数据挖掘-决策树
决策树算法

3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。
请介绍至少四种典型的机器学习和数据挖掘算法

请介绍至少四种典型的机器学习和数据挖掘算法
1. 决策树:决策树是最常见的机器学习算法之一,是一种将数据(此
处即有关问题的观察和测量数据)映射到潜在结果(由结论和动作组成)的分类方法。
它通常适用于复杂的问题,可以自动分析和分类数据,从而有助于解决现实世界中的挑战性问题。
2. 聚类分析:聚类分析是一种机器学习和数据挖掘算法,它使用输入
数据创建一组相似元素的分组,并将不相似元素分为不同组。
它是一
种无监督学习,无需有任何先验知识,可以自动分析出模式和结构。
3. 线性回归:线性回归是机器学习中最重要的算法之一,它旨在为某
个变量或结果预测另一个变量或结果的值。
它允许我们预测和解释现
实世界中的客观观察。
通过线性回归,可以找到数据变量之间的关系,并应用该关系预测另一变量的值。
4. 支持向量机:支持向量机(SVM)是一种机器学习技术,它可以用
来解决分类和回归问题。
它不同于传统的感知机技术,能够解决非线
性问题。
它可以用来构建分类器,识别明确的目标和特征,通过拟合
相关性分析,以对不同的对象实行有效的分类。
数据挖掘-决策树PPT资料48页

0.247位 选择获得最大信息增益 的属性进行划分
划分过程的终止
当所有叶节点都是纯的。
因训练集包含两个具有相同属性集,但具有不同类 的实例。
ID3代表归纳决策树(induction decision—tree)版本 3,它是一种用来由数据构造决策树的递归过程。
lD3算法的步骤
1. 试探性地选择一个属性放置在根节点,并对该属 性的每个值产生一个分支。
2. 分裂根节点上的数据集,并移到子女节点,产生 一棵局部树(partial tree)。
决策树作用(2)
决策树的主要作用是揭示数据中的结构化信息。 决策树汇总了数据,并揭示了其中隐藏的结构:
规则:
如果血压高,则 采用药物A。
如果血压低,则 采用药物B。
如果血压正常。 年龄小于或等于 40,则采用药物 A,否则采用药 物B。
准确率、支持度、错误率
该例得到的规则和对应的准确率和支持度是:
如果血压高,则采用药物A(准确率100%,支持度 3/12)。
如果血压低,则采用药物B(准确率100%,支持度 3/12)。
如果血压正常并且年龄小于或等于40,则采用药 物A(准确率100%,支持度3/12)。
如果血压正常并且年龄大于40。则采用药物B(准 确率100%,支持度3/12)。
3. 对该划分的质量进行评估。 4. 对其他属性重复该过程。 5. 每个用于划分的属性产生一棵局部树。 6. 根据局部树的质量,选择一棵局部树。 7. 对选定的局部树的每个子女节点重复以上1-6步。 8. 这是一个递归过程。如果一个节点上的所有实例
数据挖掘的常用算法

数据挖掘的常用算法
数据挖掘的常用算法包括:
1. 决策树:通过构建树形的决策规则,对数据进行分类或回归预测。
2. 支持向量机(SVM):通过寻找最优的超平面来进行分类或回归问题。
3. 朴素贝叶斯:基于贝叶斯定理,使用特征之间的独立性假设来进行分类。
4. K均值聚类:将数据根据距离远近进行分组,尽量使得同组内的数据相似,不同组之间的数据不相似。
5. 随机森林:基于多个决策树的集成方法,通过对多个决策树的预测结果进行投票或平均来进行分类或回归。
6. 神经网络:模拟人脑的神经元网络结构,通过多层的连接和权重来进行复杂的分类或回归问题。
7. 关联规则挖掘:用于发现数据集中的频繁项集和关联规则,可用于购物篮分析、交叉销售等。
8. 主成分分析(PCA):通过将数据映射到新的坐标系,以降低数据维度并保留
最重要的信息。
9. 聚类算法:除了K均值聚类外,还有层次聚类、密度聚类等方法,用于将数据根据相似性进行分组。
10. 异常检测算法:用于识别数据中的异常值或离群点,如LOF(局部离群因子)算法、One-Class SVM等。
这些算法各有特点和适用范围,根据具体问题的需求选择合适的算法进行数据挖掘任务。
分类分析--决策树(经典决策树、条件推断树)

分类分析--决策树(经典决策树、条件推断树)分类分析--决策树决策树是数据挖掘领域中的常⽤模型。
其基本思想是对预测变量进⾏⼆元分离,从⽽构造⼀棵可⽤于预测新样本单元所属类别的树。
两类决策树:经典树和条件推断树。
1 经典决策树经典决策树以⼀个⼆元输出变量(对应威斯康星州乳腺癌数据集中的良性/恶性)和⼀组预测变量(对应九个细胞特征)为基础。
具体算法如下:(1) 选定⼀个最佳预测变量将全部样本单元分为两类,实现两类中的纯度最⼤化(即⼀类中良性样本单元尽可能多,另⼀类中恶性样本单元尽可能多)。
如果预测变量连续,则选定⼀个分割点进⾏分类,使得两类纯度最⼤化;如果预测变量为分类变量(本例中未体现),则对各类别进⾏合并再分类。
(2) 对每⼀个⼦类别继续执⾏步骤(1)。
(3) 重复步骤(1)~(2),直到⼦类别中所含的样本单元数过少,或者没有分类法能将不纯度下降到⼀个给定阈值以下。
最终集中的⼦类别即终端节点(terminal node)。
根据每⼀个终端节点中样本单元的类别数众数来判别这⼀终端节点的所属类别。
(4) 对任⼀样本单元执⾏决策树,得到其终端节点,即可根据步骤3得到模型预测的所属类别。
上述算法通常会得到⼀棵过⼤的树,从⽽出现过拟合现象。
结果就是,对于训练集外单元的分类性能较差。
为解决这⼀问题,可采⽤10折交叉验证法选择预测误差最⼩的树。
这⼀剪枝后的树即可⽤于预测。
R中的rpart包⽀持rpart()函数构造决策树,prune()函数对决策树进⾏剪枝。
下⾯给出判别细胞为良性或恶性的决策树算法实现。
(1)使⽤rpart()函数创建分类决策树:#⽣成树:rpart()函数可⽤于⽣成决策树library(rpart)set.seed(1234)dtree <- rpart(class ~ ., data=df.train, method="class",parms=list(split="information"))#rpart() 返回的cptable值中包括不同⼤⼩的树对应的预测误差,因此可⽤于辅助设定最终的树的⼤⼩。
《数据挖掘实验》---K-means聚类及决策树算法实现预测分析实验报告

实验设计过程及分析:1、通过通信企业数据(USER_INFO_M.csv),使用K-means算法实现运营商客户价值分析,并制定相应的营销策略。
(预处理,构建5个特征后确定K 值,构建模型并评价)代码:setwd("D:\\Mi\\数据挖掘\\")datafile<-read.csv("USER_INFO_M.csv")zscoredFile<- na.omit(datafile)set.seed(123) # 设置随机种子result <- kmeans(zscoredFile[,c(9,10,14,19,20)], 4) # 建立模型,找聚类中心为4round(result$centers, 3) # 查看聚类中心table(result$cluster) # 统计不同类别样本的数目# 画出分析雷达图par(cex=0.8)library(fmsb)max <- apply(result$centers, 2, max)min <- apply(result$centers, 2, min)df <- data.frame(rbind(max, min, result$centers))radarchart(df = df, seg =5, plty = c(1:4), vlcex = 1, plwd = 2)# 给雷达图加图例L <- 1for(i in 1:4){legend(1.3, L, legend = paste("VIP_LVL", i), lty = i, lwd = 3, col = i, bty = "n")L <- L - 0.2}运行结果:2、根据企业在2016.01-2016.03客户的短信、流量、通话、消费的使用情况及客户基本信息的数据,构建决策树模型,实现对流失客户的预测,F1值。
数据挖掘十大经典算法

数据挖掘十大经典算法数据挖掘是通过分析大量数据来发现隐藏的模式和关联,提供商业决策支持的过程。
在数据挖掘中,算法起着至关重要的作用,因为它们能够帮助我们从数据中提取有用的信息。
以下是十大经典的数据挖掘算法:1.决策树算法:决策树是一种基于分层选择的预测模型,它使用树状图的结构来表示决策规则。
决策树算法适用于分类和回归问题,并且可以解释性强。
常用的决策树算法有ID3、C4.5和CART。
2.朴素贝叶斯算法:朴素贝叶斯是一种基于概率的分类算法,它假设特征之间是相互独立的。
朴素贝叶斯算法简单有效,适用于大规模数据集和高维数据。
3.支持向量机(SVM)算法:SVM是一种针对分类和回归问题的监督学习算法,它通过构建一个最优的超平面来实现分类。
SVM在处理非线性问题时使用核函数进行转换,具有较强的泛化能力。
4.K近邻算法:K近邻是一种基于实例的分类算法,它通过找到与目标实例最接近的K个邻居来确定目标实例的类别。
K近邻算法简单易懂,但对于大规模数据集的计算成本较高。
5.聚类算法:聚类是一种无监督学习算法,它将相似的实例聚集在一起形成簇。
常用的聚类算法有K均值聚类、层次聚类和DBSCAN等。
6.主成分分析(PCA)算法:PCA是一种常用的降维算法,它通过线性变换将原始数据转换为具有更少维度的新数据。
PCA能够保留原始数据的大部分信息,并且可以降低计算的复杂性。
7. 关联规则算法:关联规则用于发现项集之间的关联关系,常用于市场篮子分析和推荐系统。
Apriori算法是一个经典的关联规则算法。
8.神经网络算法:神经网络是一种模仿人脑神经元通信方式的机器学习算法,它能够学习和适应数据。
神经网络适用于各种问题的处理,但对于参数选择和计算量较大。
9.随机森林算法:随机森林是一种基于决策树的集成学习算法,它通过建立多个决策树来提高预测的准确性。
随机森林具有较强的鲁棒性和泛化能力。
10.改进的遗传算法:遗传算法是一种模拟生物进化过程的优化算法,在数据挖掘中常用于最优解。
决策树名词解释

决策树名词解释决策树(DecisionTree)是一种常见的数据挖掘技术,也称为决策树分类(Decision Tree Classification)。
决策树是一种以树状结构表示数据的模型,它可以用来描述一组数据集的概念,它可以用来作出决策。
策树是一种数据挖掘的常用算法,它可以用于分类、回归任务,以及关联规则建模,它可以帮助智能系统理解数据,从而实现更好的决策。
决策树的基本原理很简单,它是一种将每个属性值与实例的关联转换成树形结构的方法。
在这种树形结构中,每个节点存储关联属性的值,从而决定一个决策。
策树通常用于研究一组已知数据,它可以用来预测未知数据的结果,也可以用来归类数据,从而发现数据的规律性。
决策树的建立有很多步骤,但是大致可以分为以下几个步骤:(1)数据集准备:首先,需要对数据集进行预处理,将数据分成训练集和测试集。
(2)决策树划分:根据训练集中的特征属性,将数据集划分为不同的分支,并且不断划分,直到达到决策树模型所需要的精度或停止条件为止。
(3)估属性:根据训练集中的数据,选择最优的划分属性,用于对训练集进行划分。
(4)决策树剪枝:新建的决策树可能过度拟合训练数据,这会使训练出来的决策树在测试数据上的表现变差,因此,需要使用剪枝算法,来减少决策树的过拟合现象。
(5)测试:根据训练好的决策树,对测试集数据进行分类,统计测试集分类正确率,从而对决策树进行评估。
决策树在实际应用中可以用于社会决策分析、企业决策分析、关联规则挖掘等应用场景,但是决策树也有若干缺点。
其一,决策树生成过程中属性之间的关系可能非线性,而决策树假设属性之间的关系是线性的,因此可能导致决策树模型的准确性不足。
其二,决策树的剪枝操作可能会过度剪枝,也影响模型的准确性。
总之,决策树是一种常用的数据挖掘技术,它可以用于推理和预测数据,它可以用来帮助智能系统理解数据,从而改善决策效率。
但是,因为决策树的局限性,仍然需要其他的数据挖掘技术来提高决策的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Handling Continuous Attributes
自 动 离 散 化 成 2 群
Handling Continuous Attributes
Handling Continuous Attributes
Age <= 39 Age > 39
找Gain Ratio 最大的切點
Age <= 32.5
Practice in LAB: Tree Pruning
Node 0 Yes:9 No:5 Node 1 Yes:4 No:0 Node 3 Yes:1 No:4 Node 2 Yes:5 No:5 Node 4 Yes:4 No:1
I(3,0)=0 I(3,4)=0.99
Handling Continuous Attributes
Best Split
Tree Pruning in C4.5
U25%(0,1)=0.750 U25%(0,6)=0.206 U25%(0,9)=0.143
An Example
U25%(1,16)=0.157
Classification by Decision Tree
Classification by Decision Tree
Four decision tree algorithms are provided by Clementine
CHAID, CART, C4.5, C5.0
They are all top-down decision tree generation algorithms
Tree Pruning in C4.5
是否要删除此节点?
A Formula for Estimating the Error Rate at the Node
N is the number of examples E is the number of errors f = E/N is the observed error rate z is the number of standard deviations corresponding to the confidence c, which for c=25% is z=0.69 e is the estimated error rate
Age > 32.5
27
30
35
38
40
41
42
43
45
55
M
Age <= 28.5
M
M
F
F
F
M
M
M
F
Age > 28.5
Age <= 40.5
Age > 40.5
I(6,4)=0.97
Age <= 36.5 Age > 36.5
M:3 F:0
M:3 F:4
Entropy=0.3*I(3,0)+0.7*I(3,4)=0.69 Information Gain=0.97-0.69=0.28 Information Value=I(3,7)=0.88 Gain Ratio=0.28/0.88=0.32
It cannot handle continuous attributes
It cannot handle missing attribute values
It did not prune the tree for handling noises
Attribute Selection in C4.5
How to Use a Tree
Directly
Test the attribute value of unknown sample against the tree A path is traced from root to a leaf which holds the label Decision tree is converted to classification rules One rule is created for each path from the root to a leaf
Tree Pruning (Avoid Overfitting Problem)
Training data may contain nois 7 8 9 10 11
Eye Black Black Black Black Brown Brown Blue Blue Blue Blue Brown Hair Black White White Black Black White Gold Gold White Black Gold Height Short Tall Short Tall Tall Short Tall Short Tall Short Short Oriental Yes Yes Yes Yes Yes Yes No No No No No
Testing Phase
Decision Tree
Testing (Classification)
Test data are used to estimate the accuracy of the classification rules If the accuracy is considered acceptable, the rules can be applied to the classification of new data tuples
两种做法:
1. 修剪法 (Pruning Technique) Buttom-Up (C5/CART) 2. 盆栽法 (Bonsai Technique) Top-Down (CHAID)
Decision Tree Generation Algorithm: ID3
Entropy
Decision Tree Algorithm: ID3
Decision Tree
李御玺 (Yue-Shi Lee) 铭传大学资讯工程学系
leeys@.tw
Decision Tree
Learning Phase
Decision Tree
Decision Tree
Learning
The target attribute is credit_rating Training data are analyzed by a decision tree algorithm The classifier is represented in the form of classification rules
Watch the game and home team wins and out with friends then bear Watch the game and home team wins and sitting at home then diet soda Watch the game and home team loses and out with friend then bear Watch the game and home team loses and sitting at home then milk Watch the game and out with friends then bear Watch the game and home team wins and sitting at home then diet soda Watch the game and home team loses and sitting at home then milk
Optimization for these rules
Decision Tree Generation Algorithm: ID3
Prefer Attributes with many values
All attributes are assumed to be categorical (discretized)
These measures are also called goodness functions and used to select the attribute to split at a tree node during the tree generation phase
Tree Pruning (Avoid Overfitting Problem)
Decision Tree Algorithm: ID3
I(2,3)=0.971
I(3,2)=0.971
I(4,0)=0
Decision Tree Algorithm: ID3
Information Gain
Decision Tree Algorithm: ID3
yes
Decision Tree Algorithm: ID3
此公式可用来估计 真正的节点错误率
Prune or Reserve the Subtree
由于不展开此节点的 错误率为0.46低于展 开后的0.51,故最后 结果为不展开
E=5, N=14, f=0.36 e=0.46 0.47*6/14+0.72*2/14+ 0.47*6/14=0.51
E=2, N=6, E=1, N=2, E=2, N=6, f=0.33 f=0.5 f=0.33 e=0.47 e=0.72 e=0.47
Indirectly
Generating Classification Rules
Generating Classification Rules