图像中每个像素
),(y x 的灰度值),(y x f ,通过眏射函数)(∙T ,变换成输出图像中的灰度值),(y x g 。
根据不同的应用要求,可以选择不同的变换函数,如正比函数和指数函数等。
根据函数的性质,灰度变换的方法有:线性灰度变换,分段线性灰度变换,非线性灰度变换。
线性灰度变换和非线性灰度变换,是直接应用确定的变换公式依次对每个像素进行处理,故也称为直接灰度变换。
㈠. 线性变换 简单的线性灰度变换法可以表示为:c a y x f a
b c d y x g +---=]),([),(,其中:b 和a 分别是输入图像亮度分量的最大值和最小值,d 和c 分别是输出图像亮度分量的最大值和最小值。
经过线性灰度变化法,图像亮度分量的线性范围从[],[b a 变化到],[d c ,如图所示。
图1 线性变换
若图像中大部分像素的灰度级分布在区间],[b a 内,M f 为
原图的最大灰度级,只有很小一部分的灰度级超过了此区
间,则为了改善增强效果,可以令:
⎪⎪⎩⎪⎪⎨⎧+---=d c a y x f a b c d c y x g ]),([),( M f
y x f b b y x f a a y x f ≤≤≤≤≤≤),(),(),(0由于人眼对灰度级别的分辨能力有限,只有当相邻像素的灰度值相差到一定程度时才能被辨别出来。
通过上述变换,图像中相邻像素灰度的差值增加,例如在曝光不足或过度的情况下,图像的灰度可能会局限在一个很小的范围内,这时得到的图像可能是一个模糊不清,似乎没有灰度层次的图像。
采用线性变换对图像中每一个像素灰度作线性拉伸,将有效改善图像视觉效果。
线性变换效果图:
㈡. 分段线性变换
为了突出图像中感兴趣的目标或灰度区间,相对抑制那些不感兴趣的灰度区间,可采用
分段线性变换,它将图像灰度区间分成两段乃至多段分别作线性变换。
进行变换时,把0~255整个灰度值区间分为若干线段,每一个直线段都对应一个局部的线性变换关系。
常用的三段线性变换如图所示:
图2 分段线性变换
图中,中间],[b a 段的灰度得到拉伸,两端灰度被压缩公式
如下:
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+---+---=d b y x f b d c a y x f a b c d y x f a c y x g M M f g ]),([]),([),(),( M f
y x f b b y x f a a y x f ≤≤≤≤≤≤),(),(),(0通过细心调节节点的位置及控制分段直线的斜率,可对任一灰度区间尽行拉伸或压缩。
分段线性变换可以根据用户的需要,拉伸特征物体的灰度细节,虽然其他灰度区间对应的细节信息有所损失,这对于识别目标来说没有什么影响。
下面对一些特殊的情况进行了分析。
令a c k /1=,)/()(2a b c d k --=,)/()(3b M d M k f g --=,即它们分别为对应直线段的斜率。
1. 当031==k k 时,如图3(a )所示,表示对于],[b a 以外的原图灰度不感兴趣,均令为
0,而处于],[b a 之间的原图灰度,则均匀的变换成新图灰度。
2. 当0321===k k k ,但d c =时,如图3(b )所示,表示只对],[b a 间的灰度感兴趣,
且均为同样的白色,其余变黑,此图样对应变成二值图。
这种操作又称为灰度级(或窗口)切片。
3. 当131==k k ,g M d c ==时,如图3(c )所示,表示在保留背景的前提下,提升]
,[b a 间像素的灰度级。
它也是一种窗口或灰度级切片操作。
图3分段线性变换
㈢. 非线性变换
非线性拉伸不是对图像的整个灰度范围进行扩展,而是有选择的对某一灰度范围进行扩展,其他范围的灰度值则有可能被压缩。
非线性拉伸在整个灰度值范围内采用统一的变换函数,利用变换函数的数学性质实现对不同灰度值区间的扩展与压缩。
下面介绍常用的两种非线性扩展法。
1. 对数变换
对数变换,是指输出图像的像素点的灰度值与对应的输出图像的像素灰度值之间为对数 关系,其一般公式为:c
b y x f a y x g ln ]1),(ln[),(⋅++=,式中
c b a ,,都是可以选择的参数,式中1),(+y x f 是为了避免对0求对数,确保0]1),(ln [≥+y x f 。
当0),(=y x f 时,0]1),(ln [=+y x f ,则,a y =则a 为y 轴上的截距,确定了变换曲线的初始位置的变换关系,c b ,两个参数确定变换曲线的变换速率。
对数变换扩展了低灰度区,压缩了高灰度区,能使低灰度区的图像较清晰地显示出来。
2. 指数变换
指数变换,是指输出图像的像素点的灰度值与对应的输出图像的像素灰度值之间满足指 数关系,其一般公式为:1),(]),([-=-a y x f c b y x g 。
其中:c b a ,,是引入的参数,用来调整曲线的位置和形状,当a y x f =),(时,0),(=y x g ,此时指数曲线交于x 轴,由此可见参数a 决定了指数变换曲线的初始位置;参数c 决定了变换曲线的陡度,即决定曲线的变换速率。
这种变换一般用于对图像的高灰度区给予较大扩展,适于过亮的图像。
图4 非线性灰度变换
参考文献:
[1] 阮秋棋. 数字图像处理学.北京: 电子工业出版社,2001.1
[2] 章毓晋.图像工程(上).清华版,1999,pp101-12
[3] Rafael C. Gonzalez. 数字图像处理(第二版). 电子工业出版社,2007.7
[4] [美] Kenneth R. Castle man 著. 数字图像处理.朱志刚等译.北京: 电子工业出版社,2002
[5]夏良正.数字图像处理(M).南京:东南大学出版社,1999
[6]夏德深,傅德胜。
计算机图像处理及应用。
南京:东南大学出版社,2004
[7]姚敏等.数字图像处理.机械工业出版社,2001
[8]龚声荣等.数字图像处理.北京:清华大学出版社,2006.7。