数字图象处理第5章 图像的灰度变换
图像的灰度变换

昆明理工大学(数字图像处理)实验报告实验名称:图像的灰度变换专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解并掌握灰度变换的基本原理和方法。
2、编程实现图像灰度变换。
3、分析不同的灰度变换方法对最终图像效果的影响。
[实验内容]1、灰度的线性变换;2、灰度的非线性变换;3、图像的二值化;4、图像的反色处理;[实验原理]图像的灰度变换 ( gray scale transformation, GST ) 处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分。
灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。
目的是为了改善画质,使图像的显示效果更加清晰。
灰度变换有时又被称为图像的对比度增强或对比度拉伸。
从图像输入装置得到的图像数据, 以浓淡表示, 各个像素与某一灰度值相对应。
设原图像像素的灰度值 D=f(x,y),处理后图像像素的灰度值D′= g (x,y),则灰度增强可表示为:g(x,y)=T[f(x,y)]或 D ′= T (D)要求 D 和 D′都在图像的灰度范围之内。
函数 T(D) 称为灰度变换函数,它描述了输入灰度值和输出灰度值之间的转换关系。
灰度变换主要针对独立的像素点进行处理,通过改变原始图像数据所占据的灰度范围而使图像在视觉上得到良好的改观,没有利用像素点之间的相互空间关系。
因此,灰度变换处理方法也叫做点运算法。
点运算可以按照预定的方式改变一幅图像的灰度直方图。
除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点运算可以看做是“从像素到像素”的复制操作。
根据g(x,y)=T[f(x,y)] , 可以将灰度变换分为线性变换和非线性变换。
1、灰度的线性变换若g(x,y)=T[f(x,y)]是一个线性或分段线性的单值函数,例如g(x,y)=T[f(x,y)]=af(x,y)+b则由它确定的灰度变换称为灰度线性变换,简称线性变换。
数字图像的灰度修正

收稿日期:2003202202 作者简介:官理(19742),女,湖南湘潭人,湖南师范大学计算机教学部助教,学士,研究方向:计算数学、数字图像处理。
文章编号:100622475(2003)0520040203数字图像的灰度修正官 理(湖南师范大学计算机教学部,湖南长沙 410081)摘要:描述了灰度修正技术在数字图像处理中的重要性及其实用价值,并详细介绍了各种方法的原理、实现过程及其适用范围和优缺点,为不同的实际需要选择不同的方法提供了理论依据。
关键词:数字图像;图像处理;灰度修正;灰度变换;直方图中图分类号:TP391.41 文献标识码:AMethods of Greyness Revision on Digital ImageG UA N Li(Co mputer Teaching Department,Hunan No rmal University,Changsha 410081,China)Abstract:Describes the i mpo rtance and practical value of greyness revisio n technique in the digital i mage processing,introduces in detail the principles o f revision methods and their concrete processin g achievements in order to provide the theo retical bases for the choices of different methods of grey ness revision in practice.Keyw ords:di gital imag e;image processing;g reyness revision;g reyness change;histog ram0 引 言在计算机数字图像处理中,数字图像的灰度是进行图像识别与处理的基础。
4-1、图像增强之灰度变换和彩色增强

g=9*log(f+1)
作用:将暗的部分扩展,而将亮的部分抑制。(示例)
4、直方图均衡化
直方图均衡方法的基本思想是对 在图像中像素个数多的灰度级进行展 宽,而对像素个数少的灰度级进行缩 减。从而达到清晰图像的目的。 用以改变图像整体偏暗或整体偏亮, 灰度层次不丰富的情况,将直方图的 分布变成均匀分布
2、 对比度展宽(灰度线性变换)
一、对比度展宽的目的:
是一点对一点的灰度级的影射。设新、旧图的 灰度级分别为g和f,g和f 均在[0,255]间变化。 实质是旧图到新图的灰度级的逐点映射。 g=G(f) 目的:将人所关心的部分强调出来。 特点:变换前后像素个数不变,但不同像素之间的 灰度差变大,对比度加大,视觉效果增强gγຫໍສະໝຸດ 255gbβ
ga
β
α
a b 255
f
a
b 255
f
2、对比度展宽 三、灰级窗切片:
只保留感兴趣的部分,其余部分置为 0。如: 0
g
255
a
b
255
f
2、对比度展宽
四、二值化图像: 可将多灰度的图像转换成黑白二值 图像;方法是对图像取一阈值,大 于该阈值的像素赋予灰度1,小于该 阈值的像素赋予灰度0
I ( x, y) e( x, y) g ( x, y)
g ( x, y) e ( x, y) I ( x, y)
1
1、灰度级的修正
灰度级修正的方法: (1)先用该系统对一已知亮度均匀的图像进行 记录,得到一个实际的“非均匀曝光”的图像, 求得是图像发生畸变的比例因子 (2)当用同一系统对其他图像进行记录时,便 可通过该比例因子求出理想图像
51
《数字图像处理》课程教学大纲

二、课程章节主要内容及学时分配第一章、数字图像处理方法概述讲课3课时了解本课程研究的对象、内容及其在培养软件编程高级人才中的地位、作用和任务;了解数字图像处理的应用;了解数字图像的基本概念、与设备相关的位图(DDB)、与设备无关的位图(DIB);了解调色板的基本概念和应用;了解CDIB类与程序框架结构介绍;了解位图图像处理技术。
重点:CDIB类与程序框架结构介绍。
难点:调色板的基本概念和应用。
第二章、图像的特效显示讲课3课时、实验2学时了解扫描、移动、百叶窗、栅条、马赛克、渐显与渐隐、浮雕化特效显示。
重点:渐显与渐隐。
难点:马赛克。
第三章、图像的几何变换讲课2课时了解图像的缩放、平移、镜像变换、转置、旋转。
重点:镜像变换。
难点:旋转。
第四章、图像灰度变换讲课3课时、实验2学时了解非0元素取1法、固定阈值法、双固定阈值法的图像灰度变换;了解灰度的线性变换、窗口灰度变换处理、灰度拉伸、灰度直方图、灰度分布均衡化。
重点:灰度直方图。
难点:灰度分布均衡化。
第五章、图像的平滑处理讲课3课时了解二值图像的黑白点噪声滤波、消除孤立黑像素点、3*3均值滤波、N*N 均值滤波器、有选择的局部平均化、N*N中值滤波器、十字型中值滤波器、N*N最大值滤波器、产生噪声。
重点:消除孤立黑像素点、中值滤波器。
难点:有选择的局部平均化。
第六章、图像锐化处理及边缘检测讲课3课时、实验2学时了解梯度锐化、纵向微分运算、横向微分运算、双方向一次微分运算、二次微分运算、Roberts边缘检测算子、Sobel边缘检测算子、Krisch边缘检测、高斯-拉普拉斯算子。
重点:Roberts边缘检测算子、高斯-拉普拉斯算子。
难点:梯度锐化。
第七章、图像分割及测量讲课4课时了解图像域值分割、轮廓提取、轮廓跟踪、图像的测量。
重点:轮廓提取、轮廓跟踪。
难点:图像的测量。
包括:图像的区域标记、图像的面积测量及图像的周长测量。
第八章、图像的形态学处理讲课3课时了解图像腐蚀、图像的膨胀、图像开启与闭合、图像的细化、图像的粗化、中轴变化。
数字图像处理第五章

系统失真是有规律的、能预测的;非系统失真则是随 机的。
当对图像作定量分析时,就要对失真的图像先进行精 确的几何校正(即将存在几何失真的图像校正成无几何失 真的图像),以免影响定量分析的精度。
几何校正方法
图像几何校正的基本方法是先建立几何校正的数学模型; 其次利用已知条件确定模型参数;最后根据模型对图像进行 几何校正。通常分两步: ①图像空间坐标变换;首先建立图像像点坐标(行、列 号)和物方(或参考图)对应点坐标间的映射关系, 解求映射关系中的未知参数,然后根据映射关系对图 像各个像素坐标进行校正; ②确定各像素的灰度值(灰度内插)。
因此还有
f ( x , y ) f ( x, y) ( x , y )
二维线性位移不变系统 如果对二维函数施加运算T[· ] ,满足 ⑴ T f1 x, y f 2 x, y T f1 x, y T f 2 x, y ⑵ T af x, y aT f x, y
但实际获取的影像都有噪声,因而只能求F(u,v)的估 ˆ (u, v) 。 计值 F
N (u, v) ˆ F (u, v) F (u, v) H (u, v)
再作傅立叶逆变换得
1 j 2 ( ux vy) ˆ ( x, y) f ( x, y) f N ( u , v ) H ( u , v ) e dudv
采用线性位移不变系统模型的原由: 1)由于许多种退化都可以用线性位移不变模型来近似, 这样线性系统中的许多数学工具如线性代数,能用于 求解图像复原问题,从而使运算方法简捷和快速。 2)当退化不太严重时,一般用线性位移不变系统模型来 复原图像,在很多应用中有较好的复原结果,且计算 大为简化。 3)尽管实际非线性和位移可变的情况能更加准确而普遍 地反映图像复原问题的本质,但在数学上求解困难。 只有在要求很精确的情况下才用位移可变的模型去求 解,其求解也常以位移不变的解法为基础加以修改而 成。
灰度对数变换

灰度对数变换
灰度对数变换是一种在数字图像处理中广泛使用的图像增强技术,它
可以通过对图像的灰度进行变换来实现对图像质量的提升。
在灰度对
数变换中,图像的灰度值被转换为对数空间中的值,从而达到增强图
像的目的。
灰度对数变换的具体步骤如下:
1. 将图像的灰度范围限定在0到1之间,这可以通过将灰度值除以255来实现。
2. 对图像的灰度进行对数变换,具体公式为s = c*log(1+r),其中,s 表示转换后的灰度值,r表示原始灰度值,c为常数。
3. 将灰度值范围恢复到0到255之间,这可以通过将转换后的灰度值乘以255来实现。
通过灰度对数变换,可以使得图像中低灰度值区域的对比度得到增加,从而使得图像的细节更加突出。
同时,由于该技术能够有效抑制噪声,因此在图像增强中应用非常广泛,例如在医学影像领域中常用于增强
X光图像的细节。
需要注意的是,灰度对数变换的常数c需要根据具体应用的图像进行选择。
在选择c值时,应该考虑到灰度级数的大小、灰度对数变换的灵敏度以及应用后图像的亮度和对比度等因素。
总之,灰度对数变换是一种简单而有效的图像增强技术。
在实际应用中,我们需要根据具体情况选择合适的常数c值,从而能够达到目标效果。
同时,需要注意该技术的局限性,例如对于梯度较强的图像,可能需要采用其他增强技术。
数字图象处理第5章_图像的灰度变换

数字图像处理山东大学威海分校信息工程学院张亚涛讲师第三章图像增强1引言灰度变换2直方图均衡化处理34伪彩色技术5图像的同态滤波1 引言1引言1.1 一些问题什么是图像增强?是指按特定的需要突出一幅图像中的某些信息。
同时,削弱或去除某些不需要的信息的处理方法。
为什么进行图像增强?图像在传输或处理过程中会引入噪声或使图像变模糊,从而降低了图像质量,甚至淹没了特征,给分析带来困难,因此要增强特征,进行处理。
图像增强的目的?1 改善图像的视觉效果,提高清晰度。
2 将图像转换成一种更适合于人或机器分析处理的形式。
1 引言注意:在图像增强的过程中,没有新信息的增加,只是通过压制一部分信息,从而突出另一部分信息。
也就是说,增强处理并不能增强原始图像的信息,其结果只能增强某种信息的辨识能力,而这种处理有可能损失一些其他信息。
图像处理是数字图像处理的基本内容之一。
1 引言1.2 图像增强处理技术:图像增强处理技术分成两大类:频域处理方法,基础是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强。
常用的方法,低通滤波,高频提升滤波、同态滤波等。
空域处理方法,直接对图像中的像素灰度进行处理,基本上是以灰度映射变换为基础。
所用的映射变换取决于增强的目的。
包括灰度变换、直方图修正,平滑和锐化处理、彩色增强等。
灰度直方图1 概念1.1 什么是灰度直方图?灰度直方图是灰度级的函数,是对图像中灰度级分布的统计。
反映的是一幅图像中各灰度级像素出项的频率。
即:横坐标表示灰度级,纵坐标表示图像中对应某灰度级所出现的像素个数,也可以是某一灰度值的像素数占全图像素数的百分比,即灰度级的频率。
绘制的频率同灰度级的关系图就是灰度直方图。
它是图像的一个重要特征,反映了图像灰度分布的情况。
灰度直方图是最简单且最有用的工具。
灰度直方图灰度直方图计算示例123456 643221 166466 345666 146623 136466123456 5456214灰度直方图灰度直方图灰度直方图1.2 灰度直方图的性质1 灰度直方图只能反映图像的灰度分布,而不能反映图像像素的位置,即丢失了像素的位置信息。
(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。