第三章植物的光合作用

合集下载

植物生理学第三章植物的光合作用

植物生理学第三章植物的光合作用
返回
光合作用的过程
光能
H2O
光解 吸收
色素分子
O2 [H] 酶
供能
2C3


CO2
多种酶 定 C5

ATP


(CH2O)
ADP+Pi
光反应阶段
暗反应阶段
水的光解:H2O 光解 2[H]+1/2 O2

CO2的固定: CO2+C5 2C3
光合磷酸化:ADP+Pi+能量 酶
ATP
C3化合物还原:2 C3
光系统(PSII)
PSII的颗粒大,直径约17.5 nm,主要分布在类囊体膜的叠合部分。
➢ 晶体结构中的PSII为一个二聚体,二聚体的两个 单体呈准二次旋转对称。PSII单体具有36个跨膜α螺旋,其中D1和D2各5个,CP43和CP47各6个, Cytb559的α亚基和β亚基各自形成一个跨膜α-螺旋。 D1和D2蛋白与Cytb559的α和β亚基一起组成PSII 反应中心,是进行原初电荷分离和电子传递反应 的机构,CP47和CP43的主要功能是接受LHCII的 激发能量并传递到反应中心。
是否需光 需光 不一定,但受光促进 不一定,但受光促进
不同层次和时间上的光合作用
第二节 原初反应
➢ 原初反应 是指从光合色素分子被光激发,到引起 第一个光化学反应为止的过程。 ➢ 它包括: 光物理-光能的吸收、传递
光化学-有电子得失
原初反应特点 1) 速度非常快,10-12s∽10-9s内完成; 2) 与温度无关,(77K,液氮温度)(2K,液氦温度); 3) 量子效率接近1
表1 光合作用中各种能量转变情况

能量转变 光能 电能 活跃的化学能 稳定的化学能

植物生理学习题大全——第3章植物的光合作用

植物生理学习题大全——第3章植物的光合作用

植物⽣理学习题⼤全——第3章植物的光合作⽤第三章光合作⽤⼀. 名词解释光合作⽤(photosynthesis):绿⾊植物吸收阳光的能量,同化⼆氧化碳和⽔,制造有机物质并释放氧⽓的过程。

光合⾊素(photosynthetic pigment):植物体内含有的具有吸收光能并将其光合作⽤的⾊素,包括叶绿素、类胡萝⼘素、藻胆素等。

吸收光谱(absorption spectrum):反映某种物质吸收光波的光谱。

荧光现象(fluorescence phenomenon):叶绿素溶液在透射光下呈绿⾊,在反射光下呈红⾊,这种现象称为荧光现象。

磷光现象(phosphorescence phenomenon):当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产⽣的光。

这种发光现象称为磷光现象。

光合作⽤单位(photosynthetic unit):结合在类囊体膜上,能进⾏光合作⽤的最⼩结构单位。

作⽤中⼼⾊素(reaction center pigment):指具有光化学活性的少数特殊状态的叶绿素a分⼦。

聚光⾊素(light harvesting pigment ):指没有光化学活性,只能吸收光能并将其传递给作⽤中⼼⾊素的⾊素分⼦。

原初反应(primary reaction):包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。

光反应(light reactio):光合作⽤中需要光的反应过程,是⼀系列光化学反应过程,包括⽔的光解、电⼦传递及同化⼒的形成。

暗反应(dark reaction):指光合作⽤中不需要光的反应过程,是⼀系列酶促反应过程,包括CO2的固定、还原及碳⽔化合物的形成。

光系统(photosystem,PS):由不同的中⼼⾊素和⼀些天线⾊素、电⼦供体和电⼦受体组成的蛋⽩⾊素复合体,其中PS Ⅰ的中⼼⾊素为叶绿素a P700,PS Ⅱ的中⼼⾊素为叶绿素a P680。

第三章 植物的光合作用u

第三章 植物的光合作用u

比例:叶绿素a与b的比例是3∶1但不是恒定的。 化学式:
化学组成 :叶绿素是复杂的有机化合物,是二羧酸
酯类物质(叶绿素酯)一个羧基为甲醇酯化,一个羧 基为叶绿醇酯化。
化学式: 叶a结构特征
(1)理化性质: a、溶解性:叶绿素a、b都不溶于水,但能 溶于酒精、丙酮和石油醚等有机溶剂;
B、皂化反应:与碱能发生皂化反应生成叶 绿素盐溶于水。 C、发生取代反应:能被H+、Cu+2取代反 应生成去镁叶绿素和铜代叶绿素。

参P60图3-2
3)基粒:光合色素集中之地,光能转变为化学能的 场,由闭合囊状体组成,称类囊体。 4)类囊体:构成叶绿体的片层系统中闭合囊状物, 内为水溶液。 基粒类囊体: 间质类囊体: 不同植物或同一植物的不同部位的叶绿体内的基 粒类囊体数目不同。 凡光合细胞都有类囊体。 5)嗜锇滴:叶绿体间质中的容易与锇酸结合的颗粒。 其主要成分为亲酯性醌类物质。生理功能是贮藏脂 类物质。
(3)矿质元素缺乏:主要是氮、镁、铁、锰、铜、
锌;
5.几种现象:

黄化现象(etiolation):早春寒潮过后水道秧苗 变白现象
6.叶绿素的开发利用:牙膏、美容、药用等
本节课结束
复习上节课内容:
1、叶绿素分子的结构有什么特征? 2、叶绿素分子的有哪些理化性质? 3、叶绿素对光谱的吸收有什么特征? 4、什么是荧光现象与磷光现象? 5、为什么树叶一般都为绿色?为什么叶片衰老 时会呈黄色?
(2)反应中心(reaction centre pigment):
将光能转化为化学能的膜复合蛋白,其中包含
少数特殊状态的具有光化学活性的叶绿素a分
子、脱镁叶绿素和醌等电子受体分子。

植物的光合作用

植物的光合作用

第二单线态
第一单线态
(10-8-10-9 s) 10-2 S
(第一三单线态)
10-2 s
Figure. 3-8
荧光与磷光:
三、叶绿素的生物合成及与环境的关系

1)、叶绿素的生物合成
5-氨基酮戊
谷氨酸(α酮戊二酸) 酸(ALA)
2 个
胆色素原 4个 阶段I
-4NH3
尿卟啉 原III
-4CO2
厌氧环境
第四节 光合作用的机制

近年来的研究表明,光反应的过程并不都需要光,而暗反应 过程中的一些关键酶活性也受光的调节。
整个光合作用可大致分为三个步骤:

① 原初反应;包括光能的吸收、传递和转换过程(即光化 学反应)。

② 电子传递和光合磷酸化;将电能转变为活跃的化学能过
程。 ③ 碳同化过程;将活跃的化学能转变为稳定的化学能。 第一、二两个步骤基本属于光反应,第三个步骤属于暗反应。
粪卟啉原III
在有氧条件下,粪卟啉原III再脱羧、脱氢、氧化形
成原卟啉 Ⅸ。
阶段II
Fe Mg
亚铁血红素 Mg- 原卟啉 Ⅸ
一个羧基被 甲基酯化
叶绿醇 叶绿素a 被红光还原 叶绿酸酯a 原叶绿酸酯
谷氨酸或 酮戊二酸
δ-氨基酮酸 (ALA)
胆色素原
原卟啉 IX
叶绿酸酯a
原叶绿酸酯
叶绿素b
Figure 3-9
2、电镜下: 被膜(envelope membrane) 外膜
内膜
有控制代谢物质进出叶绿体的功能
基质(stroma) 成分:可溶性蛋白质和其他代谢活性物 质,有固定CO2能力。 嗜锇滴:在基质中有一类易与锇酸结合的颗粒较嗜锇 滴—脂类滴,其主要成分是亲脂性的醌类物质。功能: 脂类仓库。 类囊体 (thylakoid) 由许多片层组成的片层系统,每个 片层是由自身闭合的薄片组成,呈压扁了的包囊装,称 类囊体。

植物生理学题库(含答案)第三章 植物的光合作用

植物生理学题库(含答案)第三章  植物的光合作用

植物生理学题库(含答案)第三章植物的光合作用一、名词解释1、爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。

2、光合作用:绿色植物吸收阳光的能量,同化CO2和H2O,制造有机物质,并释放O2的过程。

3、荧光现象:指叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象就叫荧光现象。

4、磷光现象:当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。

这种发光现象称为磷光现象。

5、光反应:光合作用的全部过程包括光反应和暗反应两个阶段,叶绿素直接依赖于光能所进行的一系列反应,称光反应,其主要产物是分子态氧,同时生成用于二氧化碳还原的同化力,即ATP和NADPH。

6、碳反应:是光合作用的组成部分,它是不需要光就能进行的一系列酶促反应。

7、光合链:亦称光合电子传递链、Z—链、Z图式。

它包括质体醌、细胞色素等。

当然还包括光系统I和光系统II的反应中心,其作用是传递将水在光氧化时所产生的电子,最终传送给NADP+。

8、光合磷酸化:指叶绿体在光下把有机磷和ADP转为A TP,并形成高能磷酸键的过程。

9、光呼吸:植物的绿色细胞依赖光照,吸收O2和放出CO2的过程。

10、景天科酸代谢:植物体在晚上的有机酸含量十分高,而糖类含量下降;白天则相反,有机酸下降,而糖分增多,这种有机物酸合成日变化的代谢类型,称为景天科酸代谢。

11、光合速率:指光照条件下,植物在单位时间单位叶面积吸收CO2的量(或释放O2的量)12、光补偿点:指同一叶子在同一时间内,光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。

13、光饱和现象:光合作用是一个光化学现象,其光合速率随着光照强度的增加而加快,这种趋势在一定范围的内呈正相关的。

但是超过一定范围后光合速率的增加逐渐变慢,当达到某一光照强度时,植物的光合速率就不会继续增加,这种现象被称为光饱和现象。

中国科学院大学植物生理学课件:第三章 植物的光合作用

中国科学院大学植物生理学课件:第三章 植物的光合作用

类胡萝卜素
• 类胡萝卜素(carotenoid)是由8个异戊二烯形 成的四萜,含有一系列的共轭双键,分子的两 端各有一个不饱和的取代的环己烯,也即紫罗 兰酮环(图),它们不溶于水而溶于有机溶剂。 类胡萝卜素包括胡萝卜素(carotene,C40H56O2) 和叶黄素(xanthophyll, C40H56O2)。前者呈橙 黄色,后者呈黄色。胡萝卜素是不饱和的碳氢 化合物,有α、β、γ三种同分异构体,其中 以β 胡萝卜素在植物体内含量最多
绿色植物在吸收CO2的同时每年释放O2量约 5.35×1011吨,使大气中Oቤተ መጻሕፍቲ ባይዱ能维持在21%左右
• 光合作用每年向大气中释放5.53×1011吨O2是地球上氧气的来 源,由于大气中O2的存在,其它需氧生物才能够在地球上产生, 进化和发展。(其它需O2生物产生后,光合作用又担负了维持 大气中O2和CO2相对平衡的任务。) • 目前,由于人类活动大量释放CO2,以及绿色植被减少,大气中 O2和CO2的平衡正在被打破。据记载: 1900年 300ppm
Wood Fibers Stored Carbohydrates Amino Acids Clothing Shelter Food
2.将光能转变成化学能
• 绿色植物在把CO2转化为有机物的过程中, 把光能转化为化学能,贮存在有机物中, 是人类和其它异养生物生命活动最终的 能量来源,也为人类提供了其它能量。 我们现在燃烧的植物材料,是现在光合 作用的结果,燃烧的石油、天然气、煤 是远古时代光合作用的结果。(1.65亿 亿吨水升高1℃度,1.65×1014卡)
叶绿素分子含有一个卟啉环(porphyrin ring)的“头部”和一个叶绿醇(植醇, phytol)的“尾巴”。卟啉环由四个吡咯环 与四个甲烯基(-CH=)连接而成,它是各 种叶绿素的共同基本结构。卟啉环的中央 络合着一个镁原子,镁偏向带正电荷,而 与其相联的氮原子则带负电荷,因而“头 部”有极性,是亲水的。另外还有一个含 羰基的同素环(含相同元素的环),其上 一个羧基以酯键与甲醇相结合 叶绿素a与b的分子式很相似,不同之处是叶绿素a比b

《植物的光合作用》PPT课件

《植物的光合作用》PPT课件
1864 Julius Sachs
整理课件
15
观察在照光的叶绿体中淀粉粒会增长 光合作用的另一个产物是有机物
光能
CO2+H2O 绿色植物 (CH2O)+O2 细菌的光合作用
十九世纪的三十年代 C B Van Niel
某些细菌 醋酸 琥珀酸 H2S
CO2+2H2S
(CH2O)+H2O+2S
比较 植物释放的氧来自水,而不是二氧化碳
叶绿醇 是叶绿素分子的亲脂部分,是长链 亲脂“尾巴”,伸入类囊体内
“头部”是金属卟啉环,Mg偏正电荷,N原 子偏带负电荷,呈极性,具亲水性(可和蛋白质结 合),排列在类囊体脂类的表面.
整理课件
22
㈡叶绿素的化学性质 ⑴不溶于水 而溶于有机溶剂
用水配85%丙酮提取叶绿素
⑵皂化作用
C32H30ON4Mg COOCH3 +2KOH
h 普朗克常数 1.58×10-34卡.秒
c 光速 3×1010㎝/秒
COOC20H39 C32H30ON4Mg COOK
+CH3OH
+C20H39OH
COOK
皂化叶绿素 叶醇 整理课件
甲醇
23
⑶形成去镁叶绿素
phMg+2H+ 褐色
H
Ph
+Mg++
H
H
ph H + Cu++(Zn++)
绿色
phCu(Zn)+2H+
整理课件
24
三,叶绿素的光学性质 ⑴吸收光谱
波长在600-660nm的红光 波长在430-450nm蓝紫光 绿光吸收最少

七年级(初一)生物 生物 第3章植物的光合作用

七年级(初一)生物 生物 第3章植物的光合作用
第三节光合作用过程(Ⅰ):光的吸收
一、光反应和碳反应
光合作用的过程可分为3大步骤:1)原初反应(光能的吸收、传递和转换过程);2)电子传递和光合磷酸化(电能转化为活跃的化学能过程);3)碳同化(活跃的化学能转变为稳定的化学能过程)。第一、二个大步骤基本属于光反应,第三个大步骤属于暗反应(表3-2)。
2.C4途径的类型
根据运入维管束鞘细胞的C4化合物和脱羧反应的不同,C4途径有3种类型(表3-3,图3-18)。
3.C4植物的光合特征
C4植物比C3植物具有较强的光合作用,其原因可从结构和生理两方面来探讨。
①结构与功能是有密切关系的,是统一的。C4植物叶片有“花环型”结构。
②在生理上,
C4植物的叶肉细胞中的PEPC对底物HCO3-的亲和力极高(是Rubisco60倍);极低的CO2供应就可满足它的需要。
②已从叶绿体分离出两个光系统,每一个光系统具有特殊的色素复合体及一些物质。光系统I(简称PSI)的颗粒较小,直径约11nm,主要分布在类囊体膜的非叠合部分;光系统Ⅱ(简称PSⅡ)的颗粒较大,直径约17.5nm,主要分布在类囊体膜的叠合部。光合作用的光化学反应就在.这两个光系统中进行。
二、电子传递体及其功能
C4植物由于有“CO2泵”浓缩CO2的机制,降低了光呼吸;提高了BSC的CO2浓度,抑制了RuBisco氧化反应,降低了光呼吸;光呼吸酶主要分布在BSC细胞,即便是有CO2放出,也易被PEPC再固定。
第二节叶绿体及光合作用色素(chloroplastandchloroplastpigments) )
叶片是进行光合作用的主要器官,而叶绿体是进行光合作用的主要细胞器。
一、叶绿体的结构和成分
(一)叶绿体的结构(Struture ofchloroplast)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章植物的光合作用一、名词解释1. 光合作用2. 荧光现象3. 原初反应4. 同化力5. Hill 反应6. 红降现象7. 爱默生效应8. PQ 穿梭9. 聚光(天线)色素10. 光合磷酸化11. C3植物12. C4植物13. 光呼吸14. 温室效应15. 光饱和点16. 光补偿点17. 代谢源18. 代谢库二、填空题1. 根据功能的不同叶绿体色素可以分为 ______________ 和 _____________ 两大类。

2. 叶绿素从第一单线态回到基态所放出的光称为 _________ ,从第一三线态回到基态所放出的光称为 ________ 。

3.C3植物、C4植物和CAM 植物所共有的CO2受体是 ___________ 。

4.PSI 为 ______ 波光反应,其主要特征是 ______ 。

5. 维持植物正常的生长所需的最低日照强度应 ______ 于光补偿点。

6. 叶绿体色素吸收光能后,其光能主要以_____ 方式在色素分子之间传递。

在传递过程中,其波长逐渐_____ ,能量逐渐 _____。

7. 植物体内的有机物是通过 ______ 进行长距离运输的,其中含量最高的有机物是______ 。

8.______ 现象和 ______ 证明了光合作用可能包括两个光系统。

9.PSII ______ 波光反应,其主要特征是 ______ 。

10. 影响韧皮部运输的主要环境因素是_____ 和_____ (举主要 2 种)。

11.CAM 植物,夜间其液泡的 pH_____ ,这是由于积累了大量 _____引起的。

12.PSI 中,电子的原初供体是_____ ,电子原初受体是_____ 。

13. 在光合链中,电子的最终供体是_____ ,电子最终受体是_____ 。

14. 光合链上的 PC ,中文叫_____ ,它是通过元素_____ 的变价来传递电子的。

15. 筛管汁液中,阳离子以_____ 最多,阴离子以_____ 为主。

16. 环割试验证明有机物是通过_____ 运输的,这种方法应用于果树的枝条上可促进_____ 。

17. 叶绿体色素吸收光能后,其激发能主要以_____ 的方式在色素间传递,传递过程中能量_____ ,波长_____ 。

18. 在光合作用中,同化力中的 ATP 用于_____ 和_____ , NADPH 则用于_____ 。

19. 与三碳植物相比,四碳植物的二氧化碳补偿点_____ ,主要是因为 _____。

三、选择题1. 类囊体膜上能够跨膜转运 H+的电子传递体是()A.OECB. PCC.PQD.Fd2. 植物正常发育的光照强度应是()。

A. 等于光补偿点B. 小与光补偿点C. 大于光补偿点D. 大于光饱和点3.P-蛋白是()特有的一种蛋白质。

A. 初生壁B. 柱头表面C. 筛管内D. 分生组织4. 部分植物筛管内运输的光合产物主要是以()进行的。

A. 山梨糖醇B. 葡萄糖C. 果糖D. 蔗糖5. 为防止黄化现象,应注意()。

A. 增施氮肥B. 防止干旱C. 改善光照D. 防治病虫害6. 叶绿素分子的叶醇基是()化合物。

A. 饱和脂肪醇B. 倍半萜C. 二萜D. 萜7. 玉米、高粱植物在 400μl/L 的CO2浓度下,理论上其光合速率比大气CO2下()。

A. 增强B. 下降C. 基本相等D. 变化无常8. 光合碳循环中的 CO2受体是()。

A.PEPB.PGAC.Ru5PD.RuBP9. 光合细胞是在()内合成淀粉的。

A. 叶绿体B. 过氧化物体C. 线粒体D. 细胞质10. 缺水影响光合作用,与成熟叶相比,幼叶受到的影响()。

A. 更严重B. 比较轻C. 差异不大D. 无一定规律11. 夜间, CAM 植物的液泡内积累大量的()。

A. 氨基酸B. 糖类C. 有机酸D.CO212.C 4 植物中光合产物形成的部位是()。

A. 叶肉细胞线粒体B. 叶肉细胞叶绿体C. 维管束鞘细胞线粒体D. 维管束鞘细胞叶绿体13. 已知高等植物中类胡萝卜素具有()的功能。

A. 吸收和传递光能B. 吸收和传递光能及保护叶绿素C. 光能转化为电能D. 吸收和传递光能及光能转化为电能14.PSII 的原初电子受体应为()。

A.Pheo( 去镁叶绿素 )B.QC.PQD.Fd15.C4植物维管束鞘细胞中固定 CO2的受体是()。

A.PEPB.PGAC.Ru5PD.RuBP16.C3植物在日趋严重的温室效应下,其光合速率与现在相比()。

A. 增强B. 下降C. 基本相等D. 没有统一定论17. 已知高等植物中叶绿素 a 可具有()的功能。

A. 吸收和传递光能B. 吸收和传递光能及保护类胡萝卜素C. 光能转化为电能D. 吸收和传递光能及光能转化为电能18. 能进行 Hill 反应的叶绿体是()。

A. 被膜完好的叶绿体B. 被膜破损的叶绿体或类囊体C. 叶绿体间D. 叶绿体被膜19. 光合产物是以()从叶绿体转移到细胞质去的。

A. 核酮糖B. 葡萄糖C. 蔗糖D. 磷酸丙糖20. 在其他条件适宜而温度偏低时,如提高温度,光合作用的光补偿点()。

A. 明显上升B. 有所下降C. 不变化不大D. 与温度无关21.PSII 的光化学反应完成式为()。

A.ZP680 + A0-B.PC + P700A0-C.Z+P680Pheo-D.PC+P680Pheo22. 增加空气中的 CO2浓度, C4 植物的光合作用()。

A. 继续增加B. 反而下降C. 不再增加D. 先增后降23. 早春,作物叶色常呈浅绿色,主要是()引起的。

A. 吸收氮肥困难B. 光照不足C. 气温偏低D. 细胞内缺水24. 影响叶绿素合成和叶绿体发育的最主要外界因素是()。

A. 水分B. 温度C. 光照D. 氧气25. 在最适的环境条件下,C3植物固定 1 分子 CO2需要()个光量子。

A.4-6B.16-18C.8-10D.12-1426. 蔗糖向筛管装载是()进行的。

A. 顺浓度梯度B. 逆浓度梯度C. 等浓度D. 无一定浓度规律27 植物根部吸收的无机离子向植物地上部运输时主要通过()。

A. 筛管B. 导管C. 转运细胞D. 薄壁细胞。

28. 光合作用合成蔗糖是在()里进行的。

A. 叶绿体间质B. 线粒体间质C. 细胞质D. 液泡29. 水稻、棉花等植物在 400μl/L 的 CO2浓度下,其光合速率比大气 CO2浓度下()。

A. 增强B. 下降C. 不变D. 变化无常30.C3途径中的 CO2受体是()。

A.PEPB.PGAC.Ru5PD.RuBP31. 叶绿素分子的头部是()化合物。

A. 萜类B. 脂类C. 吡咯D. 卟啉32. 光合作用的电子传递是()的过程。

A. 光能吸收传递B. 光能变电能C. 光能变化学能D. 电能变化学能33. 叶绿素磷光是由其()态产生的。

A. 三线B. 第一单线激发C. 第二单线激发D. 还原34. 剪去枝上的一部分叶片,保留下来的叶片其光合速率()。

A. 有所增强B. 随之减弱C. 变化不大D. 变化无规律35. 光合作用放氧是在叶绿体的()部位发生的。

A. 被膜B. 间质C. 光合膜上D. 类囊体腔36. 夜间, CAM 植物的液泡内积累大量的()。

A. 氨基酸B. 柠檬酸C. 苹果酸D.CO237. 在 400-700nm 光波长中,对植物生长发育不大重要的波长段是()。

A. 远红光区B. 红光区C. 绿光区D. 蓝紫光区38. 已知高等植物中叶绿素 b 具有()的功能。

A. 吸收和传递光能B. 吸收和传递光能及保护类胡萝卜素C. 光能转化为电能D. 吸收和传递光能及光能转化为电能39. 禾谷类灌浆期,其生长中心是()。

A. 旗叶B. 茎秆C. 穗D. 根系40. 叶绿素提取液,在反射光下呈()。

A. 暗红色B. 橙黄色C. 绿色D. 蓝色41.CAM 途径中最先固定 CO2的产物是()。

A.MalB.OAAC.AspD.Glu42. 光合碳循环中最先缩合的6C 糖是()。

A.Ru5PB.E4PC.G6PD.F1,6P43. 光合作用中原初反应在()。

A. 叶绿体膜上B. 类囊体膜上C. 叶绿体间质中D. 类囊体腔中44.Rubisco 是双功能酶,在 CO2 /O2比值相对较高时,主要发生()反应。

A. 加氧反应大于羧化反应B. 加氧反应C. 羧化反应45. 落叶树春天萌芽时,根内贮藏的有机物主要通过()向上运输。

A. 木质部导管B. 薄壁细胞C. 韧皮部筛管D. 木质部和韧皮部46. 光合作用中 O2的释放发生在()。

A. 叶绿体基质中B. 叶绿体内膜上C. 类囊体膜外侧D. 类囊体膜内侧四、问答题1. 试述光合作用的重要意义。

2. 光合色素的结构、性质与光合作用有何关系 ?3. 如何证明光合作用中释放的 O2来源于水 ?4. 如何证明光合电子传递由两个光系统参与,并接力进行 ?5. C3途径分为哪三个阶段,各阶段的作用是什么 ?C3植物, C4植物和 CAM 植物在碳代谢上各有何异同点 ?6. 光呼吸是如何发生的 ? 有何生理意义 ?7. 绘制一般植物的光强-光合曲线,并对曲线的特点加以说明。

8. 目前大田作物光能利用率不高的原因有哪些 ? 如何提高作物的光能利用率达到增产的目的 ?9. “光合速率高,作物产量一定高”,这种观点是否正确 ? 为什么 ?10. C4植物光合速率为什么在强光高温和低 CO2浓度条件下比 C3植物的高 ?11. 如何证明植物同化物长距离运输是通过韧皮部的 ?12. 同化物在韧皮部的装载与卸出机制如何 ?13. 简述压力流动学说的要点、实验证据及遇到的难题。

14. 试述同化物运输与分配的特点和规律。

15. 提高作物产量的途径有哪些 ?。

相关文档
最新文档