数据挖掘决策树算法概述

合集下载

决策树算法介绍(DOC)

决策树算法介绍(DOC)

决策树算法介绍(DOC)3.1 分类与决策树概述3.1.1 分类与预测分类是⼀种应⽤⾮常⼴泛的数据挖掘技术,应⽤的例⼦也很多。

例如,根据信⽤卡⽀付历史记录,来判断具备哪些特征的⽤户往往具有良好的信⽤;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。

这些过程的⼀个共同特点是:根据数据的某些属性,来估计⼀个特定属性的值。

例如在信⽤分析案例中,根据⽤户的“年龄”、“性别”、“收⼊⽔平”、“职业”等属性的值,来估计该⽤户“信⽤度”属性的值应该取“好”还是“差”,在这个例⼦中,所研究的属性“信⽤度”是⼀个离散属性,它的取值是⼀个类别值,这种问题在数据挖掘中被称为分类。

还有⼀种问题,例如根据股市交易的历史数据估计下⼀个交易⽇的⼤盘指数,这⾥所研究的属性“⼤盘指数”是⼀个连续属性,它的取值是⼀个实数。

那么这种问题在数据挖掘中被称为预测。

总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。

3.1.2 决策树的基本原理1.构建决策树通过⼀个实际的例⼦,来了解⼀些与决策树有关的基本概念。

表3-1是⼀个数据库表,记载着某银⾏的客户信⽤记录,属性包括“姓名”、“年龄”、“职业”、“⽉薪”、......、“信⽤等级”,每⼀⾏是⼀个客户样本,每⼀列是⼀个属性(字段)。

这⾥把这个表记做数据集D。

银⾏需要解决的问题是,根据数据集D,建⽴⼀个信⽤等级分析模型,并根据这个模型,产⽣⼀系列规则。

当银⾏在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、⽉薪等属性,来预测其信⽤等级,以确定是否提供贷款给该⽤户。

这⾥的信⽤等级分析模型,就可以是⼀棵决策树。

在这个案例中,研究的重点是“信⽤等级”这个属性。

给定⼀个信⽤等级未知的客户,要根据他/她的其他属性来估计“信⽤等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信⽤等级为“优”、“良”、“差”这3个类别的某⼀类别中去。

数据挖掘的分类算法

数据挖掘的分类算法

数据挖掘的分类算法数据挖掘是指通过分析大量数据来发现隐藏在其中的规律和趋势的过程。

分类算法是数据挖掘中的一种重要方法,主要是通过构建模型将数据划分为不同的类别。

在本文中,我们将讨论几种常见的分类算法。

1. 决策树算法决策树算法是一种基于树形数据结构的分类算法。

它将数据集分成许多小的子集,并对每个子集进行分类。

决策树的节点表示一个属性,每个分支代表该属性可能的取值。

通过选择适当的划分条件,可以使决策树的分类效果更加准确。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率论的分类算法。

它基于贝叶斯定理,利用先验概率和条件概率推断后验概率,并将数据分为不同的类别。

朴素贝叶斯算法在文本分类、垃圾邮件识别等方面有广泛的应用。

3. 支持向量机算法支持向量机算法是一种基于分类的学习方法,通过构造一个最优的超平面将数据集分为两个或多个类别。

该算法可以用于解决多分类、回归、异常检测等问题。

支持向量机算法在人脸识别、文本分类、图像识别等方面有很好的应用。

4. K近邻算法K近邻算法通过计算样本之间的距离来确定每个样本的类别,即将每个样本划分到与其最近的K个邻居的类别中。

该算法是一种简单有效的分类算法,在文本分类、医学诊断等方面得到了广泛应用。

5. 神经网络算法神经网络算法是一种基于类似人类神经系统的计算模型,通过构造多个神经元并利用它们之间的联系来分类。

该算法可以解决多分类、回归、信号识别等问题,并在语音识别、图像处理等方面得到了广泛应用。

总之,分类算法在数据挖掘中起着重要的作用。

通过对不同分类算法的了解和应用,可以提高分类的准确性和效率。

在实际应用中,需要根据数据类型、数据量和应用场景等因素选择合适的分类算法。

决策树算法

决策树算法
一个类(buys_computer=yes,或buys_computer=no))
3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。

决策树总结

决策树总结

决策树总结决策树是一种常用的机器学习算法,它在数据挖掘和预测分析中被广泛应用。

本文将对决策树进行总结,包括其基本原理、构造方法、优缺点以及应用场景。

1. 基本原理决策树基于一系列的决策规则来完成分类或回归任务。

它将数据集划分为不同的子集,并在每个子集上继续进行划分,直到得到满足某个条件的叶节点。

在每次划分时,决策树算法通过计算某个指标(如信息增益、基尼指数)来选择最优的划分属性。

最终得到的决策树可以被用于预测新样本的类别或者回归值。

2. 构造方法决策树的构造方法主要有以下几种:ID3、C4.5、CART等。

ID3算法通过计算信息增益来选择最优划分属性,但存在对取值数目较多的属性偏好的问题;C4.5算法在ID3的基础上引入了信息增益比,更好地处理了取值数目较多的属性;CART算法则根据最小化基尼指数来选择最优划分属性,适用于分类和回归问题。

3. 优缺点决策树的优点在于简单易懂、可解释性强、适用于处理多类别问题、能处理连续属性等。

此外,决策树不需要对数据进行过多的预处理,而且在构建过程中能够自动选择重要特征。

然而,决策树也存在一些缺点。

首先,决策树容易过拟合,特别是当树的深度过大时。

为了解决这个问题,可以通过剪枝操作或者限制决策树的最大深度来减少过拟合风险。

其次,决策树对于缺失值的处理不够灵活,常常需要进行数据填充。

最后,决策树算法对于噪声和异常值比较敏感,容易产生不稳定的结果。

4. 应用场景决策树广泛应用于各种领域,其中包括金融、医疗、市场营销等。

在金融领域,决策树可以用于信用评分、风险识别、投资决策等。

在医疗领域,决策树可以用于疾病诊断、药物治疗方案选择等。

在市场营销领域,决策树可以用于客户分群、推荐系统等。

总之,决策树是一种常用的机器学习算法,它通过一系列的决策规则来完成分类或回归任务。

决策树算法具有简单易懂、可解释性强、适用于多类别问题等优点。

然而,它也存在容易过拟合、对异常值敏感等缺点。

决策树在金融、医疗、市场营销等领域都有广泛应用,可以用于信用评分、疾病诊断、客户分群等任务。

数据挖掘主要算法

数据挖掘主要算法

数据挖掘主要算法数据挖掘是从大量数据中提取有价值信息的过程,它涉及到使用各种算法和技术来发现隐藏在数据暗地里的模式、关联和趋势。

在数据挖掘中,有许多主要算法被广泛应用于不同的数据分析和预测任务。

以下是一些常见的数据挖掘主要算法:1. 决策树算法决策树是一种基于树状结构的分类和回归算法。

它通过将数据集划分为不同的子集,每一个子集对应于一个决策树节点,来预测目标变量的值。

决策树算法可用于分类和回归问题,并且易于理解和解释。

2. 随机森林算法随机森林是一种集成学习算法,它通过构建多个决策树并对它们的结果进行平均或者投票来进行预测。

每一个决策树都是通过对训练数据进行随机采样和特征选择来构建的,从而增加了模型的准确性和鲁棒性。

3. 朴素贝叶斯算法朴素贝叶斯算法基于贝叶斯定理和特征条件独立性假设。

它用于分类和文本挖掘任务,通过计算每一个类别的概率来预测新样本的类别。

朴素贝叶斯算法简单高效,适合于处理大规模数据集。

4. 支持向量机算法支持向量机是一种二分类算法,它通过在特征空间中构建一个最优的超平面来实现分类。

支持向量机算法具有较强的泛化能力和鲁棒性,适合于处理高维数据和非线性问题。

5. K均值聚类算法K均值聚类是一种无监督学习算法,用于将数据集划分为K个不重叠的簇。

它通过最小化簇内样本的平方距离和来确定簇的中心,并将每一个样本分配到最近的簇中。

K均值聚类算法广泛应用于图象分割、市场细分和异常检测等领域。

6. 神经网络算法神经网络是一种摹仿人脑神经元网络结构和功能的机器学习模型。

它由多个神经元和层级组成,通过学习权重和偏差来进行模式识别和预测。

神经网络算法适合于处理复杂的非线性问题,并在图象识别、自然语言处理和人工智能等领域取得了显著成果。

以上是一些常见的数据挖掘主要算法,它们在不同的数据分析和预测任务中发挥着重要的作用。

根据具体的问题和数据特征,选择适合的算法可以提高数据挖掘模型的准确性和效率。

数据挖掘的发展也在不断推动算法的创新和改进,为我们提供更多有效的工具来探索和利用数据的潜力。

什么是决策树算法?

什么是决策树算法?

什么是决策树算法?作为数据挖掘领域中最重要的算法之一,决策树算法是一个用于分类和回归分析的非常有用的工具。

决策树算法采用树形结构来表示决策过程,并通过构建具有最佳分类效果的决策树来实现。

那么为什么我们需要决策树算法呢?在实际的应用场景中,我们通常需要从众多的数据中挑选出最为关键的信息。

这样,我们就可以更好地理解数据,并作出相应的决策。

而决策树算法恰恰可以帮助我们完成这一任务。

那么究竟什么是决策树算法,它又是如何运作的呢?让我们逐步探讨吧。

一、什么是决策树算法?决策树算法是一种树形结构的分类和回归分析方法。

它将一个问题分解为许多小问题,并通过一系列可行的测试来解决问题。

决策树算法可以应用于很多领域,包括医学、天气预测、金融等。

二、决策树算法的构建决策树算法的构建过程非常简单。

首先,将训练集数据拆分为子集并构建决策树。

然后,将训练集输入到决策树中,以确定输入数据的类别。

具体而言,决策树算法是通过一个包含一系列节点的层次结构来实现的。

每个节点都代表了一个问题或一个决策。

从根节点开始,每个节点包含一个或多个分支,每个分支代表一个可能的方式来回答节点所代表的问题。

它们的组合形成了决策树。

三、决策树算法的优缺点决策树算法有许多优点。

首先,它们是一种易于理解和解释的算法,能够对大规模数据进行快速的处理。

其次,通过决策树算法,我们能够轻松地检测出具有决策价值的特征。

最后,决策树算法的使用能够避免假定数据的线性关系。

然而,决策树算法也有其缺点。

首先,决策树算法容易出现过拟合的问题。

其次,当决策树的分支过于复杂时,我们很难解释树的结果。

最后,决策树算法的结果很容易被误解。

四、应用案例决策树算法可以应用于很多领域,下面我们就来介绍几个相对典型的应用案例。

1. 银行信贷风险评估银行需要通过信贷风险评估来决定是否给用户发放贷款。

采用决策树算法,我们可以根据贷款人的个人信息、信用记录等因素来判断其是否符合信贷标准。

2. 个性化推荐决策树算法同样可以应用在个性化推荐领域。

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用数据挖掘是指从大量的数据中发现关联规则、分类模型、聚类模型等有用的信息的过程。

以下是数据挖掘领域的十大经典算法原理及应用:1. 决策树算法(Decision Tree)决策树是一种基于树形结构的分类模型,它通过构建树来将输入数据集划分为不同的类别。

决策树算法在金融风险评估、医疗诊断等领域有广泛应用。

2. 支持向量机算法(Support Vector Machine,SVM)支持向量机是一种二分类模型,其目标是在高维空间中找到一个最优的超平面,将不同类别的样本分离开来。

SVM在图像识别、文本分类等领域有广泛应用。

3. 神经网络算法(Neural Network)神经网络模拟人脑的工作原理,通过连接众多的神经元来完成学习和预测任务。

神经网络在图像处理、自然语言处理等领域有广泛应用。

4. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种基于贝叶斯定理的统计分类方法,它假设所有特征之间相互独立,并通过计算后验概率来进行分类。

朴素贝叶斯在垃圾邮件过滤、文本分类等领域有广泛应用。

5. K均值聚类算法(K-means Clustering)K均值聚类是一种无监督学习算法,它通过将样本分成K个簇来实现数据的聚类。

K均值聚类在市场细分、客户群体分析等领域有广泛应用。

6. Apriori算法Apriori算法是一种频繁项集挖掘算法,它可以找出数据集中项之间的关联关系。

Apriori算法在购物篮分析、推荐系统等领域有广泛应用。

7. PageRank算法PageRank算法是一种用于网页排序的算法,它通过计算网页之间的链接关系来确定网页的重要性。

PageRank算法在引擎领域有广泛应用。

8. 随机森林算法(Random Forest)随机森林是一种集成学习算法,它通过构建多个决策树,并通过投票方式来进行分类或回归。

随机森林在金融风险评估、信用评分等领域有广泛应用。

9. AdaBoost算法AdaBoost是一种迭代的强学习算法,它通过调整样本权重来训练多个弱分类器,并通过加权投票方式来进行分类。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。

分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。

本文将介绍数据挖掘中常用的几种分类算法。

一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。

通过不断选择最佳划分节点,最终形成一棵完整的决策树。

决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。

常见的决策树算法包括ID3、C4.5和CART 算法。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

它的优点是简单高效,对小样本数据有较好的分类效果。

三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。

它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。

支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。

四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。

K近邻算法简单直观,适用于多样本情况下的分类问题。

然而,K近邻算法计算复杂度高,对异常值和噪声敏感。

五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。

它通过构建多层网络、定义激活函数和调整权重来实现分类。

神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。

六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。

常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。

集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。

在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决策树是分类应用中采用最广泛的模型之一。

与神经网络和贝叶斯方法相比,决策树无须花费大量的时间和进行上千次的迭代来训练模型,适用于大规模数据集,除了训练数据中的信息外不再需要其他额外信息,表现了很好的分类精确度。

其核心问题是测试属性选择的策略,以及对决策树进行剪枝。

连续属性离散化和对高维大规模数据降维,也是扩展决策树算法应用范围的关键技术。

本文以决策树为研究对象,主要研究内容有:首先介绍了数据挖掘的历史、现状、理论和过程,然后详细介绍了三种决策树算法,包括其概念、形式模型和优略性,并通过实例对其进行了分析研究目录一、引言 (1)二、数据挖掘 (2)(一)概念 (2)(二)数据挖掘的起源 (2)(三)数据挖掘的对象 (3)(四)数据挖掘的任务 (3)(五)数据挖掘的过程 (3)(六)数据挖掘的常用方法 (3)(七)数据挖掘的应用 (5)三、决策树算法介绍 (5)(一)归纳学习 (5)(二)分类算法概述 (5)(三)决策树学习算法 (6)1、决策树描述 (7)2、决策树的类型 (8)3、递归方式 (8)4、决策树的构造算法 (8)5、决策树的简化方法 (9)6、决策树算法的讨论 (10)四、ID3、C4.5和CART算法介绍 (10)(一)ID3学习算法 (11)1、基本原理 (11)2、ID3算法的形式化模型 (13)(二)C4.5算法 (14)(三)CART算法 (17)1、CART算法理论 (17)2、CART树的分支过程 (17)(四)算法比较 (19)五、结论 (24)参考文献...................................................................................... 错误!未定义书签。

致谢.............................................................................................. 错误!未定义书签。

数据挖掘中决策树算法的研究一、引言在激烈的市场竞争中,信息对于企业的生存和发展越来越起到至关重要的作用,随着数据库技术的迅速发展以及数据库管理系统的广泛应用,数据库中表达信息的数据亦随着时间和业务的发展而急剧膨胀,人们需要对数据进行更高层次的处理,从中找出规律和模式,以帮助人们更好的利用数据进行决策和研究。

目前的数据库系统虽然可以实现高效的数据录入、查询、统计等功能,却无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。

由于缺乏挖掘数据背后隐藏的知识的手段,导致了“数据爆炸但知识贫乏”的现象,面对“人们被数据淹没,人们却饥饿于知识”的挑战,数据挖掘和知识发现技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。

数据挖掘的核心部分是为数据集建立模型的过程,不同的数据挖掘方法构造数据模型的方式也不相同,在进行数据挖掘时可采用许多不同的方法,例如神经网络、决策树、遗传算法和可视化技术等,同时同一方法下又有数以百计的派生方法。

决策树算法是数据挖掘常用的方法之一,但它一直未受到人们重视,直到1984年Breiman等人合著出版了《分类和回归树》一书,决策树方法才开始被统计学界接受并获得了信赖,并很快得到推广应用。

现在很多公司的数据挖掘产品中都采用了决策树数据挖掘算法,J.R.Quinlan对决策树算法作出了详细的理论描述决策树算法中一种广为人知的算法就是ID3算法,是1986年由Quinlan提出的一种基于信息墒的决策树算法,近年来在很多知识发现领域得到应用,很多学者针对ID3算法进行研究。

本课题主要研究了ID3算法、C4.5算法等的优势和略势,比较了各算法在实际应用中的好处和不足。

二、数据挖掘(一)概念图 1-1数据挖掘,在人工智能领域,习惯上又称为数据库中知识发现(Knowledge Discovery in Database, KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。

知识发现过程以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。

数据挖掘可以与用户或知识库交互。

并非所有的信息发现任务都被视为数据挖掘。

例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。

虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。

尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

(二)数据挖掘的起源要是发明之母。

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。

获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。

(三)数据挖掘的对象数据挖掘可以在任何类型的数据上进行,即可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。

数据形式和结构也各不相同,可以是传统的关系数据库,可以是面向对象的高级数据库系统,也可以是面向特殊应用的数据库,如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是Web数据信息。

(四)数据挖掘的任务数据挖掘的目标是从海量数据中发现隐含的、有意义的知识。

它的任务主要是分类、预测、时间序列模式、聚类分析、关联分析预测和偏差分析等。

分类:分类就是按照一定的标准把数据对象划归成不同类别的过程。

预测:预测就是通过对历史数据的分析找出规律,并建立模型,通过模型对未来数据的种类和特征进行分析。

时间序列模式:时间序列模式就是根据数据对象随时间变化的规律或趋势来预测将来的值。

聚类分析:聚类分析是在没有给定划分类的情况下,根据数据信息的相似度进行数据聚集的一种方法。

关联分析预测:关联分析就是对大量的数据进行分析,从中发现满足一定支持度和可信度的数据项之间的联系规则。

偏差分析:偏差分析就是通过对数据库中的孤立点数据进行分析,寻找有价值和意义的信息。

(五)数据挖掘的过程数据挖掘使用一定的算法从实际应用数据中挖掘出未知、有价值的模式或规律等知识,整个过程由数据准备、数据挖掘、模式评估、结果分析和运用知识等步骤组成。

数据准备:数据挖掘的处理对象是数据,这些数据一般存储在数据库系统中,是长期积累的结果。

但往往不适合直接在这些数据上进行知识挖掘,首先要清除数据噪声和与挖掘主题明显无关的数据;其次将来自多数据源中的相关数据组合并;然后将数据转换为易于进行数据挖掘的数据存储形式,这就是数据准备。

数据挖掘:数据挖掘就是根据数据挖掘的目标,选取相应算法及参数,分析准备好的数据,产生一个特定的模式或数据集,从而得到可能形成知识的模式模型。

模式评估:由挖掘算法产生的模式规律,存在无实际意义或无实用价值的情况,也存在不能准确反映数据的真实意义的情况,甚至在某些情况下与事实相反,因此需要对其进行评估,从挖掘结果中筛选出有意义的模式规律。

在此过程中,为了取得更为有效的知识,可能会返回前面的某一处理步骤中以反复提取,从而提取出更有效的知识。

巩固知识:解释并评估结果.其使用的分析方法一般应作数据挖掘操作而定,通常会用到可视化技术.运用知识:将分析所得到的知识集成到业务信息系统的组织结构中去.(六)数据挖掘的常用方法决策树方法:决策树是一种常用于预测模型的算法,它通过一系列规则将大量数据有目的分类,从中找到一些有价值的、潜在的信息。

它的主要优点是描述简单,分类速度快,易于理解、精度较高,特别适合大规模的数据处理,在知识发现系统中应用较广。

它的主要缺点是很难基于多个变量组合发现规则。

在数据挖掘中,决策树方法主要用于分类。

神经网络方法:神经网络是模拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳、提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身结构来表达输入和输出的关联知识。

粗糙集方法:粗糙集理论是一种研究不精确、不确定知识的数学工具。

粗糙集处理的对象是类似二维关系表的信息表。

目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。

粗糙集理论能够在缺少先验知识的情况下,对数据进行分类处理。

在该方法中知识是以信息系统的形式表示的,先对信息系统进行归约,再从经过归约后的知识库抽取得到更有价值、更准确的一系列规则。

因此,基于粗糙集的数据挖掘算法实际上就是对大量数据构成的信息系统进行约简,得到一种属性归约集的过程,最后抽取规则。

遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。

数据挖掘是从大量数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的、潜在有用的信息。

因此,许多数据挖掘问题可以看成是搜索问题,数据库或者数据仓库为搜索空间,挖掘算法是搜索策略。

应用遗传算法在数据库中进行搜索,对随机产生的一组规则进行进化,直到数据库能被该组规则覆盖,就可以挖掘出隐含在数据库中的规则。

(七)数据挖掘的应用数据挖掘技术在各个需要进行信息分析的领域得到十分广泛的应用。

它可以带来显著的经济效益,不仅可以控制成本,也可以给企业带来更多效益。

在金融业,可以通过信用卡历史数据的分析,判断哪些人有风险,哪些人没有;在超市,可以通过对超市交易信息的分析,安排货价货物摆设,以提高销售收入;在保险业,可以通过对保险公司客户记录的分析,来判定哪些客户是花费昂贵的对象;在学校,可以通过分析学校学生课程及成绩等信息,来判断课程之间的关系。

此外,在医学中,可以利用数据挖掘技术对疾病发作前后症状的分析,来对病症进行诊断;在体育运动中,利用数据挖掘技术对对抗性强的积极运动进行分析,发现对方弱点,制定有效的战术。

三、决策树算法介绍(一)归纳学习归纳学习是符号学习中研究的最为广泛的一种方法。

它着眼于从一组无次序、无规则的实力中,找出蕴涵规律,事例一般是基于属性理论的,有特定的属性值得到问题某个结论,给定关于某个概念的一系列已知的正例和反例,其任务是从中归纳出一个通用概念描述。

它能够获得新的概念,创立新的规则,发现新的理论。

它的一般的操作是泛化和特化。

泛化用来扩展假设的语义信息,以使其包含更多的正例,应用于更多的情况。

特化是泛化的相反操作,用于限制概念描述的应用范围。

分类算法是归类学习的一种类型。

(二)分类算法概述分类算法是数据挖掘中的一个重要课题,可用于预测和决策。

分类算法也是数据挖掘算法中很很重要的一种,决策树(decision tree)算法是主要分类算法之一。

相关文档
最新文档