八年级数学上册第4章图形与坐标复习同步练习(新版)浙教版【含解析】

合集下载

【浙教版】八年级数学上第4章 图形与坐标 期末复习(含答案)

【浙教版】八年级数学上第4章 图形与坐标 期末复习(含答案)

期末复习(四) 图形与坐标01 知识结构图形与坐标⎩⎪⎨⎪⎧确定平面上物体的位置平面直角坐标系⎩⎪⎨⎪⎧平面直角坐标系坐标象限平面内点的坐标特征图形变换⎩⎪⎨⎪⎧对称点的坐标特征坐标平移变换02重难点突破重难点1 确定平面内物体的位置【例1】 我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为( A)A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1) 【方法归纳】 由已知条件正确确定坐标轴的位置是解决本题的关键,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.1.如果在教室内的位置用某列某行来表示,懒羊羊在教室里的座位是(a ,4),那么下面说法错误的是( A )A.懒羊羊的座位一定在第4列B.懒羊羊的座位一定在第4行C.懒羊羊的座位可能在第4列D.懒羊羊的座位位置可能是(4,4)2.(杭州万向中学月考)如图是轰炸机群的一个飞行编队,如果最后两架轰炸机的平面坐标分别是A (-2,1)和B (-2,-3),那么第一架轰炸机C 的平面坐标是(2,-1). 重难点2 平面直角坐标系及点的坐标特征【例2】 若点A (-2,n )在x 轴上,则点B (n -1,n +1)在( B )A.第一象限B.第二象限C.第三象限D.第四象限 【方法归纳】 这是一类平面直角坐标系中的基础题,解决这类问题的关键是要理解记忆直角坐标系中点的数值特征,根据点的位置和特殊点的坐标特征来解答.3.(嘉兴期末)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( A )4.在平面直角坐标系中,O 为坐标原点,点A 在x 轴上,且OA =5,则点A 的坐标为( C )A.(5,0)B.(0,5)C.(5,0)或(-5,0)D.(0,5)或(0,-5)重难点3 轴对称与坐标变化【例3】 (杭州外国语学校期末)已知点P (ac 2,ba )在第二象限,点Q (a ,b )关于x 轴对称的点在( B )A.第一象限B.第二象限C.第三象限D.第四象限5.若点A (2,a )关于x 轴对称的点是B (b ,-3),则ab 的值是6.6.(嵊州期末)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)如图所示,点B 1坐标为(-2,-1). (2)如图所示,点C 2的坐标为(1,1).重难点4 特殊到一般的数学思想——点的坐标规律【例4】如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n B n顶点B n的横坐标为2n+1-2.-1【思路点拨】先求出B1,B2,B3…的坐标,即B1(2,0),B2(6,0),B3(14,0),观察其横坐标变化规律得出答案.【方法归纳】坐标的变化规律探究是数的探究和图形的探究的综合.因为点附在图形上,图形在做有规律的变换,导致图形上的点在做有规律的变换,所以在探究时,先分析图形的变换规律,根据图形的变换规律求出前面几个点的坐标,然后利用分析数的变换规律方法分析出一般的规律,再按照一般的规律写出任何一个要求的点的坐标.7.如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲.乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2 017次相遇地点的坐标是( D )A.(3,0)B.(-1,2)C.(-3,0)D.(-1,-2)第7题图第8题图8.(岳阳中考)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2 016的坐标为(504,-504).03备考集训一.选择题(每小题3分,共30分)1.下列有污迹的电影票中能让小华准确找到座位的是( D )2.(杭州开发区期末)下列“表情图”中,属于轴对称图形的是( D )3.已知点P(m+3,m+2)在直角坐标系中的x轴上,则点P的坐标为(B)A.(0,-1)B.(1,0)C.(2,2)D.(0,-5)4.如图,已知校门的坐标是(1,1)(图中每个小方格的长度为1 cm),那么下列对于实验楼位置的叙述正确的个数为( B )①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门2002米.A.1个B.2个C.3个D.4个第4题图第5题图5.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( A )A.2B.3C.4D.56.点P(a-1,b-2)关于x轴对称与关于y轴对称的点坐标相同,则P点坐标为( D )A.(-1,-2)B.(-1,0)C.(0,-2)D.(0,0)7.若点M在第一.三象限的角平分线上,且点M到x轴的距离为4,则点M的坐标是( B )A.(4,4)B.(4,4)或(-4,-4)C.(-4,-4)D.(4,-4)或(-4,4)8.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是( D )A.(2,0)B.(4,0)C.(-22,0)D.(3,0)第8题图 第10题图9.平面直角坐标系xOy 中,已知A (-1,0),B (3,0),C (0,-1)三点,D (1,m )是一个动点,当△ACD 周长最小时,△ABD 的面积为( C )A .13B .23C .43D .8310.如图,在平面直角坐标系上有一点A (0,1),点A 第1次跳动至点A 1(1,-1),第2次由点A 1跳到点A 2(1,2),第3次由点A 2跳到点A 3(2,-2),…,由此规律跳动下去,第80次跳到点A 80的坐标是( C )A.(40,40)B.(41,40)C.(40,41)D.(41,41)二.填空题(每小题4分,共24分)11.点P (4,-3)关于x 轴对称的点P ′的坐标为(4,3).12.(杭州上城区期末)已知A (1,1)是平面直角坐标系内一点,若以y 轴的正方向为正北方向,以x 轴的正方向为正东方向,则点A 位于坐标原点O 的北偏东45度方向,与点O 的距离为2.13.如图,在直角坐标平面内,线段AB 垂直于y 轴,垂足为B ,且AB =2,如果将线段AB 沿y 轴翻折,点A 落在点C 处,那么点C 的横坐标是-2.第13题图 第14题图14.工艺美术中,常需设计对称图案.在如图的正方形网格中,点A ,D 的坐标分别为(1,0),(9,-4).请在图中再找一个格点P ,使它与已知的4个格点组成轴对称图形,则点P 的坐标为(9,-6)或(2,-3)(如果满足条件的点P 不止一个,请将它们的坐标都写出来).15.在平面直角坐标系中,△ABC 的三个顶点坐标分别是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A ,B ,C 的对应点分别是A 1,B 1,C 1,若点A 1的坐标为(3,1),则点C 1的坐标为(7,-2).16.(江山期末)如图,在△ABC 中,∠C =45°,∠BAC =90°,点A 为(3,0),点B 为(0,1),坐标系内有一动点P ,使得以P ,A ,C 为顶点的三角形和△ABC 全等,则P 点坐标为(1,3+1)或(23,-1)或(23+1,3-1). 三.解答题(共46分)17.(6分)如图是中百商场的各个柜台分布平面示意图,请建立合适的直角坐标系,标出各个柜台的坐标.解:本题为开放题,答案不唯一,如以食品柜为原点,所在的横线为x 轴,所在的竖线为y 轴,则食品柜的坐标为(0,0),钟表柜的坐标为(2,0),五金柜的坐标为(1,2),文具柜的坐标为(2,1).画图略.18.(8分)(绍兴五校联考期末)如图,有8×8的正方形网格,按要求操作并计算.(1)在8×8的正方形网格中建立平面直角坐标系,使点A 的坐标为(2,4),点B 的坐标为(4,2);(2)将点A 向下平移5个单位,再关于y 轴对称得到点C ,画出三角形ABC ,并求其面积.解:(1)如图所示.(2)如图所示,△ABC 的面积为5×6-6×3÷2-4×5÷2-2×2÷2=9.19.(10分)已知点A (2a -b ,5+a ),B (2b -1,-a +b ).(1)若点A ,B 关于x 轴对称,求a ,b 的值; (2)若A ,B 关于y 轴对称,求(4a +b )2 017的值. 解:(1)∵点A ,B 关于x 轴对称,∴⎩⎪⎨⎪⎧2a -b =2b -1,5+a =-(-a +b ). 解得⎩⎪⎨⎪⎧a =-8,b =-5.(2)∵A ,B 关于y 轴对称,∴⎩⎪⎨⎪⎧2a -b =-(2b -1),5+a =-a +b. 解得⎩⎪⎨⎪⎧a =-1,b =3.∴(4a +b )2 017=[4×(-1)+3]2 017=-1.20.(10分)如图,已知A (0,1),B (2,0),C (4,3).(1)求△ABC 的面积;(2)设点P 在坐标轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标.解:(1)S △ABC =3×4-12×2×3-12×2×4-12×1×2=4.(2)P 1(-6,0),P 2(10,0),P 3(0,5),P 4(0,-3).21.(12分)在平面直角坐标系中,设单位长度为1 cm ,整数点P 从原点O 出发,速度为1 cm /s ,且点P 只能向上或向右运动,请回答下列问题.(1)填表: P 从O 点出 发的时间P 点可能到的位 置(整数点的坐标) 可得到整数 点的个数1秒 (0,1).(1,0) 2 2秒 (0,2).(1,1).(2,0) 3 3秒(0,3).(1,2). (2,1).(3,0)4(3)当点P 从点O 出发多少秒时,可得到整数点(8,5)? (4)当点P 从点O 出发多少秒时,可得到整数点(m ,n )?解:(2)1秒时,得到2个整数点;2秒时,得到3个整数点;3秒时,得到4个整数点,那么12秒时,应得到13个整数点.(3)横坐标为8,需要从原点开始沿x 轴向右移动8秒,纵坐标为5,需再向上移动5秒,所以需要的时间为13秒.(4)横坐标为m ,需要从原点开始沿x 轴向右移动m 秒,纵坐标为n ,需再向上移动n 秒,所以需要的时间为(m +n )秒.。

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》期末综合复习训练(附答案)

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》期末综合复习训练(附答案)

2021-2022学年浙教版八年级数学上册《图形与坐标》期末综合复习训练(附答案)1.将某图形的各顶点的横坐标都减去3,纵坐标保持不变,则该图形()A.沿x轴向右平移3个单位B.沿x轴向左平移3个单位C.沿y轴向上平移3个单位D.沿y轴向下平移3个单位2.已知点P(0,a)在y轴的负半轴上,则点A(﹣a,﹣a+5)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(﹣2,0),N的坐标为(2,0),则在第二象限内的点是()A.A点B.B点C.C点D.D点4.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3B.﹣5C.1或﹣3D.1或﹣55.在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A′(m+3,n﹣4)在第二象限,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标是()A.(﹣4,5)B.(4,﹣5)C.(﹣5,4)D.(5,﹣4)7.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”.例如点(﹣2,﹣1)是点(1,2)的“关联点”.如果一个点和它的“关联点”在同一象限内,那么这一点所在的象限为()A.第一、二象限B.第二、三象限C.第二、四象限D.第一、三象限8.在直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x+3y=7,则满足条件的点有()A.1个B.2个C.3个D.4个9.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”的坐标是(4,1),“兵”的坐标是(﹣2,3),那么“帅”的坐标是.10.点A到x轴的距离是3,到y轴的距离是1,且点A在x轴下方,则点A的坐标为.11.在平面直角坐标系中,点P(m,n)在第二象限,则点Q(﹣m+1,﹣﹣n)在第象限.12.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.13.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.14.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是.15.如图是一组密码的一部分,为了保密,许多情况下会采用不同的密码,请你运用所学知识找到破译的“密钥”.目前已破译出“守初心”的对应口令是“担使命”.根据你发现的“密钥”,破译出“找差距”的对应口令是.16.如图,把图中的圆A经过平移得到圆O(如图),如果左图⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为.17.在平面直角坐标系中:(1)若点M(m﹣6,2m+3)到两坐标轴的距离相等,求M的坐标;(2)若点M(m﹣6,2m+3),点N(5,2),且MN∥y轴,求M的坐标;(3)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求M的坐标.18.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a 为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,求点A1的坐标.(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上.求点M′的坐标.19.如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B 与点B′,点C与点C′分别对应,观察点与点坐标之间的关系,解答下列问题.(1)直接写出点A和点A′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.20.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,回到点O后停止运动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.21.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.参考答案1.解:将某图形的各顶点的横坐标都减去3,纵坐标保持不变,即为将该图形沿x轴向左平移3个单位,故选:B.2.解:∵点P(0,a)在y轴的负半轴上,∴a<0,∴﹣a>0,﹣a+5>5,∴点A(﹣a,﹣a+5)在第一象限.故选:A.3.解:MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内,故选:A.4.解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3解得:a=﹣3,故选:A.5.解:由题意,,解得,∴A(m,n)在第二象限,故选:B.6.解:∵点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标为﹣5,纵坐标为4,∴点P的坐标是(﹣5,4).故选:C.7.解:设点(a,b)的关联点为(﹣b,﹣a),若(a,b)与(﹣b,﹣a)在同一象限,则横纵坐标的乘积的符号必定相同且不能同号,故该点在第二象限或第四象限,故选:C.8.解:∵2x+3y=7,∴x=2,y=1,满足条件的点有1个.故选:A.9.解:如图所示:“帅”的坐标为(0,﹣1).故答案为:(0,﹣1).10.解:∵点A在x轴的下方,∴点A在第三象限或第四象限,∵点A到x轴的距离是3,到y轴的距离是1,∴点A的横坐标为±1,纵坐标为﹣3,∴点A的坐标是(﹣1,﹣3)或(1,﹣3).故答案为:(﹣1,﹣3)或(1,﹣3).11.解:∵点P(m,n)是第二象限的点,∴m<0、n>0,∴﹣m>0,﹣n<0,∴﹣m+1>0,﹣﹣n<0,∴点Q的坐标在第四象限.故答案为:四.12.解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.13.解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).14.解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为:﹣1或5.15.解:由题意可得,“守初心”的对应口令是“担使命”,“守”所对应的字为“担”,是“守”字先向左平移一个单位,再向上平移两个得到的“担”,其他各个字对应也是这样得到的,∴“找差距”后的对应口令是“抓落实”,故答案为:“抓落实”.16.解:由点A的平移规律可知,此题点的移动规律是(x+2,y﹣1),照此规律计算可知P’的坐标为(m+2,n﹣1).故答案为:(m+2,n﹣1)17.解:(1)∵点M(m﹣6,2m+3)到两坐标轴的距离相等,∴|m﹣6|=|2m+3|,当6﹣m=2m+3时,解得m=1,m﹣6=﹣5,2m+3=5,∴点M坐标为(﹣5,5).当6﹣m=﹣2m﹣3时,解得m=﹣9,m﹣6=﹣15,∴点M坐标为(﹣15,﹣15).综上所述,M的坐标为(﹣5,5)或(﹣15,﹣15).(2)∵MN∥y轴,∴m﹣6=5,解得m=11,11﹣6=5,2×11+3=25,∴M的坐标(5,25).(3)∵MN∥x轴,∴b=2,当点M在点N左侧时,a=5﹣3=2,当点M在点N右侧时,a=5+3=8,∴点M坐标为(2,2)或(8,2).18.解(1)因为点A(﹣2,6)的“级关联点”是点A1,所以A1为A1(5,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).19.解:(1)由题意A(0,3),A′(﹣3,0),三角形A′B′C′是由三角形ABC向左平移3个单位,再向下平移3个单位得到.(2)由题意,解得,∴(b﹣a)2=16.20.解:(1)∵a、b满足+|b﹣6|=0,∴a﹣4=0,b﹣6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8﹣6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.21.解:(1)过点C作CD⊥x轴,CE⊥y,垂足分别为D、E.S△ABC=S四边形CDEO﹣S△AEC﹣S△ABO﹣S△BCD=3×4﹣×2×4﹣×1×2﹣×2×3=12﹣4﹣1﹣3=4.(2)设点P的坐标为(x,0),则BP=|x﹣2|.∵△ABP与△ABC的面积相等,∴×1×|x﹣2|=4.解得:x=10或x=﹣6.所以点P的坐标为(10,0)或(﹣6,0).。

浙教版八年级数学上册第4章图形与坐标同步练习(共6套有答案)

浙教版八年级数学上册第4章图形与坐标同步练习(共6套有答案)

浙教版八年级数学上册第4章图形与坐标同步练习(共6套有答案)第4章图形与坐标 4.1 探索确定位置的方法 A组 1.小丽同学向大家介绍自己家的位置,其中表达正确的是(D) A. 距学校300 m处 B. 在学校的西边 C. 在西北方向300 m处 D. 在学校西北方向300 m处2.下表是计算机中的Excel电子表格,计算B2,C2,D2,E2和F2的和,其结果是(B) A B C D E F 1 4 6 2 5 9 3 2 2 3 4 5 6 7 A.28 B.25 C.15 D.10 3.如图所示是象棋棋盘的一部分,若将○位于点(1,-2)上,相○位于点(3,-2)上,则炮○的位置是(C) (第3题) A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2) 4.如图所示是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,120°)的是(B) (第4题) A. 目标A B. 目标C C. 目标E D. 目标F 5.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则(B) A. a=x B. b=y C. a=y D. b=x(第6题) 6.如图,以灯塔A为观测点,小岛B在灯塔A的北偏东45°方向上,距灯塔A 20 km处.若以小岛B为观测点,则灯塔A在小岛B的南偏西45°方向上,距小岛B__20__km处. 7.剧院里5排2号可以用(5,2)表示,则7排4号用(7,4)表示. 8.如图所示是一个楼梯的侧面示意图.(第8题) (1)如果用(0,0)表示点A的位置,用(4,2)来表示点D的位置,那么点C,H又该如何表示呢?(2)按照第(1)题的表示方法,(2,0),(6,4),(8,8)又分别表示哪个点的位置?【解】(1)点C(2,2),H(8,6). (2)(2,0)表示点B,(6,4)表示点F,(8,8)表示点I. B组 9.有一个英文单词的字母顺序对应图中的有序数对(其中第一个数为列数)分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来或者翻译成中文为:BIKE(自行车). (第9题)【解】∵(2,1)对应点B,(2,2)对应点I, (4,2)对应点K,(5,1)对应点E. ∴这个英文单词为BIKE,中文意思为自行车. 10.同学们玩过五子棋吗?它的比赛规则是只要同色5子连成一条直线就算获胜.如图所示是两人玩的一盘棋,若白①的位置是(1,-5),黑❶的位置是(2,-4),现在轮到黑棋走,则黑棋放在(2,0)或(7,-5)的位置,就获得胜利了. (第10题)【解】如解图,当黑棋放在黑❷所在的位置时,就获得胜利了.∵白①的位置是(1,-5),黑❶的位置是(2,-4),∴黑❷的位置分别为(2,0)和(7,-5). (第10题解)11.台风是一种自然灾害,它以台风中心为圆心,在周围数千米范围内形成气旋风暴,有极强的破坏力.根据气象观测,距沿海某城市A 的正南方向220 km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20 km,风力就会减弱一级.该台风中心正以15 km/h 的速度沿北偏东30°方向往C处移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称受台风影响.该城市是否受到该台风的影响?请说明理由. (第11题解) 【解】受到台风的影响.理由如下:如解图,过点A作AC⊥BC于点C. 由题意,得AB=220 km,∠ABC=30°,∴AC=12AB=110 km. ∵110÷20=5.5,∴12-5.5=6.5>4. ∴该城市受到该台风的影响.12.将正偶数按下表所示的方式排成5列:第1列第2列第3列第4列第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 第4行… … 28 26 … 则2018应该排在哪行哪列?【解】本题偶数的排列规律为第1行左边空一列从左往右排,第2行右边空一列从右往左排,第3行同第1行,第4行同第2行,因此可看成每2行为一循环,即8个数为一循环.2018是第1009个偶数,1009÷8=126……1,因此2018是第253行从左往右数的第1个数,即2018在第253行第2列.数学乐园 13.如图①,将射线Ox按逆时针方向旋转β,得到射线Oy,如果P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置.例如,图②中,如果OM=8,∠xOM=110°,那么点M在平面内的位置记为M(8,110°),根据图形,解答下列问题: (1)如图③,如果点N在平面内的位置记为N(6,30°),那么ON=__6__,∠xON=__30°__. (2)如果点A,B在平面内的位置分别记为A(5,30°),B(12,120°),求A,B两点之间的距离. (第13题) (第13题解)【解】(2)根据题意画出A,B的位置,如解图所示.∵点A(5,30°),B(12,120°),∴∠BOx=120°,∠AOx=30°,OA=5,OB =12,∴∠AOB=90°. ∴在Rt△AOB中,AB=122+52=13. 4.2 平面直角坐标系(一) A组 1.如图,在平面直角坐标系中,已知正方形网格的格点A的坐标为(-3,5),则它到x轴的距离是__5__,到y轴的距离是__3__,到原点的距离是__34__.格点B,C的坐标分别为B(1,5),C(4,2).若点D(-3,-4),则它到x轴的距离为__4__,到y轴的距离为__3__,到原点的距离为__5__. (第1题)2.若a<0,则点P(-a,2)应在(A) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.已知点P(0,m)在y轴的正半轴上,则点M(-m,-m-1)在(C) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4.(1)已知点P(3-m,m)在第二象限,则m的取值范围是(C) A. m>0 B. m<0 C. m>3 D. 0<m<3 (2)在平面直角坐标系中,点A在x轴上方,y轴左侧,距离每条坐标轴都是1个单位,则点A的坐标为(C) A. (1,1) B. (-1,-1) C. (-1,1) D. (1,-1) (第4题) (3)在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是(C) A.(-3,300) B.(9,600) C.(7,-500) D.(-2,-800) 5.(1)若点P(2-a,3a+6)到两条坐标轴的距离相等,则点P的坐标为(D) A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或(6,-6) (第5题) (2)如图,在平面直角坐标系中,已知点B,C在x轴上,AB⊥x轴于点B,DA⊥AB.若AD=5,点A 的坐标为(-2,7),则点D的坐标为(C) A.(-2,2) B.(-2,12) C.(3,7) D.(-7,7) (3)已知点A(5,4),B(5,8),则线段AB的位置特征和AB的长度分别是(D) A.与x轴相交,AB=4 B.与y 轴相交,AB=3 C.与x轴平行,AB=3 D.与y轴平行,AB=4 6.在如图所示的平面直角坐标系中,写出点A,B,C,D,E,F的坐标. (第6题) 【解】点A的坐标为(3,2);点B 的坐标为(-3,-2);点C的坐标为(0,2);点D的坐标为(-3,0);点E的坐标为(2,-1);点F的坐标为(-2,1). 7.(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标. (2)已知点A(-3,m),B(n,4),若AB∥x轴,求m 的值,并确定n的取值范围.【解】(1)∵点P(a-1,3a+6)在y 轴上,∴横坐标为0,即a-1=0,∴a=1. ∴点P的坐标为(0,9).(2)∵AB∥x轴,∴点A(-3,m),B(n,4)的纵坐标相等,∴m =4. ∵A,B两点不能重合,∴n 的取值范围是n≠-3. 8.如果|3x -13y+16|+|x+3y-2|=0,那么点P(x,y)在第几象限?点Q(x+1,y-1)在平面直角坐标系的什么位置?【解】由题意,得3x -13y+16=0,x+3y-2=0,解得x=-1,y=1. ∴点P的坐标为(-1,1),在第二象限;点Q的坐标为(0,0),是平面直角坐标系的原点. B组 9.(1)已知P(x,y)是第四象限内的一点,且x2=4,|y|=3,则点P的坐标为(D) A. (2,3) B. (-2,3) C. (-2,-3) D. (2,-3) 【解】∵x2=4,|y|=3,∴x=±2,y=±3. ∵P(x,y)在第四象限,∴x>0,y<0. ∴x=2,y=-3,∴点P(2,-3). (2)以二元一次方程组的解为坐标(x,y),请写出一个二元一次方程组,使它的解在第三象限:x+y=-3,x-y=1(答案不唯一). (3)已知点M23|x|,12x+1在第一、三象限的角平分线上,则x=6或-67.【解】∵点M在第一、三象限的角平分线上,∴23|x|=12x+1,∴x=6或-67. (4)在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.现规定:在一正方形的内部(边界除外)的横、纵坐标均为整数的点称为正方形内部的整点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点……则边长为8的正方形内部的整点个数为__49__. (第9题) 【解】边长为1和2的正方形内部有1个整点,边长为3和4的正方形内部有9个整点,边长为5和6的正方形内部有25个整点,从而推出边长为7和8的正方形内部有49个整点. 10.已知点A(2m+1,m+9)到x轴和y轴的距离相等,求点A的坐标.【解】由题意,得2m +1=m+9或2m+1+m+9=0,解得m=8或-103,∴2m+1=17或-173. ∴点A的坐标为(17,17)或-173,173. 11.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P 的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4……这样依次得到点An(n为正整数). (1)若点A1的坐标为(2,1),则点A3的坐标为(-4,-1),点A2018的坐标为(0,-3). (2)若点A2018的坐标为(-3,2),设点A1(x,y),求x+y的值. (3)设点A1的坐标为(a,b),若点A1,A2,A3,…,An均在y轴的左侧,求a,b的取值范围.【解】(1)∵点A1(2,1),∴点A2(0,-3),∴点A3(-4,-1),∴点A4(-2,3),∴点A5(2,1)…… 由此可知,每4个点为一循环,∴点A4a+1(2,1),A4a+2(0,-3),A4a+3(-4,-1),A4a+4(-2,3)(a为自然数).∵2018=504×4+2,∴点A2018的坐标为(0,-3).(2)∵点A2018的坐标为(-3,2),∴点A2017(-3,-2),∴点A1(-3,-2),∴x +y=-5. (3)∵点A1(a,b),∴点A2(b-1,-a-1), A3(-a-2,-b),A4(-b-1,a+1).∵点A1,A2,A3,…,An均在y轴的左侧,∴a<0,-a-2<0,且b-1<0,-b-1<0,解得-2<a<0,-1<b<1. 数学乐园 12.如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有(C) A.2个B.4个C.6个D.7个导学号:91354023 (第12题) (第12题解)【解】如解图.①以A为直角顶点,可过点A作直线垂直于AB,与坐标轴交于点P1. ②以B为直角顶点,可过点B作直线垂直于AB,与坐标轴交于点P2,P3. ③以P为直角顶点,可以AB为直径画圆,则圆心为AB的中点I,与坐标轴交于点P4,P5,P6(由AI=BI=PI 可得出∠APB为直角).故满足条件的点P共有6个.。

浙教版八年级数学上册同步练习:期末复习四 图形与坐标含答案

浙教版八年级数学上册同步练习:期末复习四  图形与坐标含答案

期末复习四图形与坐标复习目标要求知识与方法了解确定平面上物体位置的方法;与坐标轴对称的两个点的坐标关系;当坐标平面内图形左右平移或上下平移时对应点之间的坐标关系.理解平面直角坐标系的有关概念;求与已知点关于坐标轴对称的点的坐标;求已知点左、右或上、下平移后所得对应点的坐标.运用根据所要表示的正方形等简单图形的需要,建立合适的直角坐标系,写出图形顶点的坐标,用坐标刻画一个简单图形;利用平移后对应点之间的坐标关系,分析已知图形的平移运动.必备知识与防范点一、必备知识1.探索确定位置的方法,平面:①行列法;②方向和距离法;球面:经纬法.2.点P(a,b)关于x轴对称的坐标为____________,关于y轴对称的坐标为____________,关于原点对称的坐标为____________.3.点P(a,b)向右平移3个单位得____________,再向下平移2个单位得____________.4.线段AB两端点A(-1,2),B(4,2),则线段AB可表示为____________.二、防范点1.x轴和y轴统称坐标轴,坐标轴不属于任何象限;2.用几何方法求点的坐标时应注意象限内坐标的特征,考虑坐标的正负.3.图形的轴对称变换可以求线段和的最小值,要能灵活运用.例题精析知识点一探索确定位置的方法例1(1)如图,雷达探测器测得有六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)(2)小明向班级同学介绍自己家的位置,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处【反思】对于(1)主要是角度表示,E(3,300°);对于(2)判断一个物体的方位,应包含参照物、方向、距离,缺一不可.知识点二坐标平面内点的特征例2(1)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-8,-5),白棋④的坐标为(-7,-9),那么黑棋①的坐标应该是____________.【反思】先建立平面直角坐标系,再确定黑棋①的坐标.(2)已知点M(3a-9,1-a),请根据下列条件分别求出a的值或范围.问题①点M向右平移3个单位后落在y轴上;问题②点M向右平移3个单位后与点M关于y轴对称;问题③点M到两坐标轴距离相等;问题④点M到x轴距离为2;问题⑤点M在第三象限.【反思】对于问题③到两坐标轴距离相等,点可能在一、三象限角平分线上或在二、四象限角平分线上;对于问题④到x轴距离为2,纵坐标为±2.知识点三求几何图形点的坐标例3(1)如图所示,点A0(0,0),A1(1,2),A2(2,0),A3(3,-2),A4(4,0),…根据这个规律,探究可得点A2019坐标是____________.【反思】对于(1)的规律型问题,观察图形上点的坐标变化规律.(2)已知边长为2的正方形OABC在直角坐标系中,(如图)OA与y轴的夹角为30°,求点A、点C、点B的坐标.【反思】对于(2),求点B的坐标时,可以用三角形全等来求,也可看作OC平移到AB来求点B的坐标,其中用平移求解比较简单.知识点四坐标平面内的变换例4(1)点M(3,-4)关于x轴的对称点的坐标是____________,关于y轴的对称点的坐标是____________.(2)已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为____________.(3)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为____________.(4)在平面直角坐标系中,线段AB的两个端点是A(-5,1),B(-2,3),平移线段AB 得到线段A1B1,若点A的对应点A1的坐标为(1,2),则点B的对应点B1的坐标为____________.【反思】对于(1)(2),关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.关于原点对称点的坐标特点:横、纵坐标都变相反数.对于(3),点的平移:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.对于(4),点A的平移,点B也这样平移.例5如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为(1,2)、(4,1).(1)线段A1B1是由线段AB经过平移得到的,则点A1的坐标是();(2)线段A2B2是由线段A1B1经过怎样的变换得到的?(3)若点P(a,b)为线段AB上任意一点,经过上述两次变换后得到点P′,写出点P′的坐标.【反思】解题的关键是运用平移变换、轴对称变换的性质.校对练习1.点P(3,4)到x轴的距离为____________,到y轴的距离为____________,到原点的距离为____________.2.已知点A(4,y),B(x,-3).(1)若AB关于原点对称,则x=____________,y=____________;(2)若AB关于x轴对称,则x=____________,y=____________;(3)点A向右平移3个单位,再向上平移2个单位得点B,则xy=____________.3.正方形A1B1C1O,A2B2C2C1…按如图所示的方式放置.点A1,A2…和点C1,C2…分别在直线y=x+1和x轴上,则A4的坐标是____________;Bn的坐标是____________(用含n的代数式表示).4.(益阳中考)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.参考答案【必备知识与防范点】2.(a,-b)(-a,b)(-a,-b)3.(a+3,b)(a+3,b-2)4.(x,2)(-1≤x≤4)【例题精析】例1(1)D(2)D例2(1)(-4,-8)(2)①a=2;②a=2.5;③a=2.5或a=4;④a=-1或a=3;⑤1<a<3例3(1)观察图形可知,点的横坐标依次是0、1、2、3、4、…、n,纵坐标依次是0、2、0、-2、0、2、0、-2、…,四个一循环,2019÷4=504…3,故点A2019坐标是(2019,-2).(2)A(1,),B(-+1,1+),C(-,1).例4(1)(3,4)(-3,-4)(2)-3(3)(-1,-1)(4)(4,4)例5(1)(-4,2);(2)将A1B1关于x轴对称即可得到线段A2B2;(3)P′(a-5,-b).【校内练习】1.4352.(1)-43(2)43(3)-353.(7,8)(2n-1,2n-1)4.(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴∴直线l所表示的一次函数的表达式为y=2x-3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∴2×6-3=9,∴点P3在直线l上.。

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、若点在轴上,则点的坐标为()A. B. C. D.2、点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)3、在平面直角坐标系中,点A的坐标是(– 1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(– 1,– 2)B.(1,2)C.(1,– 2)D.(–2,1)4、有以下四个命题,其中正确的是()A.同位角相等B.0.01是0.1的一个平方根C.若点P (x,y)在坐标轴上,则xy=0D.若a 2>b 2,则a>b5、在平面直角坐标系中,点(-3,)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,点P(2,﹣7)位于()A.第一象限B.第二象限C.第三象限D.第四象限7、如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移()个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8、如果mn<0,且m>0,那么点P(m2, m-n)在( ).A.第一象限B.第二象限C.第三象限D.第四象限9、点P的坐标为(﹣1,2),则点P位于()A.第一象限B.第二象限C.第三象限D.第四象限10、在平面直角坐标系中,点(3,﹣2)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限11、在平面直角坐标系中,把点先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是()A. B. C. D.12、将点A(2,1)向左平移2个单位长度得到点,则点的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)13、平面直角坐标系中,已知点在第四象限,则点关于直线对称的点的坐标是()A. B. C. D.14、在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点的坐标是,则经过第2019次变换后所得的点的坐标是()A. B. C. D.15、在平面直角坐标系中,点P(3,﹣1)关于x轴对称的点的坐标是()A.(﹣3,﹣1)B.(﹣3,1)C.(﹣1,3)D.(3,1)二、填空题(共10题,共计30分)16、P(3,﹣4)到x轴的距离是________.17、将点A向右平移2个单位,再向下平移3个单位,得到点A′(4,5),则点A的坐标是________.18、点P(﹣3,4)到x轴的距离是________.19、如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A 1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.20、已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为________ .21、若点P(a,4﹣a)是第一象限的点,则a的取值范围是________.22、若点M(a﹣3,a+4)在x轴上,则a=________.23、若点在直角坐标系的轴上,则点的坐标为________.24、已知点A(1,-2),若A、B两点关于x轴对称,则B点的坐标为________25、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(________ ,________ )、B(________ ,________ )(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(________ ,________ )、B′(________ ,________ )、C′(________ ,________ ).(3)△ABC的面积为 5 .三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.28、在图中建立适当的直角坐标系表示图中各景点位置.A 狮虎山B 猴山C 珍禽馆D 熊猫馆E 大山F 游乐场G 长廊.29、如图的方格中有25个汉字,如四1表示“天”,请沿着以下路径去寻找你的礼物:(1)一1→三2→二4→四3→五1(2)五3→二1→二3→一5→三4(3)四5→四1→一2→三3→五2.30、已知A(a+b,1),B(﹣2,2a﹣b),若点A,B关于x轴对称,求a,b 的值.参考答案一、单选题(共15题,共计45分)2、A3、C4、C5、C6、D7、D8、A9、B10、D11、A12、A13、C14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

浙教版八年级上册数学第4章 图形与坐标含答案(考试直接用)

浙教版八年级上册数学第4章 图形与坐标含答案(考试直接用)

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、点(3,﹣2)关于x轴的对称点是()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(3,﹣2)2、在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则点P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)3、如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)4、若点(a,b)在第四象限,则()A.a>bB.a≥bC.a<bD.无法判定a,b之间的大小5、二次函数y=ax2+bx+c的图像如图所示,则点Q(a,)在()A.第一象限B.第二象限C.第三象限D.第四象限6、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.57、把△ABC的每一个点横坐标都乘﹣1,得到△A′B′C′,这一变换是()A.位似变换B.旋转变换C.中心对称变换D.轴对称变换8、已知点,,则点与点的关系是()A.关于轴对称B.关于轴对称C.关于直线对称D.关于直线对称9、如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn ,则点P2015的坐标是()A.(1,4)B.(3,0)C.(7,4)D.(5,0)10、点A(-3,4)关于x轴对称的点B的坐标为().A.(6,4)B.(-3,5)C.(-3,-4)D.( 3,-4)11、在平面直角坐标系中,点(-3, 2)在()A.第一象限B.第二象限C.第三象限D.第四象限12、平面直角坐标系中,点M(2,1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限13、若点 P(a,a-2)在第四象限,则a的取值范围是().A.-2<a<0B.0<a<2C.a>2D.a<014、如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P的坐标是()A.(2020,0)B.(3030,0)C.( 3030,)D.(3030,﹣)15、在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”P到y轴的距离为3,则P点的坐标为________.17、在平面直角坐标系中,点与点关于x轴对称,则的值是________.18、在平面直角坐标系中,A、B、C三点的坐标分别为,以这三点为平行四边形的三个顶点,则第四个顶点不可能在第________象限.19、若点P(a-1,4-2a)位于平面直角坐标系的第四象限,则a的取值范围是________.20、如图,在平面直角坐标系中,我们把横、纵坐标都是整数的点为“整点”,已知点的坐标为,点在轴的上方,的面积为,则内部(不含边界)的整点的个数为________.21、如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.22、如图,在平面直角坐标系中,AB平行于x轴,点A的坐标为(4,3),点B 在点A的左侧,AB=a,若点B在第二象限,则a的取值范围是________23、如图,在平面直角坐标系中,△ABC和△A’B’C’是以坐标原点O为位似中心的位似图形,且OB=BB',如果点A(2,3),那么点A'的坐标为________.24、如果点P (m+3,m-2)在x轴上,那么点P的坐标________.25、若点在轴上,则点P的坐标为________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.28、王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y 轴.只知道游乐园D的坐标为(1,﹣2),你能帮她求出其他各景点的坐标吗?29、如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标。

浙教版八年级上册数学第4章 图形与坐标 含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、与点 A(-4,2)关于 y 轴成轴对称的点的坐标是()A.(4,2)B.(-4,-2)C.(-2,-4)D.(4,-2)2、已知点E(x0, yo),点F(x2.y2),点M(x1, y1)是线段EF的中点,则x1=,y1=.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于点A的对称点P1(即P,A,P1三点共线,且PA=P1A),P1关于点B的对称点P2, P2关于点C的对称点P3,…按此规律继续以A,B,C三点为对称点重复前面的操作.依次得到点P4, P5,P 6…,则点P2020的坐标是()A.(4,0)B.(﹣2,2)C.(2,﹣4)D.(﹣4,2)3、如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)4、如图,已知三个顶点的坐标分别为,,.将向右平移个单位,得到,点,,的对应点分别为,,,再将绕点顺时针旋转,得到,点,,的对应点分别为,,,则点的坐标为()A. B. C. D.5、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为( )A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)6、下列各点中,在第三象限的是()A.(2,3)B.(2,﹣1)C.(﹣2,6)D.(﹣1,﹣5)7、平面直角坐标系中,点A(-3,2),,,若∥x轴,则线段的最小值及此时点的坐标分别为()A.6,B.2,C.2,D.3,8、如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)9、下列各点中位于第四象限的点是( )A.(-1,-2)B.(-1,2)C.(2,1)D.(2,-1)10、已知,点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2020的值为()A.0B.1C.-1D.3 202011、如图,已知的顶点,,,若将先沿y轴进行第一次对称变换,所得图形沿x轴进行第二次对称变换,轴对称变换的对称轴遵循y轴、x轴、y轴、x轴…的规律进行,则经过第2018次变换后,顶点A坐标为()A. B. C. D.12、无论m为何值,点A(m-3,5-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限13、下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)14、已知点P(2a+1,a-1)关于原点对称的点在第一象限,则a的取值范围是()A.a< 或a>1B.a<C. <a<1D.a>115、在平面直角坐标系中,将点(x,y)向左平移a个单位长度,再向下平移b个单位长度,则平移后点的坐标是()A.(x+a,y)B.(x+a,y﹣b)C.(x﹣a,y﹣b)D.(x+a,y+b)二、填空题(共10题,共计30分)16、如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若点A的坐标为(﹣2,0),则AB=________,点C的坐标为________.17、如图1.在平面内取一定点O,引一条射线Ox,再取定一个长度单位,那么平面上任一点M的位置可由OM的长度m与∠xOM的度数α确定,有序数对(m,α)称为M点的极坐标,这样健的坐标系称为极坐标系,如图2,在极坐标系下,有一个等边三角形AOB,AB=4,则点B的极坐标为________.18、垂直于y轴的直线上有A和B两点,若A(2,),AB的长为,则点B的坐标为________.19、点P(3,﹣2)到y轴的距离为________个单位.20、已知点和点关于轴对称,则的值为________.21、点和点关于轴对称,则________.22、点P(1,﹣1)关于x轴对称的点的坐标为P′________.23、已知,,,,则________.24、平面直角坐标系中,点A(1,-2)在第________象限.25、如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=________ 时,AC+BC的值最小.三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、连接AB,直线AB与x轴交于点C,与y轴交于点D,平面内有一点E(3,=kx+b,直线BE解析式1),直线BE与x轴交于点F.直线AB的解析式记作y1=mx+t.求:记作y2(1)直线AB的解析式△BCF的面积;(2)当x等于多少时,kx+b>mx+t;当x等于多少时,kx+b<mx+t;当x等于多少时,kx+b=mx+t;(3)在x轴上有一动点H,使得△OBH为等腰三角形,求H的坐标.28、如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?29、观察图形由(1)(2)(3)(4)的变化过程,写出每一步图形中各顶点的坐标是如何变化的,图形是如何变化的.30、如图,这是某市部分简图,已知医院的坐标为(﹣2,﹣2),请建立平面直角坐标系,分别写出其余各地的坐标.参考答案一、单选题(共15题,共计45分)2、B3、D4、D5、B6、D7、D8、C9、D10、B11、B12、A13、C14、B15、C二、填空题(共10题,共计30分)16、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

浙教版八年级上《第4章图形与坐标》习题含答案

第4章图形与坐标4.1探索确定位置的方法01基础题知识点1用有序数对确定平面上物体的位置1.到电影院看电影需要对号入座,“对号入座”的意思是(C)A.只需要找到排号B.只需要找到座位号C.既要找到排号又要找到座位号D.随便找座位2.如图,如果规定行号写在前面,列号写在后面,那么A点表示为(A)A.(1,2)B.(2,1)C.(1,2)或(2,1)D.以上都不对第2题图第3题图3.做课间操时,袁露、李婷、张茜的位置如图所示,李婷对袁露说:“如果我们三人的位置相对于我而言,我的位置用(0,0)表示,张茜的位置用(5,8)表示.”则袁露的位置可表示为(C)A.(4,3)B.(3,4)C.(2,3)D.(3,2)4.剧院里2排5号可以用(2,5)来表示,那么3排7号可以表示为(3,7),(7,4)表示的含义是7排4号,(4,7)表示的含义是4排7号.5.某市中心有3个大型商场,位置如图所示,若甲商场的位置可表示为(B,2),则乙商场的位置可表示为(D,4),丙商场的位置可表示为(G,1).知识点2用方向和距离确定物体的位置6.小明看小丽的方向为北偏东30°,那么小丽看小明的方向是(B)A.东偏北30°B.南偏西30°C.东偏北60°D.南偏西60°7.生态园位于县城东北方向5公里处,如图表示准确的是(B)A BC D8.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,120°)的是(B)A.目标AB.目标CC.目标ED.目标F9.小明家在学校的北偏西40°的方向上,离学校300 m,小华家在学校的南偏西50°的方向上,离学校400 m,小明和小华两家之间的距离是多少?解:小明和小华两家之间的距离是500 m.知识点3用经度、纬度确定物体的位置10.北京时间2016年1月21日01时13分在青海海北州门源县发生6.4级地震,震源深度10千米,能够准确表示这个地点位置的是(D)A.北纬37.68°B.东经101.62°C.海北州门源县D.北纬37.68°,东经101.62°02中档题11.如图,已知棋子“”的位置表示为(-2,3),棋子“”的位置表示为(1,3),则棋子“”的位置表示为(A)A.(3,2)B.(3,1)C.(2,2)D.(-2,2)12.如图为晓莉使用微信与晓红的对话纪录.据图中两个人的对话纪录,若下列有一种走法能从邮局出发走到晓莉家,此走法为(A)A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米13.下图是围棋棋盘的一部分,如果用(0,0)表示A点的位置,用(7,1)表示C点的位置,那么:(1)图中B,D,E三点的位置如何表示?(2)图中(6,5),(4,2)的位置在哪里?请在图中用点F,G表示出来.解:(1)B(2,1),D(5,6),E(1,4).(2)略.14.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同的方法表述点B相对于点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,则B(3,3);方法2,用方向和距离表示,比如:B点位于A点的北偏东45°方向上,距离A点32处.15.如图是小明家和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)商场、学校、公园、停车场分别位于小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400 m,则商场和停车场分别距离小明家多少米?解:(1)学校和公园.(2)商场:北偏西30°;学校:北偏东45°;公园和停车场都是南偏东60°.公园和停车场的方位是相同的.(3)商场距离小明家500 m,停车场距离小明家800 m.03综合题16.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示的数是9,则(7,2)表示的数是23.微课堂4.2平面直角坐标系第1课时平面直角坐标系01基础题知识点1平面直角坐标系1.如图所示,平面直角坐标系的画法正确的是(B)知识点2点的坐标2.(柳州中考)如图,点A(-2,1)到y轴的距离为(C)A.-2B.1C.2D. 53.(嘉兴期末)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(C)A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)4.如图,图中小正方形的边长均为1,以点O为坐标原点,写出图中点A、B、C、D、E、F的坐标.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).知识点3点的坐标特征5.(杭州开发区期末)下列坐标系表示的点在第四象限的是(C)A.(0,-1)B.(1,1)C.(2,-1)D.(-1,2)6.如图,下列各点在阴影区域内的是(A)A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)第6题图第7题图7.如图,点A与B的横坐标(A)A.相同B.相隔3个单位长度C.相隔1个单位长度D.无法确定8.(金华金东区期末)若点P(a,4-a)是第二象限的点,则a必须满足(C)A.a<4 B.a>4C.a<0 D.0<a<49.在直角坐标系中,如果点P(a+3,a+1)在x轴上,那么P点的坐标为(B)A.(0,2)B.(2,0)C.(4,0)D.(0,-4)10.过点M(3,2)且平行于x轴的直线上点的纵坐标是2,过点M(3,2)且平行于y轴的直线上的点的横坐标是3.11.如图,A点、B点的坐标分别是(-2,0)和(2,0).(1)请你在图中描出下列各点:C(0,5),D(4,5),E(-4,-5),F(0,-5);(2)连结AC、CD、DB、BF、FE、EA,并写出图中的任意一组平行线.解:(1)如图所示.(2)如图所示,平行线有AB∥CD∥EF,CE∥DF.02中档题12.(杭州上城区期末)平面直角坐标系内有一点A(a,-a),若a>0,则点A位于(D)A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为(D)A.15 B.7.5C.6 D.314.点P的坐标为(2-a,3a+6),且到两坐标轴的距离相等,则点P的坐标为(D)A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)15.周日,小华做作业时,把老师布置的一个正方形忘了画下来,打电话给小云,小云在电话中答复他:“你可以这样画,正方形ABCD的顶点A,B,C的坐标分别是(1,2),(-2,2),(-2,-1),顶点D的坐标你自己想吧!”那么顶点D的坐标是(1,-1).16.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 016个点的横坐标为45.习题解析17.如图是某公园的平面图(每个方格的边长为100米).(1)写出任意五个景点的坐标;(2)某星期天的上午,苗苗在公园沿(-500,0),(-200,-100),(200,-200),(300,200),(500,0)的路线游玩了半天,请你写出她路上经过的地方.解:(1)湖心亭(-300,200),望春亭(-200,-100),音乐台(0,400),牡丹园(300,200),游乐园(200,-200).(2)西门→望春亭→游乐园→牡丹园→东门.18.(1)已知点P (a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A (-3,m ),B (n ,4),若AB ∥x 轴,求m 的值,并确定n 的范围.解:(1)∵点P 在y 轴上, ∴a -1=0,即a =1.∴3a +6=9.∴点P 的坐标为(0,9). (2)∵A (-3,m ),B (n ,4),且AB ∥x 轴, ∴m =4,n ≠-3.03 综合题 19.(金华期末)在平面直角坐标系xOy 中,有点A (2,1)和点B ,若△AOB 为等腰直角三角形,则点B 的坐标为(1,-2),(-1,2),(3,-1),(1,3),(32,-12)或(12,32).第2课时用坐标系确定点的位置01基础题知识点1建立适当的平面直角坐标系,求点的坐标1.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为(D)A.(2,2)B.(3,2)C.(2,3)D.(2,-3)2.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为(A)A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)3.如图所示,在平面直角坐标系中,四边形MNPO的顶点P的坐标是(3,4),且OM=OP,则顶点M的坐标是(C)A.(3,0)B.(4,0)C.(5,0)D.(6,0)4.小宇在平面直角坐标系中画一个正方形,其中四个顶点到原点的距离相等,其中一个顶点的坐标为(2,2),则在第四象限内的顶点的坐标是(2,-2).5.已知点A、B的坐标分别为(2,0)、(2,4),以A、B、P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:(4,0).6.已知等腰三角形ABC的底边BC=6,腰AB=AC=5,若点C与坐标原点重合,点B在x轴的负半轴上,点A 在x轴的上方,则点A的坐标是(-3,4),点B的坐标是(-6,0).7.(金华金东区期末)已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(-2,-3).画出示意图,然后写出其他各顶点的坐标.解:如图所示:点A的坐标为(-2,-3),则其他各点的坐标是B(4,-3)、C(4,1)、D(-2,1).知识点2建立适当的平面直角坐标系,用坐标表示地理位置8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是(B)A.点AB.点BC.点CD.点D9.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)处破损,请通过建立直角坐标系找到图中C点的位置,并求△ABC的周长.解:略.02中档题10.一个平行四边形的三个顶点的坐标分别是(0,0),(2,0),(1,2),则第四个顶点的坐标为(D)A.(-1,2)B.(1,-2)C.(3,2)D.(1,-2)或(-1,2)或(3,2)11.(赤峰中考)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标是(-2,3).第11题图第12题图12.如图,在平面直角坐标系中,B,C两点的坐标分别为(-3,0)和(7,0),AB=AC=13,则点A的坐标为(2,12).13.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8),(-3,-2)或(3,2).14.已知等腰直角△ABC的斜边两端点的坐标分别为A(-4,0),B(2,0),求直角顶点C的坐标.解:C(-1,3)或C(-1,-3).15.如图是某台阶的一部分,如果建立适当的坐标系,使A点的坐标为(0,0),B点的坐标为(1,1).(1)直接写出C ,D ,E ,F 的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?解:(1)以A 点为原点,水平方向为x 轴,建立平面直角坐标系, 所以C ,D ,E ,F 各点的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5). (2)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.16.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A 坐标为(9,0),请你直接在图中画出该坐标系,并写出其余五点的坐标.解:坐标系如图所示: 各点的坐标为B (5,2),C (-5,2),D (-9,0),E (-5,-2),F (5,-2).03 综合题 17.如图所示,在Rt △ABC 中,∠C =90°,AC =3,BC =4.建立以A 为坐标原点,AB 为x 轴的平面直角坐标系.求B ,C 两点的坐标.解:∵∠C =90°,AC =3,BC =4, ∴AB =AC 2+BC 2=5, 即B 点的坐标为(5,0). 过C 作CD ⊥AB 于D , 则S △ABC =12AC·BC =12AB·CD ,∴CD =AC·BC AB =125,AD =AC 2-CD 2=95.∴C 点坐标为(95,125).4.3坐标平面内图形的轴对称和平移第1课时用坐标表示轴对称01基础题知识点1关于坐标轴对称的点的坐标特征1.点P(-2,3)关于x轴对称的点的坐标是(C)A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)2.如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为(B)A.(-3,-5)B.(3,5)C.(3,-5)D.(5,-3)3.(金华金东区期末)点A(-4,0)与点B(4,0)是(A)A.关于y轴对称B.关于x轴对称C.关于坐标轴都对称D.以上答案都错4.(杭州六校12月月考)已知点A(a,-3),B(4,b)关于y轴对称,则a+b的值为(C)A.1 B.7C.-7 D.-15.将点P(-4,-5)先关于y轴对称得P1,将P1关于x轴对称得P2,则P2的坐标为(A)A.(4,5)B.(-4,5)C.(4,-5)D.(-4,-5)6.(杭州开发区期末)已知点A(m,3)与点B(2,n)关于y轴对称,则m=-2,n=3.知识点2图形的轴对称变换7.(海南中考)如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为(B)A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)8.线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为(D)A.(4,2)B.(-4,2)C.(-4,-2)D.(4,-2)9.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得的三角形与原三角形(B)A.关于x轴对称B.关于y轴对称C.关于原点对称D.无任何对称关系10.(江山期末)已知:如图,在△ABC中,点A(-3,2),B(-1,1).(1)根据上述信息确定平面直角坐标系,并写出点C的坐标;(2)在平面直角坐标系中,作出△ABC关于y轴的对称图形△A1B1C1.解:(1)直角坐标系如图,点C(-1,4).(2)如图所示,△A1B1C1就是所求作的三角形.02中档题11.下列语句:①点A(5,-3)关于x轴对称的点A′的坐标为(-5,-3);②点B(-2,2)关于y轴对称的点B′的坐标为(-2,-2);③若点D在第二、四象限坐标轴夹角的角平分线上,则点D的横坐标与纵坐标相等.其中正确的是(D)A.①B.②C.③D.①②③都不正确12.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2 017的值为(B)A.0 B.-1 C.1 D.(-3)2 01713.(嵊州期末)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是(B)A.A点B.B点C.C点D.D点第13题图第14题图习题解析14.如图,在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2 016的坐标为(A)A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)15.已知在平面直角坐标系中,点A,B的坐标分别为A(-3,4),B(4,-2).(1)求点A,B关于y轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A,B关于x轴的对称点M,N,顺次连结AM,BM,BN,AN,求四边形AMBN的面积.解:(1)根据轴对称的性质,得A(-3,4)关于y轴对称的点的坐标是(3,4);点B(4,-2)关于y轴对称的点的坐标是(-4,-2).(2)根据题意:点M ,N 与点A ,B 关于x 轴对称,可得M (-3,-4),N (4,2).四边形AMBN 的面积为(4+8)×7×12=42.16.在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).作出这个图形关于x 轴对称的图形,并求它的面积和周长.解:作图略,面积为2×12×1×3+3×3=12,周长为2×12+32+4+4=8+210.03 综合题17.如图,在直角坐标系中,已知两点A (0,4),B (8,2),点P 是x 轴上的一点,求PA +PB 的最小值.解:设A 与A′关于x 轴对称,连接A′B 交x 轴于P ,则P 点即为所求,如图. A 点关于x 轴对称的点A′坐标为(0,-4),由勾股定理得:A′B =PA +PB =10,即PA +PB 的最小值为10.第2课时用坐标表示平移01基础题知识点1用坐标表示点的平移1.(杭州六校12月月考)在直角坐标系中,点A(2,1)向右平移2个单位长度后的坐标为(A)A.(4,1)B.(0,1)C.(2,3)D.(2,-1)2.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于(C)A.第一象限B.第二象限C.第三象限D.第四象限3.点(-4,b)沿y轴正方向平移2个单位得到点(a+1,3),则a,b的值分别为(D)A.a=-3,b=3 B.a=-5,b=3C.a=-3,b=1 D.a=-5,b=14.将点P(-2,1)先向左平移1个单位,再向上平移2个单位得到点P′,则点P′的坐标为(-3,3).5.将点P(m+2,2m+4)向右平移若干个单位后得到(4,6),则m的值为1.6.(嘉兴期末)把点A(a+2,a-1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为-1 2.知识点2用坐标表示图形的平移7.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是(B)A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)第7题图第8题图8.(萧山区万向中学月考)如图,与图1中的三角形相比,图2中的三角形发生的变化是(A)A.向左平移了3个单位B.向左平移了1个单位C.向上平移了3个单位D.向上平移了1个单位9.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1<x<5)”表示,按照这样的规定,回答下列问题:(1)怎样表示线段CD上任意一点的坐标?(2)把线段AB向上平移3个单位,画出所得到的线段,线段上任意一点的坐标可以怎样表示?(3)把线段CD向右平移3个单位,画出所得到的线段,线段上任意一点的坐标又可以怎样表示?解:(1)(-1,x)(-1<x<2).(2)如图所示,(x,2)(1<x<5).(3)如图所示,(2,x)(-1<x<2).02中档题10.如图,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后,再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为(C)A.S1>S2B.S1<S2C.S1=S2D.不能确定11.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为(C)图1图2)A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)12.将下图中的△ABC作下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)将△ABC沿y轴正方向平移2个单位得到△A1B1C1,并写出各点的坐标;(2)作△A1B1C1关于x轴对称的△A2B2C2,并写出各点的坐标.解:(1)图略,△ABC的三个顶点的横坐标不变,纵坐标都加2,即A1(-4,10),B1(-6,2),C1(-2,2).(2)图略,△A1B1C1的三个顶点的横坐标不变,纵坐标变为其相反数,即A2(-4,-10),B2(-6,-2),C2(-2,-2).13.如图,已知点A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′,B′,C′的坐标.解:(1)略.(2)A′(2,3),B′(1,0),C′(5,1).03综合题14.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).(1)如果将△ABC向上平移1个单位,再向右平移2个单位,得到△A1B1C1,求A1,B1的坐标;(2)由△ABC得到△A1B1C1的过程中,线段BC扫过的面积为多少.解:(1)A1(2,1),B1(9,2).(2)线段BC扫过的面积为11.章末复习(四)图形与坐标01基础题知识点1确定物体的位置1.下列数据,不能确定物体位置的是(C)A.4号楼-2单位-601室B.新华路25号C.北偏东25°D.东经118°,北纬45°2.如图,点O、M、A、B、C在同一平面内,若规定点A的位置记为(50,20°),点B的位置记为(30,60°),那么图中点C的位置应记为(D)A.(60°,30)B.(110°,34)C.(34,4°)D.(34,110°)第2题图第3题图3.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为(C)A.(6,2)B.(5,3)C.(5,2)D.(2,5)知识点2平面直角坐标系及点的坐标4.(江山期末)已知点P的坐标为(3,-2),则点P到y轴的距离为(A)A.3 B.2 C.1 D.55.(金华金东区期末)如图,小手盖住的点的坐标可能为(D)A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)6.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在(C)A.第一象限B.第二象限C.第三象限D.第四象限7.如图是某战役缴获敌人防御工事坐标地图的碎片,依稀可见:一号暗堡A的坐标为(4,3),五号暗堡B的坐标为(-2,3).另有情报得知敌军指挥部的坐标为(-3,-2).请问你能找到敌军的指挥部吗?解:能.图略.知识点3坐标平面内图形的轴对称和平移8.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为(C )A .(2,9)B .(5,3)C .(1,2)D .(-9,-4)9.已知点P (x ,3-x )关于x 轴对称的点在第三象限,则x 的取值范围是(A )A .x <0B .x <3C .x >3D .0<x <3 10.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4),将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是(A )A .(3,1)B .(-3,-1)C .(1,-3)D .(3,-1)第10题图 第11题图 11.如图所示,在图形B 到图形A 的变化过程中,下列描述正确的是(B )A .向上平移2个单位,向左平移4个单位B .向上平移1个单位,向左平移4个单位C .向上平移2个单位,向左平移5个单位D .向上平移1个单位,向左平移5个单位02 中档题 12.(江山期末)已知点P (3-a ,a -5)在第三象限,则整数a 的值是(A )A .4B .3,4C .4,5D .3,4,5 13.如图,已知A (3,2),B (5,0),E (4,1),则△AOE 的面积为(B )A .5B .2.5C .2D .314.在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出下列定义:若b′=⎩⎨⎧b (a ≥1),-b (a<1),则称点Q 为点P 的限变点,例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5),如果一个点的限变点的坐标是(3,-1),那么这个点的坐标是(C )A .(-1,3)B .(-3,-1)C .(3,-1)D .(3,1) 15.(杭州六校12月月考)已知点A (4,y ),B (x ,-3),若AB ∥x 轴,且线段AB 的长为5,x =9或-1,y =-3.16.如图,平面直角坐标系中有四个点,它们的横、纵坐标均为整数,若在此平面直角坐标系内移动点A ,使得这四个点构成的四边形是轴对称图形,并且点A 的横坐标仍是整数,则移动后点A 的坐标为(-1,1)或_(-2,-2)或_(0,2)或(-2,-3).17.如图,已知单位长度为1的方格中有△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(1,2)、B′(3,5).解:如图所示.03综合题18.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x1 -x2 )2+(y1 -y2 )2.同时,当两点在同一坐标轴上或所在直线平行于x轴、垂直于x轴时,两点间的距离公式可化简成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离;(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离;(3)已知一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.解:(1)∵点A(3,3),B(-2,-1),∴AB=(-2-3)2+(-1-3)2=41,即A,B两点间的距离是41.(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,∴MN=|-2-7|=9,即M,N两点间的距离是9.(3)该三角形为等腰三角形.理由:∵一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),∴AB=5,BC=6,AC=5.∴AB=AC.∴该三角形为等腰三角形.。

(2023年最新)浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2、在平面直角坐标系中,点的坐标为,将点向右平移3个单位长度后得到,则点的坐标是()A. B. C. D.3、如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1, A2, A3,A 4,…,则点A2015的坐标是()A.(﹣2015,﹣2015)B.(﹣504 ,﹣504 )C.(﹣252, 252 ) D.(﹣252 ,﹣252 )4、在平面直角坐标系中,点P(3,-2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限5、如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C.设点A′的坐标为(a,b),则点A的坐标为()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)6、下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)7、平面直角坐标系内有点A(-2,3), B(4,3),则A,B相距( )A.4个单位长度B.5个单位长度C.6个单位长度D.10个单位长度8、在平面直角坐标系中,将点向下平移2个单位长度,得到的点的坐标为()A. B. C. D.9、如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S= t 2(0<t≤3)C.S=t 2(0<t≤3) D.S= t 2-1(0<t≤3)10、与直线的交点在第四象限,则 m的取值范围是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤111、如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是()A.(3,0)B.(﹣1,2)C.(﹣3,0)D.(﹣1,﹣2)12、张宁在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,其它四大景点大致用坐标表示肯定错误的是()A.熊猫馆(1,4)B.猴山(6,1)C.百草园(5,﹣3)D.驼峰(5,﹣2)13、在平面直角坐标系中,点M(3,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限14、下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)15、在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、A到x轴距离为3,到y轴的距离为4,且A点在第三象限,则点A的坐标为________.17、点和点关于轴对称,则的值为________.18、在平面直角坐标系中,点P(2t+8,5﹣t)在y轴上,则与点P关于x轴对称的点的坐标是________.19、如果点P(4,﹣5)和点Q(a,b)关于y轴对称,则a+b=________.20、点P(x,y)在第二象限,且x2=4,|y|=3.则点P的坐标为________.21、平面直角坐标系中,点P(﹣2,4)关于x轴对称的点的坐标为________.22、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:⑴f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);⑵g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=________.=10,则点C 23、已知点A(-2,0),B(3,0),点C在y轴上,且S三角形ABC的坐标为________.24、如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4, -1)上,则“炮”所在的点的坐标是________25、已知平行四边形的三个顶点坐标分别为(-1,0)、(0,2)(2,0),则第四个顶点的坐标为________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、已知P(a+1,2a-1)位于第四象限,求a的取值范围28、如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.29、已知点P(a , b)在第二象限,且|a|=3,|b|=8,求点P的坐标30、如图所示,求出A,B,C,D,E,F,O点的坐标.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、D5、D6、A7、C8、A9、B10、C12、C13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

浙教版八年级上册数学第4章 图形与坐标 含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、将点P(2,3)向右平移3个单位长至点Q,点Q沿y轴折至点M,则( )A.M(﹣5,﹣3)B.M(5,3)C.M(0,3)D.M(﹣5,3)2、在平面直角坐标系中,P点关于原点的对称点,P点关于轴的对称点为,则等于()A.-2B.2C.4D.-43、在坐标平面上有一个轴对称图形,其中A(3,﹣)和B(3,﹣)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,﹣)C.(﹣,﹣9)D.(﹣2,﹣1)4、在平面直角坐标系中,下列的点在第二象限的是()A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)5、已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b的值为()A.1B.5C.6D.46、如图,在直角坐标系中,已知菱形的顶点,.作菱形关于轴的对称图形,再作图形关于点的中心对称图形,则点的对应点的坐标是()A. B. C. D.7、已知点P到x轴的距离为2,到y轴的距离为3,且点P在x轴的上方,则点P的坐标为()A.(2,3)B.(3,2)C.(2,3)或(-2,3)D.(3,2)或(-3,2)8、已知点A与点B关于原点对称,若点A的坐标为(﹣2,3),则点B的坐标是()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)9、已知点A的坐标是(3,-1),则把点A在直角坐标系中先向左平移3个单位,再向上平移2个单位得到点A’的坐标是( )A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)10、在平面直角坐标系中,将点P(﹣2,3)向下平移4个单位得到点P′,则点P′所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限11、如图,在平面直角坐标系中,红包遮住的点的坐标可能是()A. B. C. D.12、点M(m+1,m+3)在y轴上,则M点的坐标为()A.(0,﹣4)B.(4,0)C.(﹣2,0)D.(0,2)13、如图,A、B的坐标为(2,0)、(0,1),若将线段AB平移至则的值为()A.3B.2C.5D.414、坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离是9.若A点在第二象限,则A点坐标为( )A.(-9,3)B.(-3,1)C.(-3,9)D.(-1,3)15、如图,棋盘上若“将”位于(2,﹣2),“象”位于(4,﹣2),则“炮”位于()A.(﹣2,1)B.(﹣1,2)C.(﹣1,1)D.(﹣2,2)二、填空题(共10题,共计30分)16、在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.17、在平面直角坐标系中,点(5,﹣3)所在的象限是________18、若A(x,3)关于y轴的对称点是B(-2,y),则x=________ ,y=________ ,点A关于x轴的对称点的坐标是________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 点 P 在第二象限内,P 到 x 轴的距离是 4 ,到 y 轴的距离是 3 ,那么点 P 的坐标为( A. (−4,3) B. (−3, − 4) C. (−3,4) D. (3, − 4)
)
3. 已知点 P (a − 1,a + 2) 在平面直角坐标系的第二象限内,则 a 的取值范围在数轴上可表示为(阴影部分) ( )
7. 毛小明家的坐标为 (1,2) ,小丽家的坐标为 (−2, − 1) ,则小明家在小丽家的( ) A. 东南方向 B. 东北方向 C. 西南方向 D. 西北方向 8. 如图所示,已知校门的坐标是 (1,1),下列对于实验楼位置的叙述正确的有 ( x实验楼的坐标是 3 y实验楼的坐标是 (3,3) z实验楼的坐标为 (4,4) √ {实验楼在校门的东北方向上,距校门 200 2 m A. 1 个 B. 2 个 C. 3 个 D. 4 个答案
一、选择题 1 2 3 4 5 6 7 8 D C C C B C B B 1. 表示电报大楼的点的坐标为 (−4,0),表示王府井的点的坐标为 (3,2), 可得: 原点是天安门, 所以可得博物馆的点的坐标是 (1, − 1).
7. 二、填空题 9. 祝你成功 ( √ ) √ 10. 1, − 3 解析:∵ 边长为 2 的正三角形的高为 3,点 C 在第四象限, ( √ ) ∴ 点 C 1, − 3 . 11. (−2,3) 解析: 本题考查了平面直角坐标系中点的坐标, ∵“马” 位于点 (2,2), “炮”位于点 (−1,2),∴ 坐标系应是以“帅”所在 的点为原点,所在的直线为坐标轴,以向右为 x 轴的正方向,以向上 为 y 轴的正方向,故“兵”所在位置的坐标为 (−2 ,3). ß ß x = y − 1, x = 1, 12. (1,2) 解析:易得 解得 4 − y = 2 x, y = 2. 所以坐标为 (1,2). 13. (3√ , − 1) 14. ± 6 解析:因为点 M 在第一、三象限的角平分线上, 2 2 1 2 所以 x = x + 1, 3 √2 所以 x = ± 6 三、解答题 15. 如图,
A
B
C
D D. 第四象限
4. 如果 xy > 0,且 x + y < 0,那么点 P (x,y ) 在 ( ) A. 第一象限 B. 第二象限 C. 第三象限
5. 已知点 A,B 的坐标分别是 (2m + n,2),(1,n − m).若点 A 与点 B 关于 y 轴对称,则 m + 2n 的值为 ( ) A. 2 B. 1 C. 0 D. −1 6. 如图,B 处在 A 处的南偏西 45◦ 方向,C 处在 A 处的南偏东 15◦ 方向,C 处在 B 处的北偏 东 80◦ 方向,则 ∠ACB 等于 ( ) ◦ ◦ A. 40 B. 75 C. 85◦ D. 40◦
第 1 页,共 3 页
二、填空题 9. 如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你 运用所学知识找到破译的“钥匙” .目前,已破译出“今天考试”的真实意 思是“努力发挥” .若“今”所处的位置为 (x,y ),则你破译“正做数学” 的真实意思是 .
10. 已知边长为 2 的正三角形 ABC 的顶点 A 与原点重合,点 B 在 x 轴的正半轴上,点 C 在第四象限,则点 C 的 坐标为 . 11. 如图所示,在象棋盘上建立平面直角坐标系,使“马“位于点 (2,2), “炮”位于点 (−1,2),写出“兵”所在位置的坐标 .
12. 已知点 A (x,4 − y ) 与点 B (1 − y ,2x) 关于 y 轴对称,则点 (x,y ) 的坐标是

13. 中国象棋是一个具有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方 形顶点上的一个点,若棋子“帅”对应的数对 (1,0),棋子“象”对应的数对 (3, − 2),则图 . 中棋盘上“卒”对应的数对是 ( ) 2 2 1 2 14. 已知点 M . x , x + 1 在第一、三象限的角平分线上,则 x = 3 2 三、解答题 15. 如图,这是某市场部分简图,请建立适当的平面直角坐标系,分别写出各 地的坐标.
图形与坐标复习 一、选择题 1. 如图是天安门周围的景点分布示意图.若以正东、正北方向为 x 轴、y 轴的正方向建 立坐标系,表示电报大楼的点的坐标为 (−4,0),表示王府井的点的坐标为 (3,2), 则表示博物馆的点的坐标是 ( ) A. (1,0) B. (2,0) C. (1, − 2) D. (1, − 1)
16. 如图x,一只甲虫在 5 × 5 的方格(每一格边长为 1 ) 上沿着网格线运动.它从 A 处出发去看望 B ,C ,D 处的其他甲虫,规定:向上、向右为正,向下、向左 为负,不动记为 0 . 例如:从 A 到 B 记为 A → B (+1, + 3);从 C 到 D 记为 C → D (+1, − 2) (其中第一个数表示左右方向,第二个数表示上下方向). (1) 填空:A → C ,C → B . (2) 若甲虫的行走路线为 A → B → C → A,请计算甲虫走过的总路程. (3) 若 这 只 甲 虫 去 Q 处 的 行 走 路 线 依 次 为:A → M (+3, + 2),M → N (+2, − 1),N → P (−2, + 3),P → Q (0, − 1).请你依次在图y上标出 点 M ,N ,P ,Q 的位置.
第 2 页,共 3 页
17. 如图,已知火车站的坐标为 (2,1),文化宫的坐标为 (−1,2). (1) 请你根据题目条件,画出平面直角坐标系; (2) 写出体育场、市场、超市的坐标.
18. 在平面直角坐标系中,点 P (a − 4,2b + 2),当 a,b 分别满足什么条件时: (1) 点 P 在第一象限? (2) 点 P 在第四象限? (3) 点 P 在 x 轴上? (4) 点 P 在 y 轴上? (5) 点 P 在 x 轴下方? (6) 点 P 在 y 轴左侧? 19. 如图,是小明家和学校所在地的简单地图,已知 OA = 2 cm,OB = 2.5 cm,OP = 4 cm, C 为 OP 的中点,回答下列问题: (1) 图中距小明家距离相同的是哪些地方? (2) 商场、学校、公园、停车场分别在小明家的什么方位? 哪两个地方的方位是相同的? (3) 若学校距离小明家 400 m,则商场和停车场分别距离小明家多少米?
相关文档
最新文档