数据挖掘实验_决策树+贝叶斯

合集下载

数据挖掘 分类方法

数据挖掘 分类方法

数据挖掘分类方法数据挖掘是从大量数据中提取有价值的信息和知识的过程。

分类是数据挖掘中一种常见的方法,它通过将数据样本分配到不同的类别中,对不同类别进行判别和预测。

分类方法有许多种,包括决策树、贝叶斯分类器、支持向量机、神经网络等。

决策树是一种常见的分类方法,它通过一系列的判断来对数据进行分类。

决策树通常是一个树状的结构,每个节点表示一个特征或属性,分支表示特征的取值,叶节点表示一个类别。

决策树的构建过程包括特征选择、划分数据集、递归构建子树等步骤。

决策树简单易懂,可解释性好,但容易产生过拟合。

贝叶斯分类器是基于贝叶斯定理的一种分类方法。

它假设特征之间相互独立,并利用贝叶斯定理计算后验概率。

贝叶斯分类器通过计算每个类别的后验概率,选择概率最大的类别作为分类结果。

贝叶斯分类器对数据分布的假设较强,对特征之间的依赖关系较为敏感,但在某些应用中表现出色。

支持向量机是一种基于统计学习理论的分类方法。

它通过寻找最优超平面,将数据样本分割成不同的类别。

支持向量机的优化目标是最大化两个类别之间的间隔,同时考虑到错误率的影响。

支持向量机可以通过核函数进行非线性分类,具有较高的泛化能力和较好的性能。

神经网络是一种模仿生物神经系统的分类方法。

它由多个神经元构成的多层网络,每个神经元通过输入与权重的线性组合和激活函数的非线性变换来进行信息处理。

神经网络通过学习调整权重,使得网络能够自动学习特征并进行分类。

神经网络具有较强的拟合能力和非线性建模能力,但训练过程复杂,容易过拟合。

此外,还有许多其他的分类方法,如K近邻算法、逻辑回归、朴素贝叶斯分类器等。

不同的分类方法适用于不同的问题和数据特征。

在实际应用中,可以根据问题的具体需求和数据特点选择合适的分类方法。

同时,也可以使用集成学习方法(如随机森林、Adaboost等)将多个分类器进行组合,提高分类性能。

数据挖掘软件的分类算法和聚类算法应用案例

数据挖掘软件的分类算法和聚类算法应用案例

数据挖掘软件的分类算法和聚类算法应用案例第一章介绍数据挖掘软件的分类算法数据挖掘是从大量数据中提取有价值信息的过程,分类算法是其中最常用也最基本的技术手段之一。

下面我们将介绍几种常见的分类算法及其应用案例。

1.1 决策树算法决策树算法是一种基于树形结构的分类方法,通过一系列问题的回答来判断数据属于哪个类别。

常见应用场景是客户流失预测。

例如,在电信行业中,根据用户的个人信息、通话记录等数据,可以使用决策树算法预测某个用户是否会流失,从而采取相应措施。

1.2 朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的概率分类方法,它假设特征之间相互独立。

常见应用场景是垃圾邮件过滤。

例如,根据邮件的关键词、发件人等特征,可以使用朴素贝叶斯算法判断某封邮件是否为垃圾邮件。

1.3 支持向量机算法支持向量机算法是一种常用的二分类算法,它将数据映射到高维空间中,通过学习一个分隔超平面来进行分类。

常见应用场景是图像识别。

例如,在人脸识别领域,可以使用支持向量机算法将不同人脸的特征进行分类,从而实现人脸识别功能。

第二章介绍数据挖掘软件的聚类算法聚类算法是将数据对象划分成不同的类别或簇的过程,属于无监督学习的范畴。

下面我们将介绍几种常见的聚类算法及其应用案例。

2.1 K均值算法K均值算法是一种基于距离度量的聚类方法,将数据划分为K个簇,每个簇的中心点称为聚类中心。

常见应用场景是客户细分。

例如,在市场营销领域中,可以使用K均值算法对用户的消费数据进行聚类,将用户划分为不同的细分群体,从而有针对性地推送广告和优惠信息。

2.2 层次聚类算法层次聚类算法是一种基于距离或相似度的聚类方法,它将数据对象自底向上或自顶向下逐渐合并,形成聚类层次结构。

常见应用场景是文本分析。

例如,在文本挖掘中,可以使用层次聚类算法对大量文件进行聚类,将相似的文件放在同一个簇中,进而快速找到相关文档。

2.3 密度聚类算法密度聚类算法是一种基于密度的聚类方法,它将数据对象划分为具有足够高密度的区域,并与邻近的高密度区域分离开来。

数据挖掘分类算法实验报告

数据挖掘分类算法实验报告

数据挖掘分类算法实验报告数据挖掘分类算法实验报告一、引言数据挖掘是一种通过从大量数据中发现模式、规律和知识的过程。

在现代社会中,数据挖掘已经成为了一项重要的技术,广泛应用于各个领域。

其中,分类算法是数据挖掘中的一种重要技术,它可以将数据集中的样本分为不同的类别,从而实现对数据的有效分类和预测。

二、实验目的本实验旨在比较和评估常见的数据挖掘分类算法,包括决策树、朴素贝叶斯和支持向量机。

通过对多个数据集的实验,对这些算法的分类性能进行评估,并分析其适用场景和优缺点。

三、实验方法1. 数据集选择本实验选择了三个不同类型的数据集,包括鸢尾花数据集、心脏病数据集和手写数字数据集。

这些数据集代表了常见的分类问题,具有不同的特征和类别分布。

2. 特征选择和预处理在进行分类算法之前,需要对原始数据进行特征选择和预处理。

特征选择是为了从原始数据中选择出最具有代表性和区分度的特征,以提高分类算法的效果。

预处理包括数据清洗、缺失值处理和数据标准化等步骤,以确保数据的质量和一致性。

3. 算法实现和评估在实验中,我们使用Python编程语言实现了决策树、朴素贝叶斯和支持向量机三种分类算法。

对于每个数据集,我们将数据集划分为训练集和测试集,使用训练集对分类模型进行训练,然后使用测试集评估分类算法的性能。

评估指标包括准确率、召回率和F1值等。

四、实验结果与分析1. 鸢尾花数据集实验结果在对鸢尾花数据集进行分类实验时,我们发现决策树算法表现最好,准确率达到了95%以上,而朴素贝叶斯算法和支持向量机算法的准确率分别为90%和93%。

这说明决策树算法在处理鸢尾花数据集时具有较好的分类能力。

2. 心脏病数据集实验结果对于心脏病数据集,朴素贝叶斯算法表现最好,准确率超过了90%,而决策树算法和支持向量机算法的准确率分别为85%和88%。

这说明朴素贝叶斯算法在处理心脏病数据集时具有较好的分类效果。

3. 手写数字数据集实验结果在对手写数字数据集进行分类实验时,支持向量机算法表现最好,准确率超过了98%,而决策树算法和朴素贝叶斯算法的准确率分别为90%和92%。

数据挖掘十大经典算法

数据挖掘十大经典算法

数据挖掘十大经典算法数据挖掘是通过分析大量数据来发现隐藏的模式和关联,提供商业决策支持的过程。

在数据挖掘中,算法起着至关重要的作用,因为它们能够帮助我们从数据中提取有用的信息。

以下是十大经典的数据挖掘算法:1.决策树算法:决策树是一种基于分层选择的预测模型,它使用树状图的结构来表示决策规则。

决策树算法适用于分类和回归问题,并且可以解释性强。

常用的决策树算法有ID3、C4.5和CART。

2.朴素贝叶斯算法:朴素贝叶斯是一种基于概率的分类算法,它假设特征之间是相互独立的。

朴素贝叶斯算法简单有效,适用于大规模数据集和高维数据。

3.支持向量机(SVM)算法:SVM是一种针对分类和回归问题的监督学习算法,它通过构建一个最优的超平面来实现分类。

SVM在处理非线性问题时使用核函数进行转换,具有较强的泛化能力。

4.K近邻算法:K近邻是一种基于实例的分类算法,它通过找到与目标实例最接近的K个邻居来确定目标实例的类别。

K近邻算法简单易懂,但对于大规模数据集的计算成本较高。

5.聚类算法:聚类是一种无监督学习算法,它将相似的实例聚集在一起形成簇。

常用的聚类算法有K均值聚类、层次聚类和DBSCAN等。

6.主成分分析(PCA)算法:PCA是一种常用的降维算法,它通过线性变换将原始数据转换为具有更少维度的新数据。

PCA能够保留原始数据的大部分信息,并且可以降低计算的复杂性。

7. 关联规则算法:关联规则用于发现项集之间的关联关系,常用于市场篮子分析和推荐系统。

Apriori算法是一个经典的关联规则算法。

8.神经网络算法:神经网络是一种模仿人脑神经元通信方式的机器学习算法,它能够学习和适应数据。

神经网络适用于各种问题的处理,但对于参数选择和计算量较大。

9.随机森林算法:随机森林是一种基于决策树的集成学习算法,它通过建立多个决策树来提高预测的准确性。

随机森林具有较强的鲁棒性和泛化能力。

10.改进的遗传算法:遗传算法是一种模拟生物进化过程的优化算法,在数据挖掘中常用于最优解。

贝叶斯推理树-概述说明以及解释

贝叶斯推理树-概述说明以及解释

贝叶斯推理树-概述说明以及解释1.引言1.1 概述概述贝叶斯推理树是一种基于贝叶斯推理原理构建的推理模型。

贝叶斯推理是一种统计学方法,用于根据先验知识和观测数据来更新对事件概率的估计。

贝叶斯推理树则是在这种推理思想的基础上,将问题分解成一系列条件概率的计算,从而实现复杂问题的推理和决策。

贝叶斯推理树的构建过程包括了确定根节点、分支节点和叶节点,以及计算在给定观测条件下各节点的条件概率。

通过逐层推理和条件概率的更新,贝叶斯推理树可以有效地处理不确定性问题,并提供具有较高可信度的结果。

贝叶斯推理树的应用领域十分广泛。

在医学诊断中,贝叶斯推理树可以帮助医生根据症状和观测结果推断患者可能患有的疾病。

在决策分析中,贝叶斯推理树可以帮助企业制定最优的决策方案。

在智能交通领域,贝叶斯推理树可以帮助交通系统预测交通流量,优化交通信号控制。

然而,贝叶斯推理树也存在一些局限性。

首先,贝叶斯推理树的构建需要大量的先验知识和观测数据,才能得出准确可靠的结果。

其次,贝叶斯推理树对于问题的分解和条件概率计算较为复杂,需要一定的数学和统计学知识。

此外,贝叶斯推理树在处理大规模问题时,由于计算复杂度的增加,可能面临计算资源和时间的限制。

展望未来,随着数据科学和人工智能的快速发展,贝叶斯推理树有望在更多领域得到广泛应用。

未来的研究可以致力于改进贝叶斯推理树的构建方法,提高其计算效率和可解释性。

此外,还可以探索与其他推理模型的融合,从而进一步扩展贝叶斯推理树的应用范围。

综上所述,贝叶斯推理树是一种基于贝叶斯推理原理构建的推理模型,具有应用广泛且潜力巨大的特点。

随着相关技术的不断发展和深入研究,贝叶斯推理树有望为解决复杂问题和推动社会进步做出更多贡献。

1.2文章结构文章结构部分(1.2 文章结构)的内容如下:在本文中,我们将按照以下结构对贝叶斯推理树进行详细的介绍和讨论。

首先,引言部分将给出一个对贝叶斯推理树的概述,解释其基本原理和运作方式。

决策树和朴素贝叶斯算法简介

决策树和朴素贝叶斯算法简介

决策树和朴素贝叶斯算法简介本节主要介绍数据挖掘中常见的分类方法决策树和朴素贝叶斯算法。

决策树算法决策树(Decision Tree,DT)分类法是一个简单且广泛使用的分类技术。

决策树是一个树状预测模型,它是由结点和有向边组成的层次结构。

树中包含3种结点:根结点、内部结点和叶子结点。

决策树只有一个根结点,是全体训练数据的集合。

树中的一个内部结点表示一个特征属性上的测试,对应的分支表示这个特征属性在某个值域上的输出。

一个叶子结点存放一个类别,也就是说,带有分类标签的数据集合即为实例所属的分类。

1. 决策树案例使用决策树进行决策的过程就是,从根结点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子结点,将叶子结点存放的类别作为决策结果。

图1 是一个预测一个人是否会购买电脑的决策树。

利用这棵树,可以对新记录进行分类。

从根结点(年龄)开始,如果某个人的年龄为中年,就直接判断这个人会买电脑,如果是青少年,则需要进一步判断是否是学生,如果是老年,则需要进一步判断其信用等级。

图1 预测是否购买电脑的决策树假设客户甲具备以下4 个属性:年龄20、低收入、是学生、信用一般。

通过决策树的根结点判断年龄,判断结果为客户甲是青少年,符合左边分支,再判断客户甲是否是学生,判断结果为用户甲是学生,符合右边分支,最终用户甲落在“yes”的叶子结点上。

所以预测客户甲会购买电脑。

2. 决策树的建立决策树算法有很多,如ID3、C4.5、CART 等。

这些算法均采用自上而下的贪婪算法建立决策树,每个内部结点都选择分类效果最好的属性来分裂结点,可以分成两个或者更多的子结点,继续此过程直到这棵决策树能够将全部的训练数据准确地进行分类,或所有属性都被用到为止。

1)特征选择按照贪婪算法建立决策树时,首先需要进行特征选择,也就是使用哪个属性作为判断结点。

选择一个合适的特征作为判断结点,可以加快分类的速度,减少决策树的深度。

学习算法中的贝叶斯网络和决策树

学习算法中的贝叶斯网络和决策树在机器学习领域中,贝叶斯网络和决策树是两种常用的学习算法。

它们在不同的问题领域中都有广泛的应用,能够帮助我们理解和解决复杂的概率和决策问题。

一、贝叶斯网络贝叶斯网络是一种用于建模和推断概率关系的图模型。

它通过节点和边来表示变量之间的依赖关系,并使用概率分布来描述这些变量之间的条件概率。

贝叶斯网络可以用于预测、分类和决策等任务。

贝叶斯网络的核心思想是基于贝叶斯定理和条件独立性假设。

通过观察已知的数据,我们可以利用贝叶斯定理来更新我们对未知变量的概率分布。

而条件独立性假设则可以简化模型的计算和推断过程。

在贝叶斯网络中,节点表示变量,边表示变量之间的依赖关系。

每个节点都有一个条件概率表,用于描述该节点在不同条件下的概率分布。

通过给定一些节点的观测值,我们可以利用贝叶斯网络进行推断,计算其他节点的概率分布。

贝叶斯网络的建模过程需要根据问题的特点和数据的特征来选择节点和边的结构,并估计节点的条件概率表。

这一过程通常需要领域专家的知识和经验,并且需要对数据进行分析和统计推断。

二、决策树决策树是一种用于分类和回归的监督学习算法。

它通过构建一棵树状结构来表示特征之间的关系,并根据特征的取值来进行决策。

决策树可以帮助我们理解数据的特征和规律,并用于预测和决策。

决策树的核心思想是通过选择最优的特征来进行划分,并在每个节点上进行决策。

在构建决策树的过程中,我们需要选择合适的特征选择准则和划分策略,以及确定决策树的停止条件。

决策树的建模过程可以分为两个步骤:特征选择和树的构建。

特征选择的目标是找到对分类或回归有最大贡献的特征,常用的特征选择准则有信息增益、信息增益比和基尼指数等。

树的构建过程则是递归地选择最优特征进行划分,直到满足停止条件为止。

决策树的优点是易于理解和解释,能够处理离散和连续型数据,对缺失值和异常值具有较好的鲁棒性。

然而,决策树也存在一些问题,如容易过拟合、对噪声敏感等,因此在实际应用中需要进行适当的剪枝和优化。

数据挖掘算法

数据挖掘算法数据挖掘是一门涉及从大量数据中提取信息和知识的学科,而数据挖掘算法则是实现这一目标的核心工具。

本文将介绍常用的数据挖掘算法,包括分类、聚类、关联规则挖掘和异常检测。

一、分类算法分类算法是数据挖掘中最常见的算法之一,主要用于将数据样本分为不同的类别。

以下是几种常用的分类算法:1. 决策树算法:基于树的数据结构,通过划分特征空间来实现分类。

决策树算法的优点是易于理解和实现,但对于数据的变化和噪声敏感。

2. 朴素贝叶斯算法:基于贝叶斯理论,假设特征之间相互独立,通过计算概率来进行分类。

朴素贝叶斯算法的优点是计算速度快,但对于特征之间的相关性要求较低。

3. 逻辑回归算法:基于线性回归模型,通过逻辑函数将线性回归结果转化为分类结果。

逻辑回归算法的优点是模型简单,但对于特征之间的非线性关系较难处理。

二、聚类算法聚类算法是将数据样本划分为若干个组(簇),使同一组内的样本相似度较高,而不同组之间的样本相似度较低。

以下是几种常用的聚类算法:1. K均值算法:将数据样本划分为K个簇,使每个样本与所属簇的中心点距离最小化。

K均值算法的优点是简单、高效,但对于异常点较敏感。

2. 层次聚类算法:通过计算样本之间的相似度或距离来构建层次化的簇结构。

层次聚类算法的优点是不需要预先指定簇的数量,但计算复杂度较高。

3. 密度聚类算法:基于样本点的密度来划分簇,通过定义样本点的领域和密度来进行聚类。

密度聚类算法的优点是可以发现任意形状的簇,但对于参数的选择较为敏感。

三、关联规则挖掘关联规则挖掘是从大规模数据集中发现事物之间的关联关系。

以下是几种常用的关联规则挖掘算法:1. Apriori算法:基于频繁项集的性质,逐层生成候选项集,并通过剪枝策略减少搜索空间。

Apriori算法的优点是简单、易于实现,但对于大规模数据集计算速度较慢。

2. FP-Growth算法:通过构建FP树(频繁模式树)来挖掘频繁项集,通过路径压缩和条件模式基的计数来加速挖掘过程。

机器学习算法在数据挖掘中的应用与案例分析

机器学习算法在数据挖掘中的应用与案例分析近年来,数据的规模和复杂程度不断增加,传统的数据处理方式已经无法满足业务需求。

此时,机器学习算法在数据挖掘中的应用就成为了一种趋势。

机器学习算法可以通过处理、分析、挖掘大量的数据,从而提取出有用的信息和知识,帮助企业实现效益的提升与业务的创新。

本文将以机器学习算法在数据挖掘中的应用与案例分析为主题,介绍几种常见的机器学习算法和它们的应用。

一. 机器学习算法简介机器学习是一种通过算法来让计算机自主学习的技术。

通过数学模型和算法,机器学习可以从大量数据中抽取出共性和规律。

在数据挖掘中,常用的机器学习算法有:支持向量机 (SVM)、决策树、朴素贝叶斯 (Naive Bayes)、神经网络,以及集成学习等几种。

这些算法在不同的应用场景中有着广泛的应用。

二. 支持向量机(SVM)支持向量机是一种二分类问题的分类器,通过寻找最优的超平面对样本进行分类。

该算法主要有以下几个步骤:首先,对样本进行特征提取和数据预处理。

然后,通过数学模型找到最优的超平面将样本分为两类。

通过调整参数,支持向量机的分类效果可以不断提升。

支持向量机在图像识别、金融风控等领域都有较为成功的应用。

三. 决策树决策树是一种树形结构模型,可以用于分类、回归、聚类等任务。

决策树通过分裂节点和分类规则来对数据进行分类。

在此基础上,决策树可以通过预测和概率等方法对未知的数据进行分类。

决策树在金融风控、医疗诊断等领域都有着重要的应用。

四. 朴素贝叶斯(Naive Bayes)朴素贝叶斯算法是一种基于贝叶斯定理的分类算法。

该算法的核心思想是,通过先验概率和条件概率对样本进行分类。

在实际应用中,朴素贝叶斯算法可以用于文本分类、垃圾邮件过滤等任务。

五. 神经网络神经网络是一种模仿人脑思维过程的计算模型。

该模型能够通过训练学习从大量数据中提取出信息和知识,并用于各种任务,如分类、识别、预测等。

神经网络在图像识别、语音识别、自然语言处理等领域有着广泛的应用。

数据挖掘最常用的算法

数据挖掘最常用的算法数据挖掘是指从大量数据中挖掘出有价值的信息和知识的过程。

在数据挖掘过程中,使用各种算法来实现数据的预处理、特征提取、模型构建和结果评估等任务。

下面是数据挖掘中最常用的算法:1.决策树算法决策树是一种基于树状结构的分类算法,它通过构建一系列的决策节点和对应的条件判断,将数据集划分为不同的类别。

决策树具有易于理解和解释的特点,广泛应用于各种领域,如医疗、金融和营销等。

2.K近邻算法K近邻算法通过使用样本之间的距离度量,将新的样本分类为与之最相似的K个已知类别中的一类。

该算法简单易懂,并且可以应用于多分类任务。

3.朴素贝叶斯算法朴素贝叶斯算法基于贝叶斯定理,通过计算样本在给定类别下的概率,来判断新样本的类别。

该算法具有简单高效的特点,在垃圾邮件过滤、文本分类等任务中应用广泛。

4.逻辑回归算法逻辑回归算法是一种广义线性模型,用于二分类问题。

该算法通过构建一个线性模型和一个逻辑函数,将输入特征映射到概率输出。

逻辑回归在广告点击率预测、客户流失预测等领域有较好的应用效果。

5.支持向量机算法支持向量机算法是一种二分类模型,通过构建一个边界超平面,将不同类别的样本分开。

该算法具有良好的泛化能力和对高维数据的适应性,在图像分类、文本分类等任务中广泛应用。

6.随机森林算法随机森林是一种集成学习算法,通过集成多个决策树的结果来进行分类或回归。

该算法通过随机选择特征子集和样本子集的方法,减少过拟合的风险,并且具有较强的抗噪声能力。

7.神经网络算法神经网络是一种模仿人脑结构和功能的计算模型,通过构建多层神经元和权重连接,学习输入数据的复杂模式。

神经网络在图像识别、语音识别等领域有着广泛应用。

8.关联规则算法关联规则算法用于在大规模数据集中挖掘出有趣的关联规则。

该算法通过计算项目之间的频繁度和支持度,发现不同项集之间的关联关系。

关联规则在市场篮子分析、推荐系统等领域具有重要应用。

除了上述算法,还有一些其他的算法也被广泛应用于数据挖掘,如聚类算法、主成分分析算法、梯度提升算法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预测
右键点击“Result list”中刚产生的那一项,选择“Visualize classifier errors”。我们不去管新窗口中的图有什么含义,点 “Save”按钮,把结果保存成“bank-predicted.arff”。这个 ARFF文件中就有我们需要的预测结果。
SQL Server贝叶斯 挖掘模型的使用
决策树分类
决策树分类
预测
注意待预测数据集和训练用数据集各个属性的设置必须是一致的。WEKA中 并没有直接提供把模型应用到带预测数据集上的方法,我们要采取间接的 办法。 在“Test Opion”中选择“Supplied test set”,并且“Set”成 “bank-ndata_predict.arff”文件。重新“Start”一次。
决策树分类
切换到“Classify”选项卡,点击“Choose”按钮后可以看到很多分类或 者回归的算法分门别类的列在一个树型框里。树型框下方有一个 “Filter...”按钮,点击可以根据数据集的特性过滤掉不合适的算法。
决策树分类
点击“Choose”右边的文本 框,弹出新窗口为该算法设 置各种参数。点“More”查 看参数说明,点 “Capabilities”是查看算 法适用范围。这里我们把参 数保持默认。
使用SQL Server创建数据库,并添加数据表
创建商业智能项目,新建数据源并连接到数据库BayesDB
用第一步的数据表建立数据源视图:
在项目的解决方案资源管理器中,右键“挖掘结构”选择“新 建挖掘结构”命令,本实验中选择Naive Bayes挖掘模型
下一步下一步选用默认设置; 为每列数据指定定型数据:
在挖掘模型查看器中可查看得到的贝叶斯网络模型:
可通过调整左侧按钮筛选掉较弱的连接
预测
选择 挖掘模型预测,选择之前的数据表,点击单独查询按钮:
输入属性A的值,将B拖动至被预测的位置,即可预测C; 同理,可对属性A、B进行预测
实验中注意解决的问题:
实验一:
1、在数据预处理中,按照要求对数据格式进行转换。 2、 在算法选择时,点击“Choose”按钮后可以看到哪些分类 的算法分门别类的列在一个树型框里? 3、点击“Choose”右边的文本框,弹出新窗口为该算法设置 各种参数。点“More”查看参数说明,点“Capabilities” 查看算法适用范围。大家可以尝试调整参数的设置,观察结 果的不同。 4、分析建立好的模型以及该模型的误差结果。 5、通过点击“Results list”,并选择可视化,在图形模式中 打开你的模型。 6、使用类似方法,使用weka中的Naive Bayes算法对bankdata 数据分类数据挖掘分类实验。
实验二:Байду номын сангаас
1.尝试从网上下载大样本的数据进行贝叶斯模型挖掘实验 2.使用SQL Server中其它挖掘模型进行预测
数据挖掘实验
使用weka进行决策树分类
使用SQL Server进行贝叶斯分类
Weka决策树分类
Weka Explorer界面
数据准备
网上下载的银行对资产进行评估的数据bank-data.arff,数据有12个属 性,分别是id,age,sex,region,income,married,children, car, save_act,current_act, mortgage,pep.共600个实例。 将含有600个实例的“bank-data.csv”文件中取出300个实例用做训练 集,在另外300个实例中取50个作为待预测的实例。 可以使用weka的ArffViewer进行数据的剪切处理
相关文档
最新文档