次函数应用题专题训练

合集下载

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知函数y1=mx2+n,y2=mx+n(m>0),当p<x<q时,y1<y2,则()A.0<q−p<2B.0<q−p≤2C.0<q−p<1D.0<q−p≤12.一次函数y=bx+a(b≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.4.小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是()A.①B.②C.③D.④5.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣734或﹣12B.﹣734或2C.﹣12或2D.﹣694或﹣126.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>174或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).正确的有()A.1个B.2个C.3个D.4个7.直线y=ax﹣6与抛物线y=x2﹣4x+3只有一个交点,则a的值为()A.a=2B.a=10C.a=2或a=﹣10D.a=2或a=108.已知一次函数y1=2x−2,二次函数y2=x2,对于x的同一个值,这两个函数所对应的函数值分别为y1和y2,则下列表述正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小关系不确定9.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>410.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A.3B.4C.5D.611.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=-3(t-20)2+1200(5≤t≤20)12.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y= 12x2+bx+c的顶点,则抛物线y= 12x2+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个二、填空题13.抛物线y=2x2+x+a与直线y=−x+3没有交点,则a的取值范围是.14.如图,已知抛物线y1=−2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0,下列判断:①当x<0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是−12或√22.其中正确的是.15.如图,已知直线y=﹣34x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34x+3于点Q,则当PQ=BQ时,a的值是.16.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…21的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.18.直线y=x+2与抛物线y=x2的交点坐标是.三、综合题19.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?20.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.21.如图,已知抛物线 y =−12x 2+bx +c 经过A (2,0)、B (0,-6)两点,其对称轴与轴交于点C(1)求该抛物线和直线BC 的解析式;(2)设抛物线与直线BC 相交于点D ,连结AB 、AD ,求△ABD 的面积.22.某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量 y (万件)与售价 x (元/件)的函数关系式为 y ={−2x +140,(40≤x <60)−x +80.(60≤x ≤70)(1)当售价为60元/件时,年销售量为 万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少? (3)若销售该产品的年利润不少于750万元,直接写出 x 的取值范围.23.抛物线y =ax 2与直线y =2x -3交于点A(1,b).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.24.如图,平面直角坐标系中,抛物线 y =ax 2+bx +c 经过 A(−1,0) , B(3,0) 两点,与 y 轴交于点 C(0,−3) ,点 D 是抛物线的顶点.(1)求抛物线的解析式;(2)设P(m,n)为对称轴上一点,若∠PCD为钝角,求n的取值范围.参考答案1.【答案】D 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】B 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】D 13.【答案】a >3.5 14.【答案】③④15.【答案】﹣1,4,4+2 √5 ,4﹣2 √5 16.【答案】x <﹣1或x >4 17.【答案】y =83x 218.【答案】(-1,1)和(2,4)19.【答案】(1)解:根据题意:y =20000+ x 100 ×10000=100x+20000(2)解:设所获的利润w (元) 则W =(2200﹣1200﹣x )(100x+20000) =﹣100(x ﹣400)2+36000000;所以当降价400元,即定价为2200﹣400=1800元时,所获利润最大 (3)解:根据题意每天最多接受50000(1﹣0.05)=47500台 此时47500=100x+20000 解得:x =275.所以最大量接受预订时,每台定价2200﹣275=1925元.20.【答案】(1)解:由题意 {4a −2b +2=64b +2b +2=2 解得 {a =12b =−1∴抛物线解析式为y= 12x 2﹣x+2.(2)解:∵y= 12 x 2﹣x+2= 12 (x ﹣1)2+ 32.∴顶点坐标(1,3 2)∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3)∴S△BDC=S△BDH+S△DHC= 12×32•3+ 12×32•1=3.(3)解:由{y=−12x+by=12x2−x+2消去y得到x2﹣x+4﹣2b=0当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0∴b= 15 8当直线y=﹣12x+b经过点C时,b=3当直线y=﹣12x+b经过点B时,b=5∵直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点∴158<b≤3.21.【答案】(1)解:将A(2,0)、B(0,-6)代入y=−12x2+bx+c中可得{−12×22+2b+c=0c=−6解得:b=4;c=-6∴该抛物线的解析式为y=−12x2+4x−6∴抛物线对称轴为x=−42×(−12)=4∴C(4,0)设直线BC的解析式为y=kx+b(k≠0)将B(0,-6),C(4,0)代入得解得:k=32,b=−6∴直线BC 的解析式为 y =32x −6(2)解:连立方程组可得 {y =32x −6y =−12x 2+4x −6解得 {x =5y =32∴D(5, 32)∴△ABD 的面积为 12×2×(23+6)=15222.【答案】(1)20(2)解:设销售该产品的年利润为 W 万元当 40≤x <60 时, W =(x −30)(−2x +140)=−2(x −50)2+800 . ∵-2<0 ∴当 x =50 时 当 60≤x ≤70 时 ∵−1<0 ∴当 x =60 时 ∵800>600 ∴当 x =50 时∴当售价为50元/件时,年销售利润最大,最大为800万元. (3)解: 45≤x ≤55 理由如下:由题意得(x −30)(−2x +140)≥750解得 45≤x ≤5523.【答案】(1)解:∵点 A(1,b) 在直线 y =2x −3 上∴b =−1∴点 A 坐标 (1,−1)把点 A(1,−1) 代入 y =ax 2 得到 a =−1∴a =b =−1.(2)解:由 {y =−x 2y =−2 解得 {x =√2y =−2 或 {x =−√2y =−2 ∴点 C 坐标 (−√2,−2), 点 B 坐标 (√2,−2). (3)解: S △BOC =12×2√2×2=2√2.24.【答案】(1)解:由已知,设 y =a(x +1)(x −3)把C(0,−3)代入,得−3a=−3∴y=(x+1)(x−3)即y=x2−2x−3.(2)解:由y=x2−2x−3,得y=(x−1)2−4∴顶点D(1,−4).过点D作DH⊥y轴于点H,连结BC交对称轴于点E,连结DC.∵B(3,0),C(0,−3)∴OB=OC=3∴∠BCO=∠DCH=45°∴∠DCE=90°设BC函数表达式为y=kx+b把B(3,0),C(0,−3)两点代入y=kx+b得{k=1b=−3即BC函数表达式为y=x−3∵点E在对称轴上∴点E横坐标为1,代入y=x−3得E(1,−2)由∠PCD为钝角,则点P在点E上方即n>−2.第11页共11页。

拱桥二次函数应用题

拱桥二次函数应用题

1、一座抛物线形拱桥,当水面距拱顶5米时,水面宽度为10米。

若水面下降2米,则水面宽度会变为:A. 12米B. 14米C. 16米D. 18米(答案)C2、某拱桥的形状为抛物线,其最高点距地面6米,且桥拱跨度为10米。

若以桥拱最高点为原点建立坐标系,则桥拱所在的抛物线方程可能为:A. y = -3/25 * x2 + 6B. y = -6/25 * x2 + 6C. y = -9/25 * x2 + 6D. y = -12/25 * x2 + 6(答案)D3、一座抛物线形拱桥,桥下水面宽度为8米时,拱高为2米。

若一艘小船的顶部宽为4米,且高出水面1.5米,则该小船:A. 能顺利通过桥下B. 不能通过桥下C. 刚好能通过桥下D. 无法确定是否能通过桥下(答案)A4、某抛物线形拱桥的跨度为20米,拱高为5米。

若桥下水面宽度增加到16米,则水面距离拱顶的高度为:A. 2米B. 3米C. 4米D. 5米(答案)B5、一座抛物线形拱桥,其方程为y = -ax2 + 4(a > 0)。

若桥下水面宽度为6米时,水面距离拱顶2米,则a的值为:A. 1/9B. 4/9C. 1/3D. 2/3(答案)B6、某抛物线形拱桥的跨度为12米,拱高为3米。

若一货车的高度为2.5米,且货车的宽度不超过多少米时,货车能安全通过桥下?A. 4米B. 6米C. 8米D. 10米(答案)C7、一座抛物线形拱桥,当水面宽度为12米时,拱高为4米。

若水面上升1米,则水面宽度会:A. 增加B. 减少C. 不变D. 无法确定(答案)B8、某抛物线形拱桥的方程为y = -kx2 + 4(k > 0),且当x = 2时,y = 2。

若桥下水面宽度增加到8米,则水面会:A. 上升B. 下降C. 保持不变D. 无法确定(答案)A9、一座抛物线形拱桥,其最高点距水面6米,且当水面宽度为8米时,拱高为2米。

若一艘小船高出水面1.5米,且顶部宽度不超过多少米时,小船能安全通过桥下?A. 2米B. 4米C. 6米D. 8米(答案)B10、某抛物线形拱桥的跨度为16米,拱高为4米。

中考数学《二次函数与一次函数的综合应用》专项练习题(带答案)

中考数学《二次函数与一次函数的综合应用》专项练习题(带答案)

中考数学《二次函数与一次函数的综合应用》专项练习题(带答案)一、单选题1.如图,在平面直角坐标系中,y =−34x 2+94x +3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,点P 是BC 上方抛物线上一点,连结AP 交BC 于点D ,连结AC ,CP ,记△ACD 的面积为S 1,△PCD 的面积为S 2,则S1S 2的最小值为( )A .43B .53C .54D .12.若b <0,则一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系内的图象可能是( )A .B . .C .D .3.在直角坐标系中,函数y= 3x 与y= -x 2+1的图像大致是( )A .B .C.D.4.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.45.如图,在平面直角坐标系中,过点A且与x轴平行的直线交抛物线y=13(x+1)2于B,C两点,若线段BC的长为6,则点A的坐标为()A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)6.函数y=k x与y=ax2+bx+c的图象如图所示,则y=kx−b的大致图象为()A.B.C.D.7.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①M的最大值是2;②使得M=1的x值是−12或√2.其中正确的说法是()2A.只有①B.只有②C.①②都正确D.①②都不正确8.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图象与x轴()A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点10.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.−1≤x≤9B.−1≤x<9C.−1<x≤9D.x≤−1或x≥9 11.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=14(x−4)2的图象与两坐标轴所围成的图形最接近的面积是()A.5B.225C.4D.17﹣4π12.如图,抛物线y=12x2+72x+3与直线y=−12x−12交于A,B两点,点C为y轴上点,当△ABC周长最短时;周长的值为()A.√73+5√3B.√73+3√5C.√43+3√5D.√43+5√3二、填空题13.如图所示,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n<ax2+bx+c的解集是14.如图,已知抛物线y1=﹣x2+1,直线y2=﹣x+1,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=2时,y1=﹣3,y2=﹣1,y1<y2,此时M=﹣3.下列判断中:或34;①当x<0或x>1时,y1<y2;②当x<0时,M=y1;③使得M= 14的x的值是﹣√32④对任意x的值,式子√(M−1)2=1﹣M总成立.其中正确的是(填上所有正确的结论)15.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B (8,2)(如图所示),则能使y1>y2成立的x的取值范围是.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则关于x的方程ax2−bx−c=0的解为.17.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是.18.如图,抛物线y=ax2经过矩形OABC的顶点B,交对角线AC于点D.则ADAC的值为.三、综合题19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=√(x1−x2)2+(y1−y2)2).20.如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1)探究与猜想:①取点M(0,1),直接写出直线l的解析式;取点M(0,2),直接写出直线l的解析式.②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为,请取M的纵坐标为n,验证你的猜想(2)如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式21.如图,抛物线y=x2+bx+c与x轴交于A(−1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求ΔADE 的面积.22.已知二次函数y=﹣x2+4x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(6,0),与y轴交于点B,点p是二次函数对称轴上的一个动点,当PB+PA的值最小时,求p的坐标(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.23.如图二次函数的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C.(1)试确定、的值;(2)若点M为此抛物线的顶点,求△MBC的面积.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.参考答案1.【答案】C 2.【答案】B 3.【答案】D 4.【答案】B 5.【答案】C 6.【答案】D 7.【答案】C 8.【答案】C 9.【答案】B 10.【答案】A 11.【答案】A 12.【答案】B 13.【答案】-1<x<4 14.【答案】①②③④ 15.【答案】x <﹣2或x >8. 16.【答案】x 1=−2 17.【答案】﹣3<m <﹣ 15818.【答案】√5−1219.【答案】(1)解:A (1,0)关于x=﹣1的对称点是(﹣3,0)则B 的坐标是(﹣3,0) 根据题意得: {−3m +n =0n =3解得 {m =1n =3则直线的解析式是y=x+3; 根据题意得: 解得: {9a −3b +c =0a +b +c =0c =3则抛物线的解析式是y=﹣x 2﹣2x+3(2)解:设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小. 把x =−1代入直线y =x +3得,y =−1+3=2 ∴M (−1,2)即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)解:如图,设P (−1,t ) 又∵B (−3,0),C (0,3)∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t−3)2=t 2−6t +10 ①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1= 3+√172,t 2=3−√172; ∴P 的坐标是(﹣1, 3+√172 )或(﹣1, 3−√172)或(﹣1,4)或(﹣1,﹣2).20.【答案】(1)PQ :y =6x -29;PQ :y =6x -26;6(2)解:∵S △ABP =3S △ABQ ∴y P =-3y Q ∴kx P +b =-3(kx Q +b) ∵k =6 ∴6x P +18x Q =-b ∴6(5+n)+18(5-n)=4b ,解得b =3n -30∵x P ·x Q =-(5+b)=-5-3n +30=(5+n)(5-n),解得n =3 ∴P(8,27) ∴直线PQ 的解析式为y =6x -2121.【答案】(1)解:∵抛物线 y =x 2+bx +c 与 x 轴交于 A(−1,0) 和 B(3,0) 两点∴{1−b +c =09+3b +c =0 ,解得: {b =−2c =−3故抛物线解析式为: y =x 2−2x −3 ; (2)解:根据题意得: {y =x 2−2x −3y =x +1 解得: {x 1=−1y 1=0∴A(−1,0)对于直线 y =x +1 ,当 x =0 时, y =1 ,∴F(0,1) 对于 y =x 2−2x −3 ,当 x =0 时, y =−3 ,∴E(0,−3) ∴EF =4过点 D 作 DM ⊥y 轴于点 M .∴S ΔADE =12EF ⋅(DM +AO)=10 .22.【答案】(1)解:∵二次函数的图象与x 轴有两个交点 ∴△=42+4m >0∴m >﹣4(2)解:∵二次函数的图象过点A (6,0)∴0=﹣9+6+m·∴m=12∴二次函数的解析式为:y=﹣x 2+4x+12令x=0,则y=12∴B (0,12)设直线AB 的解析式为:y=kx+b∴{6k +b =0b =12, 解得: {k =−2b =12,∴直线AB 的解析式为:y=﹣2x+12∵抛物线y=﹣x 2+4x+12的对称轴为:x=2∴把x=2代入y=﹣2x+12得y=8∴P (2,8).(3)解:根据函数图象可知:x <0或x >6.23.【答案】(1)解:把(-1,0)、(3,0)代入y=x 2+bx+c 中,得 {1−b +c =09+3b +c =0解得 {b =−2c =−3故b=-2,c=-3;(2)解: 过M 作MD 垂直于y 轴,垂足为D .求出抛物线的顶点 M(1,−4) ;△MBC 的面积=梯形MDOB-△OBC-△CMD= 12×(1+3)×4−12×3×3−12×1×1 =3.24.【答案】(1)解:由x=0得y=0+4=4,则点C 的坐标为(0,4); 由y=0得x+4=0,解得x=﹣4,则点A 的坐标为(﹣4,0); 把点C (0,4)代入y=x 2+kx+k ﹣1,得k ﹣1=4解得:k=5∴此抛物线的解析式为y=x 2+5x+4∴此抛物线的对称轴为x=﹣ 52×1 =﹣ 52. 令y=0得x 2+5x+4=0解得:x 1=﹣1,x 2=﹣4∴点B 的坐标为(﹣1,0)(2)解:∵A (﹣4,0),C (0,4)∴OA=OC=4∴△OCA=△OAC.∵△AOC=90°,OB=1,OC=OA=4∴AC= √OA2+OC2=4 √2,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴△ADC<△AOC,即△ADC<90°.又∵△ABC>△BOC,即△ABC>90°,∴△ABC>△ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD△△ABC∴CDAC=CAAB,即CD4√2= 4√23解得:CD= 32 3∴OD=CD﹣CO= 323﹣4=203∴点D的坐标为(0,﹣20 3).。

中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案

中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案

中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案一、单选题(共12题;共24分)1.已知直线y=kx+2过一、二、三象限,则直线y=kx+2与抛物线y=x2−2x+3的交点个数为()A.0个B.1个C.2个D.1个或2个2.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>43.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+n与C1、C2共有3个不同的交点,则n的取值范围是()A.−2<n<18B.−3<n<−74C.−3<n<−2D.−3<n<−1584.已知直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,且抛物线与x轴交于点(-1,0)、(2,0),抛物线与直线交点的横坐标为1和,那么不等式mx+n <ax2+bx+c <0的解集是()A.1<x<2B.x<或x>1C.<x<2D.-1<x<25.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,x+2,8−x}时(x≥0),则y的最大值是()A.4B.5C.6D.7 6.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y= x2−x+c(c为常数)在−2<x<4的图象上存在两个二倍点,则c的取值范围是()A.−2<c<14B.−4<c<94C.−4<c<14D.−10<c<947.二次函数y1=x2+bx+c与一次函数y2=kx−9的图象交于点A(2,5)和点B(3,m),要使y1<y2,则x的取值范围是()A.2<x<3B.x>2C.x<3D.x<2或x>38.将二次函数y=−x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时b的值为()A.−214或−3B.−134或−3C.214或−3D.134或−39.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或210.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动,同时点Q沿边AB,BC从点A开始向点C以2cm/s的速度移动,当点P移动到点A时P、Q同时停止移动。

次函数同步精品练习题含答案

次函数同步精品练习题含答案

次函数同步精品练习题含答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】巩固练习一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<214.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个15.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个16.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时此时离家多远(2)求小明出发两个半小时离家多远(3)•求小明出发多长时间距家12千米3.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函解析式.4.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B (3,3),求光线从A点到B点经过的路线的长.5.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像. 10.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例, ∴5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即 ∴m=-14,故应选C . 11.B 12.C 13.B 提示:∵a b b c c a c a b+++===p , ∴①若a+b+c ≠0,则p=()()()a b b c c a a b c+++++++=2; ②若a+b+c=0,则p=a b c c c+-==-1, ∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A .二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等. 4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3). 提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为(98,34),在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t ⨯=⨯=. 三、1.(1)由题意得:20244a b a b b +==-⎧⎧⎨⎨==⎩⎩解得 ∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y ≤4,∴-4≤-2x+4≤4,∴0≤x ≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k ≠0)为常数,则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx ,得2131k p k p +=⎧⎨+=-⎩解得k=-2,p=5, ∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x ≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x ≤4时,-3≤y ≤3.另解:∵1≤x ≤4,∴-8≤-2x ≤-2,-3≤-2x+5≤3,即-3≤y ≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(,)和(,)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=+.(2)当x=时,y=×+=.∵77≠,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=时,y=(千米)答:出发两个半小时,小明离家千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,y B),其中y B<0,∵S△AOB=6,∴12AO·│yB│=6,∴y B=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴== 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,52b kk bb⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.设过CD的直线解析式为y=kx+8,将C(4,0)代入0=4k+8,解得k=-2.∴直线CD:y=-2x+8,由22 13524 285xy xy x y⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得∴点E的坐标为(225,-45).11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,。

九年级数学二次函数应用题专题复习

九年级数学二次函数应用题专题复习

二次函数应用题专题复习含答案例1、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y毫克/百毫升与时间x时的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后包括1.5小时y与x可近似地用反比例函数y=k>0刻画如图所示.1根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值最大值为多少②当x=5时,y=45,求k的值.2按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班请说明理由.例2、2016•葫芦岛某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y本与每本纪念册的售价x元之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.1请直接写出y与x的函数关系式;2当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元3设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少例3、某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1元/台与采购数量x1台满足y1=﹣20x1+15000<x1≤20,x1为整数;冰箱的采购单价y2元/台与采购数量x2台满足y2=﹣10x2+13000<x2≤20,x2为整数.1经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案2该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在1的条件下,问采购空调多少台时总利润最大并求最大利润.例4、九年级3班数学兴趣小组经过市场调查整理出某种商品在第x天1≤x≤90,且x为整数的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y单位:元/件,每天的销售量为p单位:件,每天的销售利润为w单位:元.时间x天 1 30 60 90 每天销售量p件198 140 80 201求出w与x的函数关系式;2问销售该商品第几天时,当天的销售利润最大并求出最大利润;3该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.例5、2016•绥化自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为0,0和5,0.画出二次函数y=x2﹣5x的大致图象如图所示,由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1上述解题过程中,渗透了下列数学思想中的和.只填序号①转化思想②分类讨论思想③数形结合思想2一元二次不等式x2﹣5x<0的解集为.3用类似的方法解一元二次不等式:x2﹣2x﹣3>0.例6、2016•黄石科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间分钟,纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.1请写出图中曲线对应的函数解析式;2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟对应练习:1.一个小球被抛出后,如果距离地面的高度h米和运行时间t秒的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y单位:万元与销售量x 单位:辆之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x 轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为A.y=x+32B.y=x+32C.y=x﹣32 D.y=x﹣325.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h米和飞行时间t秒满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为A.3s B.4s C.5s D.6s8.某车的刹车距离ym与开始刹车时的速度xm/s之间满足二次函数y=x>0,若该车某次的刹车距离为5m,则开始刹车时的速度为A.40 m/s B.20 m/s C.10 m/s D.5 m/s9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶拱桥洞的最高点离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣x﹣62+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元20≤x≤30,且x为整数出售,可卖出30﹣x件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为0,1、4,2、2,6.如果Px,y是△ABC围成的区域含边界上的点,那么当w=xy取得最大值时,点P的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y米关于水平距离x米的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w元与降价x元的函数关系如图.这种工艺品的销售量为_________件用含x的代数式表示.15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.1若公司每天的现售价为x元时则每天销售量为多少2如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y千克与销售价x元/千克之间的函数关系如图所示:1求y与x之间的函数关系式,并写出自变量x的取值范围;2求每天的销售利润W元与销售价x元/千克之间的函数关系式.当销售价为多少时,每天的销售利润最大最大利润是多少3该经销商想要每天获得150元的销售利润,销售价应定为多少17.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=x﹣602+m部分图象如图所示,当x=40时,两组材料的温度相同.1分别求y A、y B关于x的函数关系式;2当A组材料的温度降至120℃时,B组材料的温度是多少3在0<x<40的什么时刻,两组材料温差最大18.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.1求出每天的销售利润y元与销售单价x元之间的函数关系式;2求出销售单价为多少元时,每天的销售利润最大最大利润是多少3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内每天的总成本=每件的成本×每天的销售量19.某种商品每天的销售利润y元与销售单价x元之间满足关系:y=ax2+bx﹣75.其图象如图所示.1销售单价为多少元时,该种商品每天的销售利润最大最大利润为多少元2销售单价在什么范围时,该种商品每天的销售利润不低于16元参考答案与点评例1、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y毫克/百毫升与时间x时的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后包括1.5小时y与x可近似地用反比例函数y=k>0刻画如图所示.1根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值最大值为多少②当x=5时,y=45,求k的值.2按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班请说明理由.考点:二次函数的应用;反比例函数的应用分析:1①利用y=﹣200x2+400x=﹣200x﹣12+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;2求出x=11时,y的值,进而得出能否驾车去上班.解答:解:1①y=﹣200x2+400x=﹣200x﹣12+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,y=k>0,∴k=xy=45×5=225;2不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.例2、2016•葫芦岛某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y本与每本纪念册的售价x元之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.1请直接写出y与x的函数关系式;2当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元3设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少分析1设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;2根据题意结合销量×每本的利润=150,进而求出答案;3根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.解答解:1设y=kx+b,把22,36与24,32代入得:,解得:,则y=﹣2x+80;2设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:x﹣20y=150,则x﹣20﹣2x+80=150,整理得:x2﹣60x+875=0,x﹣25x﹣35=0,解得:x1=25,x2=35不合题意舍去,答:每本纪念册的销售单价是25元;3由题意可得:w=x﹣20﹣2x+80=﹣2x2+120x﹣1600=﹣2x﹣302+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣228﹣302+200=192元,答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.点评此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.例3、某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1元/台与采购数量x1台满足y1=﹣20x1+15000<x1≤20,x1为整数;冰箱的采购单价y2元/台与采购数量x2台满足y2=﹣10x2+13000<x2≤20,x2为整数.1经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案2该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在1的条件下,问采购空调多少台时总利润最大并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.菁优网分析:1设空调的采购数量为x台,则冰箱的采购数量为20﹣x台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;2设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:1设空调的采购数量为x台,则冰箱的采购数量为20﹣x台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;2设总利润为W元,y2=﹣10x2+1300=﹣1020﹣x+1300=10x+1100,则W=1760﹣y1x1+1700﹣y2x2,=1760x﹣﹣20x+1500x+1700﹣10x﹣110020﹣x,=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30x﹣92+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=3015﹣92+9570=10650元,答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,1关键在于确定出两个不等关系,2难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.例4、九年级3班数学兴趣小组经过市场调查整理出某种商品在第x天1≤x≤90,且x为整数的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y单位:元/件,每天的销售量为p单位:件,每天的销售利润为w单位:元.时间x天 1 30 60 90 每天销售量p件198 140 80 201求出w与x的函数关系式;2问销售该商品第几天时,当天的销售利润最大并求出最大利润;3该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.分析1当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p 与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;2根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;3令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.解答解:1当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+bk、b为常数且k≠0,∵y=kx+b经过点0,40、50,90,∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+nm、n为常数,且m≠0,∵p=mx+n过点60,80、30,140,∴,解得:,∴p=﹣2x+2000≤x≤90,且x为整数,当1≤x≤50时,w=y﹣30•p=x+40﹣30﹣2x+200=﹣2x2+180x+2000;当50<x≤90时,w=90﹣30﹣2x+200=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.2当1≤x≤50时,w=﹣2x2+180x+2000=﹣2x﹣452+6050,∵a=﹣2<0且1≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.3当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21天;当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3天.综上可知:21+3=24天,故该商品在销售过程中,共有24天每天的销售利润不低于5600元.点评本题考查了二次函数的应用、一元一次不等式的应用、一元二次不等式的应用以及利用待定系数法求函数解析式,解题的关键:1根据点的坐标利用待定系数法求出函数关系式;2利用二次函数与一次函数的性质解决最值问题;3得出关于x的一元一次和一元二次不等式.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据给定数量关系,找出函数关系式是关键.例5、2016•绥化自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为0,0和5,0.画出二次函数y=x2﹣5x的大致图象如图所示,由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1上述解题过程中,渗透了下列数学思想中的①和③.只填序号①转化思想②分类讨论思想③数形结合思想2一元二次不等式x2﹣5x<0的解集为0<x<5.3用类似的方法解一元二次不等式:x2﹣2x﹣3>0.分析1根据题意容易得出结论;2由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;3设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.解答解:1上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;2由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.3设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为3,0和﹣1,0.画出二次函数y=x2﹣2x﹣3的大致图象如图所示,由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.点评本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.例6、2016•黄石科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间分钟,纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.1请写出图中曲线对应的函数解析式;2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟分析1构建待定系数法即可解决问题.2先求出馆内人数等于684人时的时间,再求出直到馆内人数减少到624人时的时间,即可解决问题.解答解1由图象可知,300=a×302,解得a=,n=700,b×30﹣902+700=300,解得b=﹣,∴y=,2由题意﹣x﹣902+700=684,解得x=78,∴=15,∴15+30+90﹣78=57分钟所以,馆外游客最多等待57分钟.点评本题考查二次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会用方程的思想思考问题,属于中考常考题型.反馈练习参考答案与试题解析一.选择题共8小题1.一个小球被抛出后,如果距离地面的高度h米和运行时间t秒的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是A.1米B.3米C.5米D.6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5t2﹣2t+1=﹣5t﹣12+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y单位:万元与销售量x 单位:辆之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售15﹣x量,根据题意得出:W=y1+y2=﹣x2+10x+215﹣x=﹣x2+8x+30,∴最大利润为:==46万元,故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x 轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为A.y=x+32B.y=x+32C.y=x﹣32D.y=x﹣32考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为1,1,由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为﹣3,0,于是得到右边抛物线的顶点C 的坐标为3,0,然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为1,1,∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为﹣3,0,∴右边抛物线的顶点C的坐标为3,0,设右边抛物线的解析式为y=ax﹣32,把D1,1代入得1=a×1﹣32,解得a=,故右边抛物线的解析式为y=x﹣32.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A.2s B.4s C.6s D.8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度hm与飞行时间ts的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h米和飞行时间t秒满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是A.2米B.5米C.6米D.14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5t2﹣4t﹣14=﹣5t2﹣4t+4+20﹣14=﹣5t﹣22+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为A.3s B.4s C.5s D.6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离ym与开始刹车时的速度xm/s之间满足二次函数y=x>0,若该车某次的刹车距离为5m,则开始刹车时的速度为A.40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.。

中考必练二次函数综合应用题(带答案)

中考必练二次函数综合应用题(带答案)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.x>),请你分别用x的代数式来表示销售(1)不妨设该种品牌玩具的销售单价为x元(40量y件和销售该品牌玩具获得利润ω元.(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?3.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?4.某服装厂批发应季T恤衫,其单价y(元)与一次批发数量x(件)(x为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.问题提出(1)如图①,在矩形ABCD 中,4AB =,6BC =,点F 是AB 的中点,点E 在BC 上,2BE EC =,连接FE 并延长交DC 的延长线于点G ,求CG 的长;问题解决(2)如图②,某生态农庄有一块形状为平行四边形ABCD 的土地,其中4km AB =,6km BC =,60B ∠=︒.管理者想规划出一个形状为EMP 的区域建成亲子采摘中心,根据设计要求,点E 是AD 的中点,点P 、M 分别在BC 、AB 上,PM AB ⊥.设BP 的长为(km)x ,EMP 的面积为y 2(km ).①求y 与x 之间的函数关系式;②为容纳更多的游客,要求EMP 的面积尽可能的大,请求出EMP 面积的最大值,并求出此时BP 的长.6.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少?(2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?7.安徽省在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额-生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围):并求年产量多少万件时,所获毛利润最大(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润8.某商场销售一款服装,经市场调查发现,每月的销售量y(件)与销售单价x(元/件)之间的函数关系如表格所示.同时,商场每出售1件服装,还要扣除各种费用150元.销售单价x(元/件)260240220销售量y(件)637791(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,商场每月能够获得最大利润?最大利润是多少?(3)4月底,商场还有本款服装库存580件.若按(2)中获得最大月利润的方式进行销售,到12月底商场能否销售完这批服装?请说明理由.9.某商店购进一批成本为每件30元的商品,销售单价为40元时,每天销售量为80件,经调查发现,销售单价每上涨1元,每天销售量减少2件.设该商品每天的销售量y (件)与销售单价x(元).(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)求当销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?(3)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(4)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?10.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元?【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元(3)106 107 108【解析】【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值.(1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克;(2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数,∵20-< ,∴11x =时,w 有最大值是242元,∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数,∴由二次函数的对称性可知,x 的取值为9,10,11,12,13当9x =或13时,2244234x x -+=;当10x =或12时,2244240x x -+=,当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350,∴当106a =或107或108时符合题意.答:所有符合题意的a 值为:106,107,108.【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质.2.(1)y=1000−10x ,w =−10x 2+1300x −30000;(2)商场销售该品牌玩具获得的最大利润为8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具,得y =600−(x −40)×10=1000−10x ,利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)首先求出x 的取值范围,然后把w =−10x 2+1300x −30000转化成y =−10(x −65)2+12250,结合x 的取值范围,求出最大利润.(1)解:由题意得:销售量y=600−(x −40)×10=1000−10x ,销售玩具获得利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)解:根据题意得10001054045x x -≥⎧⎨≥⎩, 解之得:45≤x ≤46,w =−10x 2+1300x −30000=−10(x −65)2+12250,∵a =−10<0,对称轴是直线x =65,∴当45≤x ≤46时,w 随x 增大而增大.∴当x =46时,w 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.3.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.(1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤即10300y x =-+,1030x ≤≤,(2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-,∵100-<,开口向下,对称轴为20x,1030x ≤≤ ∴当20x时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+=()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.5.(1)1CG =(2)①2311388y x x =-+;②EMP 面积的最大值为21213km 32,此时BP 的长为11km 2 【解析】【分析】(1)证明FEB GEC △∽△,依据相似三角形的性质进行求解即可;(2)①分点P 在点H 左侧和右侧两种情况讨论求解即可;②由二次函数的性质可得解.(1)在矩形ABCD 中,90ABC BCD BCG ∠=∠=∠=︒,∵FEB GEC ∠=∠,∴FEB GEC △∽△,∴BF BE CG CE =, ∵4AB =,6BC =,点F 是AB 的中点,2BE EC =,∴2BF =,4BE =,2CE =,∴242CG =, ∴1CG =.(2)①过点E 作EH //AB 交BC 于点H ,交射线MP 于点G ,易得四边形ABHE 是平行四边形, ∴4EH AB ==.∵EH //AB ,PM AB ⊥,∴60PHG B ∠=∠=︒,EG PM ⊥,即EG 是PME △边MP 上的高.∵点E 是AD 的中点,∴3BH AE ==.如图1-1,当点P 在点H 左侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=+=+=. 如图1-2,当点P 在点H 右侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=-=-=, ∴PME △的边MP 上的高112x EG -=. 在Rt MBP 中,3sin 60x MP BP =⋅︒=∴2113113113222x x y MP EG x -=⋅==. ②)222311333111213112y x x x x ⎫==-=-⎪⎝⎭ ∴当112x =时,1213y =最大 ∴EMP 21213,此时BP 的长为11km 2. 【点睛】 本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用.在解答时添加辅助线构建全等形和相似形是关键.6.(1)A 城生产20件,最小值是5700万元;(2)从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A ,B 两城运费的和最小.【解析】【分析】(1)设A ,B 两城生产这批产品的总成本的和为W (万元),则W 等于A 城生产产品的总成本加上B 城生产产品的总成本,由此可列出W 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(2)设从A 城把该产品运往C 地的产品数量为n 件,分别用含n 的式子表示出从A 城把该产品运往D 地的产品数量、从B 城把该产品运往C 地的产品数量及从B 城把该产品运往D 地的产品数量,再列不等式组求得n 的取值范围,然后用含n 的式子表示出A ,B 两城总运费之和P ,根据一次函数的性质可得答案.(1)解:设A ,B 两城生产这批产品的总成本的和为W (万元),则22010060(100)W x x x =+++-2406100x x =-+2(20)5700x =-+,∴当20x时,W 取得最小值,最小值为5700万元, ∴城生产20件,A ,B 两城生产这批产品成本的和最小,最小值是5700万元;(2) 设从A 城把该产品运往C 地的产品数量为n 件,则从A 城把该产品运往D 地的产品数量为(20)n -件,从B 城把该产品运往C 地的产品数量为(90)n -件,则从B 城把该产品运往D 地的产品数量为(1020)n -+件,运费的和为P (万元),由题意得:20010200n n -⎧⎨-+⎩, 解得1020n ,3(20)(90)2(1020)P n n n n =+-+-+-+60390220n n n n =+-+-+-2130n n =-+130n =-+,根据一次函数的性质可得:P 随n 增大而减小,∴当20n =时,P 取得最小值,最小值为110,∴从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A 、B 两城运费的和最小.【点睛】本题考查了二次函数和一次函数在实际问题中的应用,解题的关键是理清题中的数量关系并熟练掌握一次函数和二次函数的性质.7.(1)21(0100)10y x x =≤≤,130(0100)10z x x =-+≤≤; (2)21(75)1125(0100)5W x x =--+≤≤,年产量75万件时,所获毛利润最大; (3)今年最多可获得1080万元的毛利润【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额-生产费用,可得出w 与x 之间的函数关系式; (3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.(1)解:设y 与x 之间的函数关系式为2y ax =,21000100a =⨯,得110a =, 即y 与x 之间的函数关系式为21(0100)10y x x =≤≤; 设z 与x 的函数关系式为z kx b =+,3010020b k b =⎧⎨+=⎩,得1,1030k b ⎧=-⎪⎨⎪=⎩ 即z 与x 的函数关系式为130(0100)10z x x =-+≤≤; (2)解:由题意可得, 2211130(75)112510105W zx y x x x x ⎛⎫=-=-+-=--+ ⎪⎝⎭, 即W 与x 之间的函数关系式为21(75)1125(0100)5W x x =--+≤≤, ∵21(75)11255W x =--+, ∴当75x =时,W 取得最大值,此时1125W =,即年产量75万件时,所获毛利润最大;(3)解:∵今年投入生产的费用不会超过360万元,∴360y ≤,令y =360,得2136010x =, 解得:x =±60(负值舍去),由图象可知,当0<y ≤360时,0<x ≤60, ∵21(75)11255W x =--+, ∴当60x =时,W 取得最大值,此时1080W =,即今年最多可获得1080万元的毛利润.【点睛】本题考查了二次函数的应用及一次函数的应用,解题的关键是利用待定系数法求函数解析式,注意培养自己利用数学知识解决实际问题的能力,难度一般.8.(1)724510y x =-+ (2)当售价为250元时,商场每月所获利润最大,最大利润为7000元(3)不能,理由见解析【解析】【分析】(1)根据表格数据判断为一次函数,设y kx b =+,用待定系数法求出解析时; (2)利润=单件利润⨯销售数量,化简为二次函数的顶点式,根据函数性质判断; (3)计算按(2)中获得最大月利润的方式进行销售时的数量,与580比较.(1)解:由表格可知,此函数为一次函数,故设y kx b =+;则有24077{22091k b k b +=+=, 解得710245k b ⎧=-⎪⎨⎪=⎩, 724510y x ∴=-+; (2)设销售利润为w 元,由题意得:7(150)(245)10w x x =--+ 273503675010x x =-+- 27(250)700010x =--+ 7010a =-<, w ∴有最大值,∴当250x =时,w 取最大值,7000w =最大,答:当售价为250元时,商场每月所获利润最大,最大利润为7000元;(3)当250x =时,70y =(件),70(124)560580⨯-=<,∴12月底不能销售完这批服装.【点睛】本题考查一次函数和二次函数的实际应用,解题关键用待定系数法求出一次函数解析式,注意二次函数最值讨论时,一般整理成顶点式,再通过看a 值确定最大值或最小值. 9.(1)y =-2x +160(2)定价为55元时,每天的销售利润有最大值为1250(3)销售单价定为50元时,该超市每天的利润最大,最大利润1200元(4)70元【解析】【分析】(1)根据题意可得y 与x 的关系式;(2)由题意得w =(x -30)(-2x +160)=-2(x -55)2+1250,即可求解;(3)根据二次函数的关系式和单价的取值范围可得最大利润;(4)由题意可得:(x -30)(-2x +160)=800,再根据函数的图象可得答案.(1)依题意得,y =80-2(x -40)=-2x +160;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,∴当55x =时,w 有最大值,此时,1250w =,(3)20-<,故当55x <时,w 随x 的增大而增大,而3050x ≤≤,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(4)由题意得:(30)(2160)800x x --+≥,解得:4070x ≤≤,∴销售单价最多为70元.【点睛】此题主要考查了二次函数的应用,正确利用销量×每件的利润=w 得出函数关系式是解题关键.10.这种台灯的售价应定为65元时,最大利润为12250元.【解析】【分析】设这种台灯应涨价x 元,那么就少卖出10x 个,根据“总利润=每个台灯的利润×销售量”列出函数解析式,最后运用二次函数求最值即可.【详解】解:设售价为x 元,根据题意得:()()()2306001040106512250W x x x =---=--+⎡⎤⎣⎦,∴当x =65时,12250y =最大,答:这种台灯的售价应定为65元时,最大利润为12250元.【点睛】本题主要考查二次函数的应用,根据“总利润=每个台灯的利润×销售量”列出函数解析式是解答本题的关键.。

八年级数学一次函数的应用(代数综合篇)专项训练+答案解析

1.如图,在菱形纸八年级数学⼀次函数的应⽤(代数综合篇)专项训练+答案解析⽚中,是边上⼀点,将沿直线翻折,使点落在上,连接.已知、,则的度数为()A .B .C .D .2.已知,在内有⼀定点P ,点M ,N 分别是,上的动点,若的周⻓最⼩值为3,则的⻓为()A .B .3C .D .3.如图,有⼀张矩形纸⽚ABCD .先对折矩形ABCD ,使AD 与BC重合,得到折痕EF ,把纸⽚展平.再⼀次折叠纸⽚,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .观察所得的线段,若AE =1,则MN =()B .1D .24.如图,在矩形ABCD 中,E 为AD 的中点,F 为AB 上⼀点,将△AEF 沿EF 折叠,点A 恰好落在CF 上的点G 处.若AB=BC =12,则折痕EF 的⻓为.点E 为射线DC 上⼀个动点,把△ADE 沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,5.如图,在矩形ABCD 中,AD =5,AB =8,则DE 的⻓为.6.如图,在边⻓为6的正⽅形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折⾄△AFE ,延⻓EF 交BC 于点G ;连接AG .(1)求证:△ABG ≌△AFG ;(2)求BG的⻓.答案解析Z B A E=Z B AE=50°,A B=A B,:四边形A B CD是菱形,:A B=A D,Z B A D=Z C=120°:Z B A D=Z B A D-2Z B A E=20°,:A B=A D解:由翻折得,故选:C.2.解:作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB于N,连接PM,PN,则此时△PMN的周长最小连接O D,OE,‘P、D关于O A对称,..OD=OP,P M=D M,同理OE=O P,P N=E N,··O D=OE=O P,∵P、D关于O A对称,..O A1PD,·'O D=O P,..Z D O A=2PO A,同理z P O B=Z EOB,2DOE=2Z A OB=2×30°=60°,·'OD=O E,△DOE是等边三角形,.D E=O D=O P,3.解:∵对折矩形ABCD,使AD与BC重合,得到折痕EF,∴AE=BE=1,AB=2AE=2,∠AEF=∠BEN=90°,∵折叠纸⽚,使点A落在EF上,并使折痕经过点B,∴BN=AB=2,∠ABM=∠NBM,∠BNM=∠A=90°,4.5.解:分两种情况:①如图1,当点F在矩形内部时,∵点F在AB的垂直平分线MN上,∴AN=4;∵AF=AD=5,由勾股定理得FN=3,∴FM=2,设DE为y,则EM=4-y,FE=y,在△EMF中,由勾股定理得:y2=(4-y)2+22,∴y=,即DE的⻓为.②如图2,当点F在矩形外部时,同①的⽅法可得FN=3,∴FM=8,设DE为z,则EM=z-4,FE=z,在△EMF中,由勾股定理得:z2=(z-4)2+82,∴z=10,即DE的⻓为10.综上所述,点F刚好落在线段AB的垂直平分线上时,DE的⻓为或10.故答案为:或10.6.(1)证明:∵四边形ABCD是正⽅形,∴AB=AD,∠B=∠D=90°,由折叠得AF=AD,∠AFE=∠D=90°,∴AB=AF,∠AFG=180°-∠AFE=90°,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL).(2)解:∵Rt△ABG≌Rt△AFG,∴BG=FG,设BG=FG=x,∵四边形ABCD是边⻓为6的正⽅形,E是边CD的中点,∴∠C=90°,CG=6-x,FE=DE=CE=CD=×6=3,∴EG=3+x,∵CG2+CE2=EG2,∴(6-x)2+32=(3+x)2,解得x=2,∴BG的⻓为2.。

次函数与实际问题

一次函数与实际问题1.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系如表,已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为x,y,猜想y与x的关系式,并写出推导过程2.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?3.某商店用调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x 的取值范围;(2)某个玩具调整前单价是120元,顾客购买这个玩具省了多少钱?4.为增强公民的节水意识,合理利用水资源,某市自1月1日起对市区民用水价格进行调整,实行阶梯式水价,调整后的收费价格如下表所示:(1)若小亮家1月份的用水量是7m3,直接写出小亮家1月份的电费;(2)若调价后每月支出的水费为y(元),每月的用水量为x(m3),求y与x之间的函数关系式并注明自变量的取值范围;(3)若小亮家2、3月份共用水16m3(3月份用水量高于2月份),共缴费26元,问小亮家2、3月份的用水量各是多少?5.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题,服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。

次函数应用题题型归纳

二次函数应用题题型一 面积问题1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.O 2O 1围墙DAB CO 2O 1围墙D A BCEH IJ题型二 利润问题1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.3.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.(1)当每吨售价为240元时,计算此时的月销售量;(2)求y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.题型三图像表达式问题1如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

次函数应用题专题训练 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
一次函数应用题专题训练
1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车
之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系. (1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)
2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a 的值.
(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.
(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?
3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所
示.
(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.
4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
⑵如果先进行精加工,然后进行粗加工.
①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润此时如何分配加工时间
甲 乙
5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离
y (千米)与乙车出发x (时)的函数的部分图像
(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地; (2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数
图像;
(3)乙车出发多长时间,两车相距150千米
50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量
y (升)与行驶时间t (小时)之间的关系如图所示.
请根据图象回答下列问题:
(1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量
y 与行驶时间t 的函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油
箱中的油是否够用?请说明理由.
7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:
为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下
表:
家电名称 进价(元/台)
售价(元/台)
电视 3900 4300 洗衣机 1500 1800 冰箱
2000
2400
设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价-进价)
(1)请分别求出y 与x 和w 与x 的函数表达式;
(2)若商场决定购进每种家电不少于30台,则有几种进货方案若商场想获得最大利润,应该怎样安排进货若这100台家电全部售出,政府需要补贴多少元钱
9、(2005年包头)小明、小颖两名同学在学校冬季越野赛中的路程y (千米)与时间x (分)的函数关系如图所示。

(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间; (2)根据图象提供的信息,请你设计一个问题,并给予解答。

10、(2006湛江市).某工厂现有甲种原料280kg ,乙种原料190kg ,计划用这两种原料生产A B ,两种产品
50件,已知生产一件A 产品需甲种原料7kg 、乙种原料3kg ,可获利400元;生产一件B 产品需甲种原料3kg ,乙
种原料 5kg ,可获利350元. (1)请问工厂有哪几种生产方案?
(2)选择哪种方案可获利最大,最大利润是多少?
11、(2006·鸡西) 基公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价lO 万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润最大利润是多少
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案. 12、(06年长沙市)我市某乡
两村盛产柑桔,
村有柑桔200吨,
村有柑桔300吨.现将这些柑桔运到
两个冷藏仓库,已知
仓库可储存240吨,仓库可储存260吨;从村运往两处的费用分别为每吨20元和25元,从
村运往
两处的费用分别为每吨15元和18元.设从
村运往
仓库的柑桔重量为
吨,两村运往两仓库的柑桔运输费用分别为元和元.
(1)请填写下表,并求出与之间的函数关系式;
说明:电视补贴的金额最多不超过400元/台;
洗衣机补贴的金额最多不超过250元/台;
冰箱补贴的金额最多不超过300元/台.
(2)试讨论两村中,哪个村的运费较少;
(3)考虑到村的经济承受能力,村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.。

相关文档
最新文档