动力总成试验台架中传动系统的振动与噪声控制技术

合集下载

汽车振动与噪声控制

汽车振动与噪声控制
– 苍蝇振翅频率 500-600Hz
• 人耳不可闻
– 次声 f<20Hz subsonic 蝴蝶振翅频率 5-6Hz – 超声f>20000Hz supersonic
• 常见频率划分
– 低,低频声 f<500Hz,中频声 500<f<2000Hz – 高频声 f>2000Hz
声音的基本计量
• 波长l:声波传播过程中两个相邻的同相位 点的空间距离 • 声速c:声波在介质中传播的速度 c fl
prms
1 T 2 p (t )dt T 0
prms
pmax 2
2.1.1理想介质中的声场波动方程
• • • 声压p随空间位置、时间而变化 声波波动方程:建立声压和空间位置以及时间 之间的联系,用数学工具表示出来 几个假设:
1. 声传播过程没有能量损耗 2. 媒质静态压强和密度均为常数 3. 声传播过程是绝热过程
2.1.1理想介质中的声场波动方程
• • • 牛顿第二定律 质量守恒定律 物态方程
p0+p F s dx x x+dx
2
ma F
p0+p+dp F+dF
p 1 p 2 2 2 x c t
2
du sdx sdp dt p dp dx x du p sdx s dx dt x du p dt x
2.1 波动方程和声的基本性质
• 理想介质中的声波波动方程 • 声波与声源:平面波,球面波和柱面波, 球面声源,声偶极子,线声源,面声源
2.1.1理想介质中的声场波动方程
• 声场field:声传播经过的媒质空间 • 声传播:声波对于整个媒质来说出现了稠 密和稀疏状态的交替变化的现象 • 声波sound wave:声场空间内媒质的状态随 时间的扰动量变化和传递,如果该变化为 时间的谐波函数形式,则称为简谐声波

噪声与振动控制技术

噪声与振动控制技术

建筑结构振动控制
总结词
建筑结构振动控制是为了减小建筑物受到地震、风振等外部激励引起的振动,保障建筑 物的安全性和舒适性。
详细描述
建筑结构振动控制的方法主要包括被动控制、主动控制和半主动控制三种类型。被动控 制方法包括增加结构阻尼、设置隔振支座等;主动控制方法是通过施加反向振动来抵消 原始振动;半主动控制方法则是通过改变结构的刚度或质量分布来减小振动。在实际应
非接触式测量
利用激光、超声波等非接 触技术,通过测量物体的 振动位移、速度等参数来 评估振动情况。
遥感测量
利用传感器网络和无线传 输技术,远程监测大型结 构或设备的振动情况。
振动评价标准
国际标准
01
如ISO 2631-1:1997,规定了人体对振动的容许限值。
行业标准
02
如美国石油学会API标准,针对不同设备和行业制定了相应的振
噪声与振动的影响
噪声的影响
长期暴露于噪声环境中可能导致听力 下降、失眠、高血压和心理压力等问 题。
振动的影响
长期暴露于振动环境中可能导致手部 振动病、肌肉疲劳、关节疼痛和神经 系统损伤等问题。
02
噪声测量与评价
噪声测量方法
01
02
03
声级计法
使用声级计对噪声进行测 量,记录不同时间段和不 同位置的噪声水平。
被动振动控制
被动振动控制是通过增加阻尼材料或结构来吸收和耗散振 动能量的技术。它通常使用橡胶隔振器、阻尼材料等被动 元件来抑制振动。被动振动控制具有简单、可靠、成本低 等优点,但控制效果有限。
被动振动控制广泛应用于建筑、机械、交通工具等领域, 用于减轻设备或结构的振动,降低噪声,提高舒适性和安 全性。
06

汽车NVH振动与噪声分析

汽车NVH振动与噪声分析

汽车NVH介绍1.NVH现象与基本问题2.噪声与振动源3.NVH传递通道4.NVH的响应与评估5.NVH试验6.NVH的CAE分析7.NVH开发8.汽车声品质动态性能静态性能汽车的性能❑汽车的外观造型及色彩❑汽车的内室造型、装饰、色彩❑内室及视野❑座椅及安全带对人约束的舒适性❑娱乐音响系统❑灯光系统❑硬件功能❑维修保养性能❑重量控制❑噪声与振动(NVH )❑碰撞安全性能❑行驶操纵性能❑燃油经济性能❑环境温度性能❑乘坐的舒适性能❑排放性能❑刹车性能❑防盗安全性能❑电子系统性能❑可靠性能NVH 是汽车最重要的指标之一汽车所有的结构都有NVH问题☐车身☐动力系统☐底盘及悬架☐电子系统☐……在所有性能领域(NVH,安全碰撞、操控、燃油经济性、等)中,NVH是设及面最广的领域。

什么是NVH?NVH : N oise, V ibration and H arshness⏹噪声Noise:●是人们不希望的声音●注解: 声音有时是我们需要的●是由频率, 声级和品质决定的●频率范围: 20-10,000 Hz⏹振动Vibration●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body,mainly in .5 hz-50 hz range●是由频率, 振动级和方向决定的⏹不舒服的感觉Harshness●-Rough, grating or discordant sensation为什么要做NVH?☐NVH对顾客非常重要⏹NVH的好坏是顾客购买汽车的一个非常重要的因素. ☐NVH影响顾客的满意度⏹在所有顾客不满意的问题中, 约有1/3是与NVH有关. ☐NVH影响到售后服务☐约1/5的售后服务与NVH有关决定NVH的因素顾客的要求政府法规公司的需要和技术能力竞争车NVH –车速–发动机转速的关系动力系统(P/T) NVH路噪Road Noise风噪Wind Noise车速Vehicle speedSpeed1030507090110130150Wind NVH Road NVHPowertrain NVHPowertrain NVH DominanceRoad NVH DominanceWind NVH Dominance路面及动力系统的振动Road & P/TVibration路面及动力系统的噪声Road & P/T Sound风激励噪声Wind Noise 动力系统的声品质P/T Sound Quality0 Hz100 Hz250 Hz800 Hz5000 Hz NVH与频率的关系多通道分析源-通道-接受体模型⎛jP iF P ⎪⎭⎫⎝⎛jP P ⎪⎭⎫ ⎝P源通道源接受体源源源通道通道Interior Sound & VibrationNoise path 1Noise path 2Noise source 1Vibration source 1Noise source 2Noise source N ……Vibration source 2Vibration source N……Vibration path 1Vibration path 2Vibration path …Noise path …•源–动力系统–风–路面–其他•通道–底盘–车身–内饰–其他•接受体–耳朵–手–脚–座椅1.NVH现象与基本问题2.噪声与振动源3.NVH传递通道4.NVH的响应与评估5.NVH试验6.NVH的CAE分析7.NVH开发8.汽车声品质源: 动力系统NVH动力系统PowertrainPowertrainPowerplantDrivelineExhaustIntakeMountEngineTransmission动力总成Powerplant发动机噪声源机械振动与噪声◆曲轴系统◆凸轮轴系统◆链,齿轮,皮带◆非燃烧引起的冲击◆附件燃烧噪声☐活塞载荷☐气缸盖载荷☐曲轴轴承载荷流动噪声•进气•排气•风扇024680.20.40.60.811.21.41.61.8R e s p o n s e @ I n e r t i a M引起的问题☐曲轴共振☐曲轴的应力集中和断裂曲轴扭转振动阻尼器Damper 1.橡胶阻尼器2.液压阻尼器变速器啸叫•T.E. vs. Gear NoiseX aX bGear Mesh❑齿轮制造精度不够❑齿轮匹配对中不好❑齿轮材料不好啸叫的原因:齿轮啮合不好变速器敲击啸叫的原因:❑曲轴扭振❑传动轴系转速波动❑变速器齿轮间隙控制不好01000020000300004000050000600000100200300400500600700Crank Angle (degrees)F o r c e M a g n i t u d e (N )MB1 Mag Excite MB1 Mag JOA MB2 Mag Excite MB2 Mag JOAMB3 Mag Excite MB3 Mag JOA MB4 Mag ExciteMB4 Mag JOA动力总成NVH❑动力总成的弯曲模态❑动力总成的辐射噪声❑悬置位置的振动❑附件的振动及辐射噪声启动噪声发动机缸盖15CM处CM5_CB10改进前浪迪_K14五菱_B12CM5_CB10改进后改进方案为:1、加强飞轮2、飞轮启动齿轮不倒角3、加大飞轮启动齿圈直径变速箱分动器后传递轴后驱动桥后半轴前传递轴前驱动桥前半轴支撑轴承万向节传递轴系的NVH☐第一阶传递轴激励☐传递齿轮啸叫☐2阶激励r O AB 1. 齿轮啮合2. 轴的不平衡3. 由十字连接引起的2阶激励进气系统和排气系统的NVH排气系统进气系统TailpipeOrifice 歧管的设计与声品质1进气总管23654进气系统NVH空滤器❑进气口噪声❑壳体的辐射噪声四分之一波长管谐振腔排气系统的NVH控制指标❑挂钩传递到车体的力❑排气尾管噪声❑壳体辐射噪声控制方法:☐消音器的设计☐波纹管/球连接的选择☐。

车用汽油发动机减振降噪改进开发

车用汽油发动机减振降噪改进开发

Internal Combustion Engine &Parts0引言本文分析了三种发动机的平衡计算。

还包括排气系统背压、催化转化器的使用和新材料对发动机部件的影响、发动机表面热损失的计算。

新发动机的排气和进气设计用于完成系统。

对进气和排气进行了参数分析。

最后,利用声强技术对发动机进行了噪声辐射测试,确定了可能的主要噪声辐射源。

1车用汽油发动机材料发动机噪声的主要因素,特别是非常麻烦的中高频部件,是支撑曲轴的主轴承舱壁和盖的纵向振动。

气缸内的燃烧气体力使这些零件移动,进而使缸体裙座和油底壳振动,从而产生噪音。

通过用横梁将轴承盖牢固地连接在一起,主轴承舱壁和轴承盖的纵向振动得到抑制,缸体抗扭转和横向弯曲的刚度也得到提高。

这使我们开发了集成的主轴承盖和横梁。

通过振动台试验、全息干涉分析和发动机台架试验,对发动机降噪效果进行了定量评价。

通过对阀门系统振动和噪声产生机理的研究,发现阀门系统的异常运动即跳跃和弹跳现象是振动和噪声源的主要因素,系统各部件之间的碰撞成为一个问题。

用FC 200模拟了材料对曲轴箱振动特性的影响。

刚度随曲轴轴套和曲轴轴套厚度的增加或减小而变化。

阐明了圆柱体的刚度在高频范围内对固有频率的影响最大,重量对低频范围内的固有频率影响较大。

因此,在测量频率范围内,曲轴箱和曲轴轴颈的刚度越高,重量越轻,可以减小缸体的振动应力。

通过单独处理,可以降低发动机表面的噪声。

组件或通过修改辐射表面。

消除或消除噪音。

通过改变翅片的特性,使谐振频率消除。

采用有限元模型和试验模态分析方法对改进型水头进行了简谐分析。

通过微调结构来降低曲轴箱总成的噪声,从而消除与噪音有关的频率。

对整个噪声系统进行了详细的分析。

它包括噪声源分析、传输路径分析和辐射表面分析。

利用声学测量了辐射表面的贡献。

结果表明,从辐射源到辐射面的最大力传递路径是通过连杆到曲柄轴,主轴承到缸体。

连杆或曲轴的修改并不容易,因为它们的固有刚度受到了严重的限制。

结构动力学的振动控制与减震

结构动力学的振动控制与减震

结构动力学的振动控制与减震结构动力学是研究结构在外力作用下的振动响应和动力性能的学科。

在实际工程中,结构的振动问题对于结构的稳定性和耐久性具有重要的影响。

因此,结构振动的控制与减震成为了结构工程领域中的一个热门课题。

一、结构振动控制的意义结构振动控制的主要目的是降低结构振动对结构自身和周围环境的不良影响。

对于高层建筑、大型桥梁等大型结构来说,振动对结构的疲劳损伤和人员的舒适性都是非常重要的考虑因素。

因此,采取有效的振动控制手段可以提高结构的安全性和使用寿命。

二、常用的结构振动控制方法1. 被动控制方法被动控制是指通过吸能器、摇摆桥等被动装置来吸收结构振动的能量,从而减小结构的振幅和振动反应。

被动控制方法适用于不同类型的结构,但是其控制效果依赖于外界激励的频率和振幅。

2. 主动控制方法主动控制是指通过传感器感知结构振动信号,并通过控制器产生控制信号,进而通过执行机构减小结构的振幅。

主动控制方法可以根据振动信号的特点进行实时的振动控制,对于地震、风载等具有随机激励的情况效果较好。

3. 半主动控制方法半主动控制是在主动控制和被动控制之间的一种折中方案。

它通过调节控制器中的参数,根据结构的振动状态,实现减震和振动控制。

与被动控制相比,半主动控制方法具有更好的适应性和响应速度。

三、结构减震技术的应用结构减震技术是减少结构振动反应的一种有效手段。

常见的结构减震技术包括基础隔震、降低结构刚度和增加结构阻尼等方法。

1. 基础隔震基础隔震是指在结构与地基之间设置隔震装置,减小地震波对结构的冲击和损害。

常见的隔震装置包括橡胶隔震器、液体阻尼器等,通过隔震装置改变结构的振动特性,降低结构的振动反应。

2. 降低结构刚度降低结构刚度是指通过改变结构的刚度分布,使其自振频率相较于激励频率偏离较远。

常见的方法有在结构中增加柔性节点、改变结构截面形状等。

3. 增加结构阻尼增加结构阻尼是通过在结构中引入阻尼装置,消耗振动能量,减小结构的振幅。

动力总成匹配试验测试方法

动力总成匹配试验测试方法

动力总成匹配试验测试方法一、引言动力总成是指由发动机、传动系统和相关控制系统组成的汽车动力装置。

为了确保动力总成的性能和可靠性,需要进行匹配试验测试。

本文将介绍动力总成匹配试验测试的方法和步骤。

二、试验前准备1. 确定试验目的:根据动力总成的设计要求和使用条件,确定试验目的和要求,包括动力输出、燃油消耗、排放等方面的指标。

2. 确定试验条件:根据动力总成的设计参数和使用条件,确定试验条件,包括环境温度、湿度、海拔高度等。

3. 准备试验设备:包括发动机试验台、传动系统试验台、测量仪器等。

三、试验步骤1. 发动机试验:首先进行发动机试验,包括动力输出、燃油消耗、排放等方面的测试。

通过改变发动机工况和负荷,测试发动机在不同工况下的性能指标。

2. 传动系统试验:然后进行传动系统试验,包括传动效率、换挡平顺性、噪声振动等方面的测试。

通过模拟实际驾驶情况,测试传动系统在不同工况下的性能指标。

3. 整车试验:最后进行整车试验,将发动机和传动系统安装到实际车辆上,测试整车的性能和可靠性。

包括加速性能、制动性能、悬挂系统等方面的测试。

四、试验参数和指标1. 动力输出:包括最大功率、最大扭矩等指标,用于评估动力总成的动力性能。

2. 燃油消耗:包括燃油经济性和排放指标,用于评估动力总成的燃油效率和环保性能。

3. 传动效率:用于评估传动系统的能量传输效率,包括传动损失和能量转换效率等指标。

4. 换挡平顺性:评估传动系统换挡的舒适性和平顺性,包括换挡时间、换挡冲击等指标。

5. 噪声振动:评估传动系统和整车的噪声和振动水平,包括噪声强度、振动幅值等指标。

6. 加速性能:评估整车的加速性能,包括0-100km/h加速时间等指标。

7. 制动性能:评估整车的制动性能,包括制动距离、制动稳定性等指标。

8. 悬挂系统:评估整车的悬挂系统性能,包括悬挂刚度、减震效果等指标。

五、试验数据处理与分析1. 试验数据采集:通过测量仪器和传感器,采集试验过程中的各项数据,包括转速、扭矩、温度、压力等。

QCT5292021汽车动力转向器总成台架试验方法

QCT5292021汽车动力转向器总成台架试验方法

QCT5292021汽车动力转向器总成台架试验方法前言本标准是对QC/T 529-1999《汽车掖压转向加力装置及动力转向器总成台架试验方法》的修订,性能试验部分依照国国情及有关文献,增加空载转动力矩测量。

同时,对特性曲线的数据处理方法等效采纳QC/T 306-1999中有关内容,其余部分依照相关标准和征求意见情形略作更换。

可靠性试验部分要紧参加德国相关标准,力求与我国有关标准相统一,其要紧内容与该标准等效。

本标准自实施日起,同时代替QC/T 529-1999。

本标准由国家机械工业局提出。

本标准由全国汽车标准化技术委员会归口。

本标准由长春汽车研究所负责起草。

本标准要紧起草人:郝金良、王宇阳、黄达时。

本标准由全国汽车标准化技术委员会负责说明。

中华人民共和国汽车行业标准QC/T 529—2000汽车动力转向器总成台架试验方法代替QC/T 529—19991 范畴本标准规定了汽车常流式液压动力转向器总成台架试验方法。

本标准使用与汽车常流式液压动力转向器总成(以下简称总成)。

本标准不适用于全液压转向器。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

QC/T 306-1999 汽车动力转向操纵阀总成台架试验方法。

3 定义本标准采纳下列定义。

循环总成输入端由中间位置再向另一方向旋转至规定角度后,再回到中间位置为1个循环。

4 总则4.1 本标准规定下列试验方法:a)性能试验;b)可靠性试验;4.2 被试总成台架安装布置型式4.2.1 总成试验时,应参考原车的布置型式。

在相应的试验台架上进行,油罐承诺用试验台油箱,滤油器的绝对率精度不得低于原车,其它装置承诺用试验台上配备的装置代用。

4.2.2 试验用油料应符合残品使用说明书的要求,性能试验油温(50±5)℃,可靠性试验油温50~80℃,试验流量以产品说明书中提供的限制流量为准。

汽车振动与噪声控制2.pdf

汽车振动与噪声控制2.pdf

机械振动有哪些类型
2.按振动系统的自由度数分类
多自由度系统振动——确定系统在振动过程中任何瞬 时几何位置需要多个独立坐标的振动;
机械振动有哪些类型
3.按系统的响应(输出振动规律)分类
周期振动——能用时间的周期函数表示系统响应的振动; 瞬态振动——只能用时间的非周期衰减函数表示系统响应 的振动; 随机振动——不能用简单函数或函数的组合表达运动规律, 而只能用统计方法表示系统响应的振动。(汽车行驶在路面)
Steer转向
Body车身
Suspension悬架 Chair座椅
Tire轮胎
Br论是分析任何机器和结构的动态特性的理 论基础之一
• 汽车的动态性能:汽车行驶的舒适性、操纵稳定 性、车内噪声水平以及音质等。
• 汽车的行驶平顺性、乘坐舒适性、发动机减振和 隔振、车身结构的模态分析均以振动为基础。
量纲: m:kg k:N/m c: N.s/m
如何进行机械振动的分析研究
• 理论分析
数学工具
解析 解
实际 力学原理 微分
振动
系统
方程 计算机
数值 解
特性
• 建立系统力学模型:将所研究的对象以及外界
对其作用简化为一个即简单又能在动态特性方面与 原来研究对象等效的力学模型
• 建立运动微分方程并求解,得出响应规律
汽车振动与噪声控制 Control of Vibration and Noise
in Road Vehicles
2012.秋
内容安排
• 第1章 振动理论基础 • 第2章 声学理论基础 • 第3章 发动机振动分析与控制 • 第4章 动力传动及转向系统振动 • 第5章 汽车平顺性 • 第6章 发动机及动力总成噪声 • 第7章 底盘系统噪声 • 第8章 车身及整车噪声
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力总成试验台架中传动系统的振动与噪声
控制技术
传动系统是汽车动力总成中重要的组成部分,对于传动系统的振动与噪声控制
技术的研究对于提升整车的舒适性、减少能源消耗具有重要意义。

动力总成试验台架中传动系统的振动与噪声控制技术是研究的重点之一,下面我们来具体介绍该技术。

首先,对于传动系统的振动与噪声控制,我们需要从系统设计、材料选择、制
造工艺等方面入手。

在系统设计方面,我们需要考虑传动系统的结构、复杂度以及零部件之间的相
互作用。

设计传动系统时需要遵循原则如减少冲击载荷,通过合理的支撑系统和布置传动元件来减少振动传递等。

此外,也需要考虑传动系统的自然频率与工作频率之间的匹配,以避免共振现象的发生。

在材料选择方面,我们需要选择具有良好的机械性能和减振性能的材料。

例如,可以选择使用具有低振动传递特性的橡胶材料作为传动系统的支撑或减振元件。

此外,在制造工艺方面,我们需要使用精密制造技术来保证传动系统的精度和平衡度,以减少振动和噪声的产生。

其次,在振动与噪声控制技术方面,我们可以采用以下方法:
1. 振动和噪声的源头控制:通过改进传动系统的设计和制造工艺,减少振动与
噪声的产生。

我们可以利用现代CAD/CAE技术对传动系统进行优化设计,采用优
化刚性和减振技术,减少共振现象的发生。

此外,也可以对传动系统的支撑装置进行创新设计,提高其减振性能。

2. 振动和噪声的传播路径控制:通过合理选择传动系统的支撑装置和排振控制
装置,减少振动和噪声在结构中的传播路径。

例如,可以使用减振器、减震器、减振垫等装置来控制振动与噪声的传播,阻断传递路径,减少传感器的振动感应。

3. 振动和噪声的吸收和隔离措施:在传动系统上增加吸振材料,例如橡胶衬套、泡沫材料等,来吸收和消散振动与噪声。

此外,在试验台架设计中,我们也可以采用隔音和隔振措施,例如使用声屏障、隔振支撑等,来减少试验台架与传动系统之间的振动与噪声传递。

最后,为了进一步提升动力总成试验台架中传动系统的振动与噪声控制技术,
我们可以应用现代控制技术和信号处理技术。

例如,可以引入主动降噪技术,通过传感器采集到的振动和声音信号,通过控制算法对振动和噪声进行实时预测和补偿。

此外,我们还可以应用故障诊断技术来实时监测传动系统的振动和噪声情况,及时发现故障并进行处理。

总之,传动系统的振动与噪声控制技术对于提升汽车动力总成试验台架的性能
和质量具有重要意义。

通过合理的系统设计、材料选择、制造工艺以及应用现代控制技术和信号处理技术,我们可以有效地控制传动系统的振动与噪声,提升整车的舒适性和性能,减少能源消耗,满足用户的需求。

相关文档
最新文档