2010年扬州市中考数学试题及答案
江苏省扬州市中考数学试卷及参考答案【word版】

扬州市初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12 D .122.函数1yx 中自变量x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233xx B .33a a a C .632a a a D .236()a a4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( ) (第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6年龄(岁) 18 19 20 21 22 人数25221则这12名队员年龄的众数、中位数分别是 ( ) A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁7.已知219Ma ,279N a a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
【中考数学12年】江苏省扬州市中考数学试题分类 专题3 方程(组)和不等式(组)

【中考数学12年】江苏省扬州市中考数学试题分类专题3 方程(组)和不等式(组)一、选择题1. (2004年江苏扬州3分)用换元法解方程212x 2x 3x x+-+=()(),则原方程可化为【 】 A .2y 2y 30+-= B .2y 2y 30-+= C .2y 2y 30--= D .2y 2y 30++=3. (2005年江苏扬州大纲卷3分)关于x 的方程2kx 3x 10+-=有实数根,则k 的取值范围是【 】.A .9k 4≤- B .9k k 04≥-≠且 C .49k -≥ D .0k 49k ≠->且 【答案】C 。
【考点】一元二次方程根的判别式,分类思想的应用。
4. (2005年江苏扬州大纲卷3分)若方程()()6m1x 1x 1x 1-=+--有增根,则它的增根是【 】.A .0B .1C .-1D .1和-15. (2007年江苏扬州3分)不等式组x 2x 1<⎧⎨>-⎩的解集为【 】A.x 1>-B.x 2<C.1x 2-<<D.x 1<-【答案】C 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,不等式组x 2x 1<⎧⎨>-⎩的解集为1x 2-<<。
故选C 。
二、填空题1. (2003年江苏扬州3分)x=-2是方程2x k 1=0+-的根,则k= ▲3. (2005年江苏扬州大纲卷3分)用换元法解方程213(x )3x 60x x--+-=时,若设1x y x-=,则原方程变形为关于y 的方程是 ▲ 。
4. (2006年江苏扬州4分)方程2x 4x=0-的解为 ▲ . 【答案】12x =0x =4,。
【考点】因式分解法解一元二次方程。
【分析】应用因式分解解方程:()212x 4x=0x x 4=0x=0x 4=0x =0x =4-⇒-⇒-⇒,,。
2010年扬州中考数学(附参考答案及评分建议)

2010年扬州市中考数学参考答案及评分建议9.410.2.04×10511.x ≠2的一切实数 12.413.y= - 6x14.(4,2) 15.40 16.3 5 17.20π18.3三、解答题(本大题共有10小题,共96分,解答必须写出必要的文字说明,推理步骤或证明过程)19.解:(1)原式--1………………………………………………………………3分 4分 (2)原式=m(m 2-4) ………………………………………………………………2分=m(m+2)(m —2) …………………………………………………………4分20.解:解不等式(1),得2x ≥-………………………………………………………2分 解不等式(2),得x <1…………………………………………………………4分 所以原不等式组的解集为—2≤x <1……………………………………………6分在数轴上表示解集为:…………………………………………………………8分21.解:(1)某校600名初中毕业生体育考试成绩情况的全体…………………………1分50………………………………………………………………………………2分(2)………………………………………5分(3)抽取的学生中,成绩合格的人数共有50—3=47人,所以该校成绩合格以上的人数为4750×600=564人。
………………………………8分176分开始黄蓝黄1白21白2白22.解:(1)1(2)解法一:用树状图分析如下所以,P (两次都摸到白球)=212 = 16……………………………………………………8分 23.解:设每个小组有x 名学生,……………………………………………………1分根据题意,得2402x —2403x=4…………………………………………………………………5分 解这个方程,得x=10…………………………………………………………8分 经检验:x=10是原方程的根…………………………………………………9分 答:每个小组有10名学生。
江苏省2010年中考数学试题(13份含有答案及解析)-6

泰州市二○一○年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(2010江苏泰州,1,3分)3-的倒数为( )A.3-B.31C.3D. 31- 【分析】如果两个数的积为1,那么这两个数互为倒数.所以3-的倒数为31-. 【答案】D【涉及知识点】有理数的有关概念【点评】涉及与有理数有关的概念题型,关键是对概念的理解,“回到定义中去”直接运用概念解题.【推荐指数】★★★★2.(2010江苏泰州,2,3分)下列运算正确的是( )A.623·a a a = B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 【分析】根据幂的运算性质,“同底数幂相乘,底数不变,指数相加”,选项A 不正确;“积的乘方,等于积中各因式乘方的积”,选项C 不正确;“同底数幂相除,底数不变,指数相减”,选项D 也不正确.【答案】B【涉及知识点】幂的运算性质【点评】用幂的运算性质解答问题,只要熟练掌握根据幂的运算性质即可.【推荐指数】★★★3.(2010江苏泰州,3,3分)据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( )A.810305.4⨯亩B. 610305.4⨯亩C. 71005.43⨯亩D. 710305.4⨯亩【分析】43050000可表示为4.305×10000000,100000=107,因此43050000=4.305×107.【答案】D【涉及知识点】科学记数法【点评】把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法.科学记数法是每年中考试卷中的必考问题,应掌握:⑴表达形式为:,101(10<≤⨯a a n n 表示小数点移动的位数).科学记数法可以表示绝对值大于10的数,也可以表示绝对值小于1的数.⑵当表示绝对值大于10的数时应注意:小数点向左移到第一位数字后,看小数点移动了几位,n 的值就是几,表达式中的n 是应为正整数.⑶当表示绝对值小于1的数时应注意:小数点向右移到第一位不为零的数后,看小数点移动了几位,n 的值就是几,表达式中的n 应为负整数.【推荐指数】★★★★★4.(2010江苏泰州,4,3分)下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.【分析】选项A 、B 、D 的主视图都是矩形,只有选项C 的主视图是三角形与其它三个几何体的主视图不同.【答案】C【涉及知识点】三视图【点评】由立体图形到视图的过程,通常称为读图.要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.当然,平时学习中知识的积累也很重要.【推荐指数】★★★★5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( ) A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 【分析】选项A 反比例函数,其增减性要有前提条件,即在“各个象限内”,不能笼统地进行描述,应舍去;B 是一次函数,系数小于零,所以y 随x 增大而减小,舍去,选项D 中的二次函数开口向上,在对称轴的左侧(0)x <,y 随x 增大而减小,舍去.故选C .【答案】C【涉及知识点】一次函数、反比例函数、二次函数的增减性【点评】关于函数的增减性,对于一次函数而言,由系数k 即可确定,二次函数要由开口方向与对称轴来确定,而反比例函数,特别要注意“在每一个象限”这一限制条件.【推荐指数】★★★★6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个【分析】正多边形都是轴对称图形,对于正偶数边形,即是轴对称图形又是中心对称图形,①正确;对足球迷健康状况调查样本不具有代表性,②不正确;通过解答,③也是正确的;如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,④不正确.【答案】B【涉及知识点】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理【点评】选择题中的判断正误题,往往是多个数学知识点组合在一起,在判断时,一是注意其表达的语言方式,二是注意漏解的情况.【推荐指数】★★★7.(2010江苏泰州,7,3分)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A.0种B. 1种C. 2种D. 3种【分析】⑴假设以27cm 为一边,把45cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303627x y ==①或24303627x y==②(注:27cm 不可能是最小边),由①解得x=18,y=22.5,符合题意;由②解得x =1085,y =1625,x + y =1085+1625=2705=54>45,不合题意,舍去.⑵假设以45cm 为一边,把27cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303645x y ==(注:只能是45是最大边),解得x =30,y =752,x + y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.【答案】B【涉及知识点】相似三角形的判定【点评】在判定三角形相似,未明确对应关系时,特别注意不要忘了分类,再根据不同的对应关系分别计算要求的线段.【推荐指数】★★★★8.(2010江苏泰州,8,3分)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定【分析】可用特殊值法或差值法.特殊值法:取m =15,分别代入得P =6,Q =217,故P <Q ;差值法:P -Q =27811515m m m ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=21m m -+-=21324m ⎛⎫--- ⎪⎝⎭<0,故P <Q .【答案】C【涉及知识点】代数式的大小比较【点评】代数式的大小比交,最常用的方法就是特殊值法、差值法及商值法,在填空题及选择题中,用特殊值法是最简捷的,要注意字母所取值必满足条件.【推荐指数】★★★第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2010江苏泰州,9,3分)数据-1,0,2,-1,3的众数为 .【分析】众数是指一组数据中出现次数最多的那个数,因为这组数据中-1出现的次数最多,所以这组数据的众数为-1.【答案】-1【涉及知识点】众数的概念【点评】平均数、中位数、众数概念是中考试题中的基本题型,只要掌握它们的概念,对照概念即可求出结果.要注意的是,求中位数时要先按大小顺序排列,另外,一组数据的平均数、中位数只有一个,而众数可能多于一个或者没有.【推荐指数】★★10.(2010江苏泰州,10,3分)不等式642-<x x 的解集为 .【分析】移项得246x x -<-、合并同类项得26x -<-、系数化为1,得x >3.【答案】x >3【涉及知识点】一元一次不等式的解法【点评】一元一次不等式的解法步骤与一元一次方程的解法相似,只是在不等式两边乘或除以同一个负数时,不等号的方向要改变.【推荐指数】★★★★11.(2010江苏泰州,11,3分)等腰△ABC 的两边长分别为2和5,则第三边长为 .【分析】等腰三角形有两条边相等,所以这个等腰三角形的三边长可以是2、2、5或2、5、5这两种情况,但2+2<5,不满足三角形三边关系定理,故舍去,其第三边长只能为5.【答案】5【涉及知识点】等腰三角形 三角形三边关系【点评】在计算等腰三角形的有关边长时,往往只注意分情况求边长,而忘了等腰三角形的三边长仍然需要满足三角形的三边关系定理,在解决此类问题时,千万不能顾此失彼.【推荐指数】★★★★★12.(2010江苏泰州,12,3分)已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π).【分析】n °圆心角的弧长公式是: 180n R l π=.所以只要将n =120,R =15代入即可. 【答案】10π【涉及知识点】弧长计算公式【点评】圆周长公式为:C=2R π;所以n °圆心角的弧长公式即为: 180n R l π=.在计算弧长时只需将n 、R 分别代入.有时计算不规则图形时,要把不规则图形的问题转化为规则图形的问题.【推荐指数】★★★★★13.(2010江苏泰州,13,3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .【分析】观察图象可知,直线在x 轴上方即0 y 时,x 的取值在-2的左侧,所以x 的取值范围是x <-2.【答案】x <-2【涉及知识点】一次函数与二元一次方程的关系【点评】二元一次方程转化为用含一个未知数的代数式表示另一个未知数,即得一次函数,在直角坐标系中画出其图象即可直观地看出当自变量取何值时,函值y 的值是大于0、等于0、还是小于0,这也是数形结合思想方法的简单运用.【推荐指数】★★★★★14.(2010江苏泰州,14,3分)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【分析】由题意在平面直角坐标系中标出点A 、点B ,要使以A 、B 、P 为顶点的三角形与△ABO 全等,因AB 是公共边,所以∠PBA 或∠PAB 为直角,且PA 或PB 等于2,由此可标出P 1(4,0),再由对称、翻折等图形的变化可求得满足条件的点P 有4个.【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)【涉及知识点】平面直角坐标系 全等三角形的判定【点评】将全等三角形的判定置于平面直角坐标系中,只要画出图形,根据全等三角形的判定,确定其它的边的位置及大小,即可很方便地求出其坐标.【推荐指数】★★★★★15.(2010江苏泰州,15,3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 .【分析】由正方体的展开图可知:1与3相对;2与6相对;4与5相对.这样抛掷这个正方体,点数朝上共有6种等可能的结果,其中朝上一面是6或3时恰好等于朝下一面所标数字的3倍,所以其概率是26即13. 【答案】13【涉及知识点】求简单事件发生的概率.【点评】简单的一步试验事件发生的概率等于事件包含的结果数k 除以所有等可能出现的结果数n ,k P n=.本题就是用这个公式得出方程从而求出n 的值.概率是研究随机现象规律的学科,是新课程增加的内容之一,在中考中作为重要的考点.近年来,概率题不只以“投骰子”和 “扑克牌”为背景,更多的是以生活实际、游戏和新课程核心内容为背景,成为中考试题中一道亮丽的风景..【推荐指数】★★★★★16.(2010江苏泰州,16,3分)如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.【分析】由图形可直观地得到⊙B 应向左平移4个或6个单位长度,即可与⊙A 内切.【答案】4或6【涉及知识点】两圆内切的概念【点评】注意⊙B 向左移动与⊙A 慢慢靠近再渐渐远去的过程,就不会出现漏解的情况.【推荐指数】★★★17. (2010江苏泰州,17,3分)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: .【分析】先看等式左边,①式是32-1,②式是52-1,③式是72-1…所以第n 个等式左边应是()2211n +-;再看等式右边,①式是24⨯,②式是46⨯,③式是68⨯,所以第n 个等式右边应是2(22)n n +.【答案】())22(21122+=-+n n n 【涉及知识点】规律归纳猜想【点评】规律性猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.如果实在有困难,还可在平面直角坐标系中描点,根据图像猜测其蕴含的规律.【推荐指数】★★★★18.(2010江苏泰州,18,3分)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .【分析】由题意易得AB 所对的圆心角为90°,CD 所对的圆心角为60°,连结AD ,则锐角α=∠1+∠2,而∠1与∠2分别是CD 和AB 所对的圆周角,所以∠1+∠2=12(90°+60°).【答案】75°【涉及知识点】圆周角的性质【点评】解决圆中角度计算问题关键是掌握圆心角和圆周角之间的关系,利用同弧和等弧之间的关系进行转化.另外,往往添加能构成直径上的圆周角的辅助线,以便利用直径所对的圆周角是直角这个条件进行计算和证明.【推荐指数】★★★三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏泰州,19⑴,8分)计算: (1)12)21(30tan 3)21(01+-+︒---;【分析】根据零指数幂与负整指数幂即:a 0=1(a ≠0)、pp a a 1=-(a ≠0)可得1111()212--=⎛⎫- ⎪⎝⎭=-2、0(12)-=1,由特殊锐角三角函数值可知03tan 303=,再化简二次根式2122323=⨯=.【答案】原式=3231233--⨯++=23123--++=13-+.【涉及知识点】实数的混合运算 零指数幂与负整指数幂 特殊锐角三角函数值 二次根式的化简【点评】实数的混合运算首先注意运算顺序,其次运算律的灵活运用,最后是掌握幂的运算性质、特殊锐角三角函数值、二次根式的化简等知识点.【推荐指数】★★★(2010江苏泰州,19⑵,8分)(2))212(112aa a a a a +-+÷--. 【分析】先对括号内的两个分式通分,最简公分母是a (a +2),再做除法,最后做加减.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+. 【涉及知识点】分式的加减乘除混合运算【点评】分式的混合运算,要牢记运算法则和运算顺序,并能灵活应用,分式的运算结果应是最简分式或整式.这里要强调一下,在进行分式通分后,根据分式加减法法则进行分式的加减运算,是分母不变,把分子相加减,有些同学生容易受解分式方程去分母这一步的影响,同时把分母去掉了,要引起重视,不能相混淆.【推荐指数】★★★★20.(2010江苏泰州,20,8分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .由⑴、⑵可得:线段EF 与线段BD 的关系为【分析】(1)作∠ABC 的平分线BD 交AC 于点D :①用圆规在BA 、BC 边上分别截取等长的两线段BG 、BH .②分别以点G 、点H 为圆心,以相同半径画弧,两弧交点为O .③连结BO 并延长交AC 于点D .(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F :①分别以点A 和点B 为圆心,以大于21AB 的长为半径作弧,两弧相交于点M 和点N ;②作直线MN .分别交AB 于点E ,交BC 于点F .由作图可证得四边形EBFD 是菱形,所以EF 与BD 互相垂直平分.【答案】⑴、⑵题作图如下:由作图可知线段EF 与线段BD 的关系为:互相垂直平分..【涉及知识点】尺规作图作角的平分线作线段的垂直平分线【点评】中考需要掌握的尺规作图部分有如下的要求:①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.③探索如何过一点、两点和不在同一直线上的三点作圆.④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).我们在掌握这些方法的基础上,还应该会解一些新颖的作图题,进一步培养形象思维能力.【推荐指数】★★★★21.(2010江苏泰州,21,8分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.【分析】求两步(或超过两步)事件概率的题目是中考命题的重点,其计算方法有两种,一种列表法,另一种是画树状图法.用利表法或画树状图法计算两步试验的随机事件的概率时,应把两步试验的所有可能的情况表示出来,从而计算随机事件的概率.【答案】根据题意列表(或画树状图)如下:由列表(或树状图)可知:()2163==和为偶数P ,()2163==和为奇数P . 所以这个方法是公平的.【涉及知识点】利用事件发生的概率判断游戏的公平性【点评】判断事件是否公平,要先用树状图或列表法求出双方获胜的概率,看游戏的规则使双方获胜的可能性是否相同,即概率是否相等.这种类型的题目,如果游戏不公平,有时还要求修改游戏规则使游戏变得公平,修改的方法一是看所有可能的结果中,哪些结果占一半【推荐指数】★★★★★22.(2010江苏泰州,22,8分)如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.【分析】(1)要证AC ∥DE ,设法证两个内错角相等,由已知∠EDC =∠CAB ,再由矩形利用两边平行将∠ACD 作为中间量进行转化;(2)可先猜想四边形BCEF 是平行四边形,设法证EF 、BC 与AD 的关系运用EF 、BC 平行且相等可得证.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB ,∴∠DCA =∠EDC ,∴AC ∥DE ;⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°,又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF ,∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【涉及知识点】矩形的性质 平行四边形的判定 全等三角形的判定【点评】从中考试卷来看,平行四边形这一节不会有很复杂的证明题,主要考查平行四边形的性质特征及判别方法综合运用. 掌握这部分内容,首先搞清平行四边形与矩形、菱形、 正方形之间的包含关系.注重把握特殊平行四边形与一般平行四边形的异、同点,才能准确地、灵活地运用.【推荐指数】★★★★★23.(2010江苏泰州,23,10分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?【分析】理解了“每调进100吨绿豆,市场价格就下降1元/千克”,即“每调进1吨绿豆,市场价格就下降1001元/千克”,并比较容易列不等式组了. 【答案】设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.【涉及知识点】一元一次不等式组的应用【点评】本例是不等式组在实际生活中的综合运用,侧重考查如何把生活问题转化为数学问题的能力,建立不等式模型,即“数学建模”. 从近两年的中考题来看,一元一次不等式(组)的实际应用题比以前要有所增加,其呈现的方式通常是与方程、一次函数等知识结合来求解.另外还常常辅以图表来说明有关信息,我们要抓住相等或不等的数量关系,结合图表观察、分析、猜想、归纳从而找到解题的最佳途径.【推荐指数】★★★★24.(2010江苏泰州,24,10分)玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是 ;(2)全国接收直接捐款数和捐物折款数共计约 亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【分析】⑴1-33%-33%-13%-17%=4%,故应填4%;⑵因为中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:15.6÷30%=52亿,应填52亿.⑶由13%×52=6.76亿,可知中华慈善总会所受赠款物的条形高度.⑷小题是一道简单的一元一次方程的应用题,只要抓住总接收的捐款数和和捐物折款数为52亿即可列出方程.【答案】⑴4%;⑵52亿;⑶补全图如下:⑷设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x=45(亿)(52-x)=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元..【涉及知识点】扇形统计图条形统计图【点评】对数据进行整理和分析,要能从统计图中获取信息和数据,并作出合理的判断和预测,有些题目还要求对由数据得到的结论进行合理的质疑.这类题型充分展现了数学的实效性.解决这类题要以生活经验寻求基本的数量关系,要有针对性,要克服光靠图象,不加数学分析的主观臆断.【推荐指数】★★★★★25.(2010江苏泰州,25,10分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【分析】由题意通过作辅助线构造两个共边的直角三角形,再由解直角三角形的知识可求得山坡AB 的长,要使得李强和庞亮同时到达山项,只要将庞亮登到山项的时间算出即可得李强的速度.【答案】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .【涉及知识点】解直角三角形【点评】转化是解直角三解形的关键,解斜三角形一般要通过辅助线把斜三角形转化为几个直角三角形,再解直角三角形.【推荐指数】★★★★★26.(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【分析】当1≤x ≤5时,图象是反比例函数的图象,设解析式将(1,200)代入即可求其解析式;当x >5时,是一次函数的图象,根据从这时起,该厂每月的利润比前一个月增加20万元,可得一次函数解析式.利润少于100万元要分别从反比例函数和一次函数中求对应的月份.【答案】⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x =;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.【涉及知识点】反比例函数、一次函数的性质及应用【点评】本题是一道反比例函数及一次函数有关的图象信息题,巧妙地这两个函数结合在一起,考查了同学们对数学知识的实际应用能力.图象信息题的主要特点是已知条件陷臧在给出的图象中,解决此类问题的关键是读懂图象,从图象中找出解题所需要的相关条件,然后正确求解.【推荐指数】★★★★27.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)。
【2010真题】江苏省扬州数学中考试卷及答案

2010年江苏省扬州市数学试题一、选择题(本题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应的位置上)1.(10·苏·扬州)-5的倒数是A.-5 B.5 C.-15D.152.下列计算正确的是A.x4+x2=x6B.x4-x2=x2C.x4·x2=x8D.(x4) 2=x83.如图,由几个相同的小立方块所搭成的物体的俯视图是()4.下列事件中,必须事件是()A.打开电视,它正在播广告B.掷两枚质地均匀的正方体骰子,点数之和一定大于6C.早晨的太阳从东方升起D.没有水分,种子发芽5.已知⊙O1、⊙O2的半径分别为5cm、8cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系为()A.外离B.相交C.相切D.内含6.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是()A.4 B.5 C.6 D.77.在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个8.电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;……;跳蚤按上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2007与P2010之间的距离为()A.1 B.2 C.3 D.4二、填空题(本题共10个小题,每小题3分,共30分.不需写出解答过程,请把正确答案直接填写在答题卡相应位置上)9.16的算术平方根是__________.10.今年5月1日,上海世界贸易博览会正式对外开放,当日参观人数大约有204 000人.204 000用科学记数法表示为__________.11.在函数y=1x-2中,自变量x的取值范围是__________.12.抛物线y=2x2-bx+3的对称轴是直线x=1,则b的值为__________.13.反比例函数的图象经过点(-2,3),则此反比例函数的关系式是__________.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.15.如图,AB为⊙O直径,点C、D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD=__________.16.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C 落在边AB上的点C′处,则折痕BD的长为__________.17.一个圆锥的底面半径为4cm ,将侧面展开后所得扇形的半径为5cm ,那么这个圆锥的侧面积等于条款_________ cm 2(结果保留).18.如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为__________.三、解答题(本题共10个小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:(-1)2+tan60°-(π+2010)0(2)因式分解:m 2-4m20.(本题满分8分)解不等式组:⎪⎩⎪⎨⎧<--≤-1213)34(2125x x x ,并把它的解集在数轴上表示出来.21.(本题满分8分)某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为,请回答下列问题:(1)在这个问题中,总体是_________________________________________,样本容量是________;(2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)如果成绩在18分以上的为“合格”,请估计该校初中毕业生中体育成绩为“合格”的人数22.(本题满分8分)在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有2个,蓝球有1个.现从中任意摸出一个小球是白球的概率是12. (1)袋子中黄色小球有____________个;(2)如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列表格的方法求两次都摸出白球的概率.23.(本题满分10分)为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?24.(本题满分10分)如图,四边形ABCD 是菱形,点G 是BC 延长线上一点,连接AG ,分别交BD 、CD 于点E 、F ,连接CE .(1)求证:∠DAE =∠DCE ;(2)当AE =2EF 时,判断FG 与EF 有何等量关系?并证明你的结论?25.(本题满分10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:3,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)26.(本题满分10分)如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 交BC 于点D ,DE ⊥AC ,垂足为E .(1)求证:点D 是BC 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)如果⊙O 的直径为9,cos B =13,求DE 的长.27.(本题满分12分)我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB 、CD 分别表示甲、乙两机离玉树机场的距离S (百千米)和所用去的时间t (小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S 的单位定为(百千米)).观察图象回答下列问题:(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?(2)求甲、乙两机各自的S 与t 的函数关系式;(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?28.(本题满分12分)在△ABC 中,∠C =90°,AC =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .(1)求线段AD 的长;(2)若EF ⊥AB ,当点E 在线段AB 上移动时,①求y 与x 的函数关系式(写出自变量x 的取值范围)②当x 取何值时,y 有最大值?并求其最大值;(3)若F 在直角边AC 上(点F 与A 、C 两点均不重合),点E 在斜边AB 上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.。
扬州市2010年初中毕业、升学统一考试o数学试卷解析

绝密 启用前2010年扬州市中考试题数学本试卷分选择题和非选择题两部分,共三大题 小题,共 页,满分 分,考试用时 分钟注意事项:本试卷共 页,包含选择题(第 题 第 题,共 题)、非选择题(第 题 第 题,共 题)两部分。
本卷时间为 分钟。
考试结束后,请将本试卷和答题卡一并交回。
.答题前 考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
.所有的试题都必须在专用的“答题卡”上作答,选择题用 铅笔作答、非选择题在指定位置用 毫米的黑色笔作答,在试卷或草稿纸上答题无效。
.如有作图需要,请用 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,恰有一个选项是符合题目要求的,请将正确选项前的字母代号填涂在答案卡相应的位置上。
) . ( 江苏扬州, , 分)- 的倒数是( ).- . .-15.15【分析】- 的分母可以看作是 ,其倒数是原数的分子、分母颠倒位置,故其倒数是-15.【答案】【涉及知识点】倒数【点评】本题属于基础题,主要考查学生对倒数的概念的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】. ( 江苏扬州, , 分)下列计算正确的是( )- 2 ·【分析】 选项 所以给的各项不是同类项 无法进行合并 选项 同底数幂相乘 底数不变 指数相加 故不正确 选项 根据幂的乘方 底数不变 指数相乘可知正确 【答案】【涉及知识点】整式的运算【点评】本题属于基础题,主要考查学生是否具有基础的运算能力 考查知识点单一,有利于提高本题的信度.【推荐指数】. ( 江苏扬州, , 分)如图 由几个相同小立方块所搭成的物体的俯视图是( )【分析】从上面看 从左至右可以看到三列 第一列一个正方形 第二列一个正方形 第三列两个正方形.【答案】【涉及知识点】三视图【点评】本题属于基础题,主要考查的是画三视图 有利用培养学生的抽象思维能力和空间能力.【推荐指数】 ★. ( 江苏扬州, , 分)下列事件中 必然事件是( ).打开电视 它正在播广告.掷两枚质地均匀的正方体骰子 点数之和一定大于.早晨的太阳从东方升起.没有水分 种子发芽【分析】 属于不确定事件 属于不确定事件 必然事件 不可能事件.【答案】【涉及知识点】概率【点评】本题考查了必然事件的概念 此类问题通常与生活实际结合在一起 所以要培养学生了解一些必要的生活常识.【推荐指数】 ★. ( 江苏扬州, , 分)已知⊙ ,⊙ 的半径分别为 、 ,且它们的圆心距为 则⊙ 和⊙ 的位置关系为( ).外离 .相交 .相切 .内含【分析】两圆的圆心距 而 故两圆的位置关系是相交【答案】【涉及知识点】圆与圆的位置关系【点评】本题主要考查的是与圆有关的位置关系 解决此类问题的关键是抓住两圆的圆心距与两圆半径和或差的关系进行对比.【推荐指数】 ★★. ( 江苏扬州, , 分)一组数据 , , , , 的平均数是 ,则这组数据的中位数是( ). . . .【分析】由于 × 解得 ,所以这组数据的中位数是462【答案】【涉及知识点】统计、平均数、中位数【点评】本题将平均数、中位数这两个知识点有机结合在一起,利用平均数的概念确定未知数的值,然后根据中位数的计算方法,先将数据从小到大进行排列,然后确定中间一个数或两个数的平均数就是这组数据的中位数【推荐指数】 ★★. ( 江苏扬州, , 分)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数是( ). 个 . 个 . 个 . 个【分析】根据中心对称图形的概念,绕某一点旋转 °能与自身重合,则是中心对称图形,等边三角形不是中心对称图形,正方形是中心对称图形,菱形是中心对称图形,等腰梯形不是中心对称图形,故是中心对称图形的只有两个.【答案】【涉及知识点】图形的变换【点评】图形的变换也是中考常考查的知识点之一,解决此类问题时,主要抓住概念,根据概念结合图形的特点进行判断.【推荐指数】 ★. ( 江苏扬州, , 分)电子跳蚤游戏盘是如图所示的△ , , ,如果跳蚤开始时在 边的处 跳蚤第一步从 跳到 边的 第 次落点 处 且 第二步从 跳到 第 次落点 处 且 第三步从 跳到 边的 第 次落点 处 且 跳蚤按上述规则一直跳下去 第 次落点为 为正整数 ,则点 与 之间的距离为( ). . . .【分析】.【答案】【涉及知识点】规律探索【点评】本题主要考查规律探索 通过给出的已知点来归纳出解决问题的方法 难度比较大.【推荐指数】 ★ ★二、填空题(本大题共有 小题,每小题 分,共 分,不需写出解答过程,请把答案直接填写在答题卡相应位置上). ( 江苏扬州, , 分) 的算术平方根是【分析】因为 所以 的算术平方根是 .【答案】【涉及知识点】算术平方根【点评】本题主要考查的是算术平方根的计算 根据一个正数的算术平方根是指它的正的平方根 可求其解.【推荐指数】. ( 江苏扬州, , 分)今年 月 日 上海世界贸易博览会正式对外开放 当日参观人数大约有 人 用科学计数法表示为 【分析】对于绝对值大于 的数 用科学记数法表示时 就是把它写成 × 形式,其中 ≤∣ ∣ 的值为原数的整数位数减 所以 × 【答案】 ×【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成 × n的形式(其中 ≤a< , 为整数,这种计数法称为科学记数法),其方法是( )确定 , 是只有一位整数的数;( )确定 ;当原数的绝对值≥ 时, 为正整数, 等于原数的整数位数减 ;当原数的绝对值< 时, 为负整数, 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】 ★. ( 江苏扬州, , 分)在函数 =- 中,自变量 的取值范围是【分析】由于分式的分母不能为 , - 是分母,因此 - ≠ ,解得 ≠ .【答案】 ≠【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为 ,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】 ★★. ( 江苏扬州, , 分)抛物线 = - + 的对称轴是直线 = ,则 的值为 .【分析】由于-×解得 【答案】【涉及知识点】二次函数的性质【点评】二次函数 = + 的对称轴是 -由此可以看问题转化成方程的问题进行求解.【推荐指数】 ★. ( 江苏扬州, , 分)反比例函数的图象经过点(- , ),则此反比例函数的关系式是 .【分析】设反比例函数的关系式是因为图象经过(- , ) 所以 解得【答案】【涉及知识点】反比例函数【点评】确定反比例函数的关系式时 只需设出反比例函数关系式 然后将一个点的坐标代入 即可确定的 的值.【推荐指数】 ★. ( 江苏扬州, , 分)如图,在平面直角坐标系中,将线段 绕点按逆时针方向旋转 °后,得到线段 ′,则点 ′的坐标为 .【分析】先画出旋转后的图形 观察图形可知 ′的坐标是( , ).【答案】( , )【涉及知识点】旋转 平面直角坐标系【点评】中考对于旋转的考查 往往与平面直角坐标系结合在一起 这样可以拓宽学生的知识面.【推荐指数】 ★★.( 江苏扬州, , 分)如图, 为⊙ 直径,点 、 在⊙ 上,已知∠ = °, ∥ ,则∠ = .【分析】因为 ∥ ,所以∠ =∠ = ° 因为 = 所以∠ =∠ = ° 然后利用三角形的内角和定理可求∠ = °.【答案】 °【涉及知识点】三角形的内角和 平行线【点评】本题属于几何的综合小题目 题目虽然简单 但是考查的知识点比较多 有利于培养学生综合运用所学知识的能力.【推荐指数】 ★★.( 江苏扬州, , 分)如图,在 △ 中,∠ = °, = ,= ,按图中所示方法将△ 沿 折叠,使点 落在边 上的点 ′处,则折痕 的长为 .【分析】由勾股定理可求 通过折叠 有 ˊ= = 故 ˊ= - ˊ= .设 = = 在 △ ˊ中 由勾股定理得 解得 = 在 △ 中 由勾股定理可求 的值【答案】 5【涉及知识点】勾股定理 轴对称【点评】要想确定直角三角形中边的长度 只需利用勾股定理进行求解,本题难度中等,只要细心,很容易拿分.【推荐指数】 ★★★( 江苏扬州, , 分)一个圆锥的底面半径为 ,将侧面展开后所得扇形的半径为 ,那么这个圆锥的侧面积等于 (结果保留).【分析】展开的扇形的弧长就是圆锥的底面周长 圆锥的侧面积就是展开的扇形的面积所以圆锥的侧面积为21× × π× = 【答案】 【涉及知识点】与圆有关的计算 扇形的面积公式【点评】解决此类问题的关键是搞清圆锥的侧面积与侧面展开图之间的关系,本题难度中等,只要细心,很容易拿分.【推荐指数】 ★★( 江苏扬州, , 分)如图,在直角梯形 中,∠ = °, ∥ , = , = , = ,点 是 上一个动点,当 + 的和最小时, 的长为 .【分析】延长 到 ˊ 使 ˊ 连结 ˊ 交 于点 则此时 + 的和最小 由 ∥ 易知△ ˊ∽△ 所以BP AP BC D A =' 即BPBP -=564 解得 =【答案】 【涉及知识点】相似三角形 轴对称【点评】解决此题的关键是确定点 的对应点,确定对应点后 利用相似三角形对应边成比例来确定线段的长 本题难度中等,只要细心,很容易拿分.【推荐指数】 ★★★三、解答题(本题共 个小题,共 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤). ( 江苏扬州, , 分)( )计算: - + °- + ( )因式分解: -【分析】问题 任何一个非零数的零次幂等于 问题 因式分解时 先考虑提公因式法 然后再考虑公式法【答案】( )原式 131-+3( )原式【涉及知识点】实数 因式分解【点评】本题主要考查的是实数的运算 以及因式分解 在进行实数的相关运算时 要掌握以下两点 一是任何一个非零数的零次幂等于 二是任何一次非零数的 次幂都等于这个数的 次幂的倒数 本题难度较小,只要细心,很容易拿分.【推荐指数】★( 江苏扬州, , 分)解不等式组:⎪⎩⎪⎨⎧<--≤-1213)34(2125xxx,并把它的解集在数轴上表示出来.【分析】分别求出不等式组中两个不等式的解集 其公共部分就是不等式组的解集【答案】解不等式( )得 ≥—解不等式( )得 <∴原不等式组的解集为— ≤ <在数轴上表示为【涉及知识点】不等式组【点评】本题难度较小,主要考查不等式组的解法 需要注意的是在数轴上表示不等式组的解集时 有等号用实心点表示 无等号用空心圆圈来表示.【推荐指数】 ★★. ( 江苏扬州, , 分)某学校为了了解 名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在 ~ 这一组的频率为,请回答下列问题:( )在这个问题中,总体是 ,样本容量是 ;( )请补全成绩在 ~ 这一组的频数分布直方图;( )如果成绩在 分以上的为“合格”,请估计该校初中毕业生中体育成绩为“合格”的人数【分析】总体是所要考查的对象的全体 样本容量是所抽取的样本中个体的数目【答案】( )某校 名初中毕业生体育考试成绩情况的全体,( )( )抽取的学生中,成绩合格的人数共有 人所以该校合格以上的人数为5646005047=⨯ 【涉及知识点】统计 频数分布直方图【点评】本题难度较小,主要考查从频数直方图获取信息的能力 题目难度不大 比较容易得分.【推荐指数】 ★★( 江苏扬州, , 分)在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有 个,蓝球有 个.现从中任意摸出一个小球是白球的概率是.( )袋子中黄色小球有 个; ( )如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列 表格的方法求两次都摸出白球的概率.【分析】问题 可根据白球的概率确定袋子中球的总个数 即可求出黄球的个数, ÷21 问题 画表格或树状图时 注意第一次摸出小球后不放回. 【答案】 解法一:用树状图分析如下【点评】本题主要考查的是利用树状图或表格求不确定事件发生的概率,属于基础题 难度不大 细心的话 容易得分.【推荐指数】★★★★. ( 江苏扬州, , 分)为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级( ) 班的 个小组(每个小组人数都相等)制作 面彩旗.后因一个小组另有任务,改由另外两个 小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做 面彩旗.如果每名 学生制作彩旗的面数相等,那么每个小组有多少学生?【分析】本题中的等量关系 原计划每一名学生做彩旗的面数 改变计划后每一名学生做彩旗的面数 .【答案】解:设每个小组有 名学生根据题意,得开白白黄蓝白黄蓝黄蓝白蓝白白白白黄432402240=-xx 解这个方程,得经检验: 是原方程的解答:每个小组有 名学生【涉及知识点】分式方程的应用【点评】本题主要考查的是利用分式方程解决实际问题 解决此类问题的关键是确定题目中的等量关系 容易出错的地方是解分式方程后不进行检验.. ( 江苏扬州, , 分)如图,四边形 是菱形,点 是 延长线上一点,连接 ,分别交 、 于点 、 ,连接 .( )求证:∠ =∠ ;( )当 = 时,判断 与 有何等量关系?并证明你的结论?【分析】问题( ) 可通过证△ ≌△ 来说明∠ ∠ 问题 利用相似三角形对应边成比例来确定线段之间的数量关系【答案】( )证明:∵四边形 是菱形∴∠ ∠ ,∵ 是公共边∴△ ≌△ ( )∴∠ ∠解法一:∵四边形 是菱形∴ ∥ ,∠ ∠∵∠ ∠∴∠ ∠∵∠ ∠∴△ ∽△ ∴EC EGEF EC =∵△ ≌△∴ ∴EC EGEF EA =∵∴∴解法二:∵四边形 是菱形∴ ∥∴△ ∽△ ∴2==EF AEDE BE同理△ ∽△ ∴2==DE BEEA EG∴∴【涉及知识点】相似三角形 全等三角形 菱形【点评】本题属于几何综合题 是中考的必考内容,具有一定的难度 要求学生在掌握基础知识的同时 学会灵活运用.【推荐指数】 ★★★★.( 江苏扬州, , 分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌 .小明在山坡的坡脚 处测得宣传牌底部 的仰角为 °,沿山坡向上走到 处测得宣传牌顶部 的仰角为 °.已知山坡 的坡度 = , = 米, = 米,求这块宣传牌 的高度.(测角器的高度忽略不计,结果精确到 米.参考数据: , )【分析】过点 作 ⊥ 于点 ⊥ 于点 在 △ 中 利用三角函数可求 的长 根据山坡 的坡度可求 与 的长 即可确定 的长 由于 = ,因此△ 是等腰直角三角形 可求 —【答案】解:作 ⊥ 于点 , ⊥ 于点在 △ 中∵ ∠ AE DE ∴ · ∠ 3∵山坡 的坡度 :3,∴ , 35,∴ , 35∵∠ °∴ 35∴ — — 3≈ — × ≈答:这块宣传牌 的高度为 米.【涉及知识点】解直角三角形【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力,很容易上手,容易出错的地方是近似值的取舍.【推荐指数】 ★★★★.( 江苏扬州, , 分)如图,在△ 中, = ,以 为直径的半圆 交 于点 , ⊥ ,垂足为 .( )求证:点 是 的中点;( )判断 与⊙ 的位置关系,并证明你的结论;( )如果⊙ 的直径为 , =,求 的长.【分析】( )连结 利用直径所对的圆周角是直角 来说明 ⊥ 由于△ 是等腰三角形 利用等腰三角形三线合一来说明 是 边上的中线 连结 通过证明 ⊥ 来说明 与⊙ 相切 利用三角函数进行求解【答案】( )证明:连接∵ 为半圆 的直径∴ ⊥∵∴点 是 的中点解:相切连接∵ , ,∴ ∥∵ ⊥∴ ⊥∴ 与⊙ 相切( ) ∵ 为半圆 的直径∴∠在 △ 中BD∵AD∴∵在 △ 中CE∴CD∴【涉及知识点】圆的基本概念 直线与圆的位置关系【点评】本题主要考查的是与圆有关的综合题 在说明两直线与圆的位置关系时 一般情况是相切 通过添加辅助线进行求解,这类问题解决起来有一定的难度 考生在掌握基础知识的同时 必须学会灵活运用.【推荐指数】 ★★★★.( 江苏扬州, , 分)我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预 案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距 千米, 甲、 乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段 、 分别表示甲、乙 乙、 两机离玉树机场的距离 (百千米)和所用去的时间 (小时)之间的函数关系的图象(注: 丙、 为了方便计算,将平面直角坐标系中距离 的单位定为(百千米)).观察图象回答下列问题: ( )乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米? ( )求甲、乙两机各自的 与 的函数关系式; ( )甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?【分析】( )观察图象可知乙机在甲机出发后 小时,才从玉树机场出发 甲机航行 小时行驶 千米 乙航行 小时行驶 千米 据此可求速度 设出一次函数关系式 把图象上两个点的坐标代入即可求函数关系式 联系求出的两个一次函数关系式 通过解方程组求出交点坐标 即可确定乙机飞行的时间及乙飞机离西宁机场的距离.【答案】解:(1)由图像可知乙机在甲机出发后 小时才从玉树机场出发;甲机的速度=5800= 千米每小时,乙机的速度=4800= 千米每小时; ( )设甲机的函数关系式为 甲 ,因图像过点 ( , )和点 ( , )将两点坐标代入可得⎩⎨⎧+==.50,8111b k b 解得⎪⎩⎪⎨⎧==.85811b -k ,得甲机的函数关系为 甲 58- ;设乙机的函数关系式为 乙 ,因图像过点 ( , )和点 ( , )将两点坐标代入可得⎩⎨⎧+=+=.58,02222b k b k 解得⎩⎨⎧==.2222-b k 得乙机的函数关系式为 乙 - ; ( )由⎪⎩⎪⎨⎧-=+-=22858t S t S 解得⎪⎪⎩⎪⎪⎨⎧==932925t S 所以两机相遇时,乙飞机飞行了925小时;乙飞机离西宁机场为 -932 940千米。
江苏省2010年中考数学试题(13份含有答案及解析)-4
江苏省淮安市2010年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。
满分150分。
考试时闻120分钟。
2.第1卷每小题选出答案后,请用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,请用橡皮擦干净后.再选涂其他答案。
答案答在本试题卷上无效。
3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。
答案答在本试题卷上或规定区域以外无效。
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
5.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2010江苏淮安,1,3分)-(-2)的相反数是A.2 B.12C.-12D.-2【分析】一个实数a的相反数为-a,所以首先对-(-2)化简为,-(-2)表示-2 的相反数,所以-(-2)=2,故-(-2)的相反数是-2.【答案】D【涉及知识点】相反数的意义【点评】本题属于基础题,主要考查学生对概念的掌握以及多重符号的化简的知识,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010江苏淮安,2,3分)计算32a a 的结果是A.a6B.a5C.2a3D.a【分析】同底数幂的乘法,底数不变指数相加,所以结果为B.【答案】B【涉及知识点】同底数幂的乘法法则【点评】本题属于基础题,主要考查学生对法则的应用,知识点比较单一.【推荐指数】★3.(2010江苏淮安,3,3分)2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A.0.377×l06 B.3.77×l05C.3.77×l04D.377×103【分析】37.7万可以表示为377000,用a×10n科学记数法表示时,10指数为整数位数减去1,所以377000=3.77×l05.【答案】B【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生对较大数的科学记数法的表示方法,以及“万”、“亿”等单位与0之间的转化,此类问题一般是比较简单的问题.【推荐指数】★★★★4.(2010江苏淮安,4,3分)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A.7 B.8 C.9 D.10【分析】众数是一组数据中出现次数最多的数据,所以次数据中的众数为9.【答案】C【涉及知识点】众数的概念【点评】本题属于基础题,主要考查学生对概念的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】★5.(2010江苏淮安,5,3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是A.3 B.4 C.5 D.6【分析】三角形的内角和为180°,四边形的内角和是360°,而且边数越多,内角和越大,而多边形的外角和是360°与边数无关,所以选择A.【答案】A【涉及知识点】多边形的内角和、外角和【点评】本题主要是常见多边形的内角和与外角和的应用,本题比较简单,但是也可以利用不等式的问题解决.【推荐指数】★★6.(2010江苏淮安,6,3分)如图,圆柱的主视图是【分析】主视图是在正面内得到由前向后观察的视图,所以应选择B.【答案】B【涉及知识点】主视图的概念【点评】本题属于基础题,主要考查学生对概念的理解,掌握好正视图概念是解决此问题的关键.【推荐指数】★★7.(2010江苏淮安,7,3分)下面四个数中与11最接近的数是A.2 B.3 C.4 D.5【分析】由于9<11<16,所以11的平方根应在3和4 之间,又因为3.52=12.25,所以11最接近的数为B.【答案】B【涉及知识点】实数的估算【点评】本题主要考察对实数的估算的知识,解决此类问题的步骤是首先确定所在整数的范围,然后再确定两个整数之间的数的平方,进而确定出其范围.【推荐指数】★★8.(2010江苏淮安,8,3分)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 【分析】从材料可以得出1×2,2×3,3×4,……可以用式子表示,即原式=.()()()1113123012234123991001019899100333⎡⎤⨯⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯⎢⎥⎣⎦=123012234123991001019899100⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯=99×100×101,所以选择C. 【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键. 【推荐指数】★★★★第Ⅱ卷(非选择题 共126分)二、填空题(本大题共有lO 小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9. (2010江苏淮安,9,3分)当x= 时,分式13x -与无意义. 【分析】分式无意义的条件是分母为0,所以x -3=0,即x=3. 【答案】x=3【涉及知识点】分是无意义的条件【点评】本题属于基础题,主要考查学生对分式无意义的条件的考察,考查知识点单一. 【推荐指数】★10.(2010江苏淮安,10,3分)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 .【分析】根据等腰三角形的周长和一腰的长,可以求出底边长为5,所以根据三角形中位线的性质,可知较短的中位线是与腰平行的中位线,所以长度为1.5.【答案】1.5【涉及知识点】三角形的中位线和等腰三角形【点评】本题是结合等腰三角形的知识和中位线的性质的问题,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★11.(2010江苏淮安,11,3分)化简:()()2222x x x+--= .【分析】首先根据完全平方公式可得224444x x x xx++-+-,然后再得88xx=.【答案】8【涉及知识点】分式的约分和完全平方公式【点评】本题属于基础题,主要考查学生的计算能力和对公式的把握程度.【推荐指数】★★12.(2010江苏淮安,12,3分)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为.【分析】由于交点在一次函数上,所以把x=1代入函数的解析式,可得y=3,所以点的坐标为(1,3),设反比例函数的解析式为kyx=,把(1,3)代入可得k=3,所以反比例函数的解析式为3yx =.【答案】B【涉及知识点】反比例函数和一次函数【点评】本题主要考察点在函数图像上的知识和反比例函数解析式的确定方法,属于中等难度的问题.【推荐指数】★★★13.(2010江苏淮安,13,3分)如图,已知点A,B,C在⊙O上,AC∥0B,∠BOC=40°,则∠ABO= .题13图【分析】由于∠BOC和∠BAC都是弧BC所对的圆周角和圆心角,所以可知2∠BAC=∠BOC,所以∠BAC=20°,又因为AC∥0B,所以∠ABO=∠BAC=20°.【答案】20°【涉及知识点】圆周角的性质和平行线的性质【点评】本题是圆周角与平行线知识相结合的问题,属于中等难度的问题,解决此类问题的关键是记忆在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.【推荐指数】★★14.(2010江苏淮安,14,3分)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【分析】根据图上距离:实际距离=比例尺,所以可以得到A、B间的实际距离=4.5×200=900cm=9m.【答案】9【涉及知识点】相似比【点评】本题属于基础问题,主要考察的是比例尺=图上距离:实际距离.【推荐指数】★15.(2010江苏淮安,15,3分)将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【分析】根据弧长公式可以求出圆锥底面周长为14454180ππ⨯=,所以底面半径为422ππ=. 【答案】2【涉及知识点】弧长公式【点评】本题属于中难度的问题,主要是考察对弧长公式的记忆,以及圆锥和扇形之间的关系.【推荐指数】★★★★16.(2010江苏淮安,16,3分)小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)【分析】从题目可以看出总工作量为5x+2,所以该空格可以填写,若每人作6个,就比原计划多8个.【答案】若每人作6个,就比原计划多8个 【涉及知识点】一元一次方程【点评】本题是实际应用型的问题,属于中等难度的问题. 【推荐指数】★ 17.(2010江苏淮安,17,3分)如图,在直角三角形ABC 中,∠ABC=90°,AC=2,BC=3,以点A 为圆心,AB 为半径画弧,交AC 于点D ,则阴影部分的面积是 .题17图 题18图 【分析】首先根据勾股定理求出AB=1,又因为AC=2,所以∠C=30°,然后根据阴影部分的面积等于三角形的面积131322⨯⨯=,减去扇形的面积6013606ππ⋅⋅=,所以阴影部分的面积为326π-. 【答案】326π- 【涉及知识点】扇形的面积公式、勾股定理、直角三角形30°的判定 【点评】本题属于综合型的问题,属于中等偏难的问题. 【推荐指数】★★★★18.(2010江苏淮安,18,3分)已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 . 【分析】根据三角形的面积公式可知当△ACP 面积为6时,高为32cm ,所以当点P 在垂直于BD 距离AC 32cm 的直线上时,所构成的面积均为6,然后再结合相似三角形的面积比,可知概率为:14. 【答案】14【涉及知识点】菱形的性质、相似三角形的性质、概率【点评】本题是概率的知识和相似三角形的知识的综合问题,属于较难的问题. 【推荐指数】★★★三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2010江苏淮安,19,8分)(1)计算:1913-+--;(2)解不等式组30,2(1) 3.x x x -<⎧⎨+≥+⎩【答案】(1)原式=3+1-3=1.(2)30,.2(1)3x x x -<⎧⎨++⎩①≥②解①得:x <3,解②得:x ≥1,所以不等式的解集为:1≤x <3.【点评】本题主要是考察基本运算和不等式的基本解法,题目一般是不难,最主要是书写格式必须要注意.【推荐指数】★★★ 20.(2010江苏淮安,20,8分)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【分析】要证明AE=BD ,所以可以证明△ACE 和△BCD 全等,由于两个三角形中具备AC=BC ,CE=CD 两条边相等,所以只要再具备夹角相等即可. 【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.【涉及知识点】三角形全等的条件【点评】本题是一个简单考察三角形全等条件的证明题,关键是对证明方法的选用.【推荐指数】★★★21.(2010江苏淮安,21,8分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.【分析】在(1)中由于卡片中共有5个数字,而偶数的个数为2个,所以概率为25;(2)中的问题可以列出树形图,共有25中可能,而其中是5的倍数的有5中情况,所以概率为1 5【答案】解:(1)2 5(2)1 5【涉及知识点】概率【点评】本题主要是对概率的求法,此问题属于中等难度的问题.【推荐指数】★★★★22.(2010江苏淮安,22,8分)有A,B,C,D四个城市,人口和面积如下表所示:A城市B城市C城市D城市人口(万人) 300 150 200 100面积(万平方公里) 20 5 10 4(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.【分析】人口密度表示单位面积中人口的数量,所以可以求出人口密度.【答案】解:(1)A城市的人口密度:3001520=(万人/万平方公里);B城市的人口密度:150305=(万人/万平方公里);C城市的人口密度:2002010=(万人/万平方公里);D城市的人口密度:100254=(万人/万平方公里).(2)可以用条形统计图表示:【涉及知识点】统计图【点评】统计图表是中考的必考内容,本题主要考察合理选择统计图表的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★23.(2010江苏淮安,23,10分)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.【分析】可设乙工程队单独完成这项任务需要x天,则可以根据甲工作4天的工作量与甲乙合作6天的工作量的和为整体1解决.【答案】解:设乙工程队独立完成这项工程需要x天,所以1114()(20104)12020x⨯++⨯--=,解得x=12,经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.【涉及知识点】分式方程的应用【点评】本题属于难度比较大的问题,所考察的知识点比较单一,主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通常是以社会生活中的热点问题为背景.【推荐指数】★★★★24.(2010江苏淮安,24,10分)已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.【分析】.【答案】解:(1)【涉及知识点】【点评】.【推荐指数】★★★★★25.(2010江苏淮安,25,10分)某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC 表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.题25图【分析】(1)要求∠D的度数,可以求出CE和CD的长度,进而根据直角三角形30°角的判定方法求出∠D的度数;(2)要求AD的长度,可以根据解直角三角形的正弦值,求出AF,然后再结合勾股定理求出DE,从而求出AD.【答案】解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=23,∴23 BFAB,∵BF=3米,∴AB=92米,∴22935322AF⎛⎫=-=⎪⎝⎭米,∵CD=6米,∠CED=90°,∠D=30°,∴3 cos302DECD==∴33DE=米,∴AE=9322+米.【涉及知识点】解直角三角形、勾股定理、直角三角形的性质、矩形的性质【点评】本题属于综合性的问题,设计的知识点比较多,属于中等偏难的问题.【推荐指数】★★★★26.(2010江苏淮安,26,10分)(1)观察发现如题26(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P 再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD 上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.题26(a)图题26(b)图(2)实践运用如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.题26(c)图题26(d)图(3)拓展延伸如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.【分析】(1)由于等边三角形是极其特殊的三角形,所以根据勾股定理求出CE的长度;(2)首先根据材料提供的方法求出P点的位置,然后再结合圆周角等的性质,求出最短的距离;(3)从(1)(2)可以得出,理由轴对称来解决,找B关于AC对称点E,连DE 延长交AC于P即可.【答案】解:(1)3;(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=22.(3)找B关于AC对称点E,连DE延长交AC于P即可,【涉及知识点】圆周角的性质、勾股定理、对称【点评】本题属于综合性的问题,此类问题设计的知识点比较多,解决起来有点难度.【推荐指数】★★★★★27.(2010江苏淮安,27,12分)红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.题27图【分析】从图像可以看出函数是一次函数,所以可以根据待定系数法求出函数的解析式,然后再根据题意表示出利润和销售价格之间的函数关系.【答案】解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104k b k b ⎧+=⎨+=⎩,解得114k b ⎧=-⎨=⎩,所以函数的解析式为y 2=-x+14.(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.(3)设当销售单价为x 时,产量为y , 则由题意得:W=(x -2)y=(x -2)(0.5x+11) =0.5x 2+10x -22=()2110722x +-(2≤x ≤10) 【涉及知识点】二次函数、一次函数【点评】本题属于综合性的问题,设计的知识点比较多,此类问题是每年中考问题中的必考点.【推荐指数】★★★★★28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A 坐标为(12,0),点B 坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C 坐标是( , ),当点D 运动8.5秒时所在位置的坐标是( , ); (2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S,并指出t 为何值 时,S 最大;(3)点E 在线段AB 上以同样速度由点A 向点B 运动,如题28(b)图,若点E 与点D 同时 出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A .O 为对应顶点的情况):题28(a)图 题28(b)图【分析】(1)若求点的坐标,可以过该点作x 轴的垂线,所以可以借助于平行线等分线段定理解决,求出D 和C 的坐标;(2)此问题是分类得问题,当点D 在不同的边上时,三角形的面积是不同的,然后根据图形之间的关系求出函数解析式,然后根据求最值的问题解决;(3)与(2)一样,只不过借助于三角形相似来解决.【答案】解:(1)C (3,4)、D (9,4)(2)当D 在OA 上运动时,14242S t t =⨯⨯=(0<t <6); 当D 在AB 上运动时,过点O 作OE ⊥AB ,过点C 作CF ⊥AB ,垂足分别为E 和F ,过D 作DM ⊥OA ,过B 作BN ⊥OA ,垂足分别为M 和N ,如图:设D 点运动的时间为t 秒,所以DA=2t -12,BD=22-2t , 又因为C 为OB 的中点, 所以BF 为△BOE 的中位线, 所以12CF OE =, 又因为11822AB OE OA ⋅=⨯, 所以485OE =,所以245CF =, 因为BN ⊥OA ,DM ⊥OA , 所以△ADM ∽△ABN , 所以212108t DM-=,所以8485t DM -=, 又因为△△△△BCD OCDOAB OAD SS S S =--,所以△1184812412812(222)22525OCD t S t -=⨯⨯-⨯⨯-⨯-⨯, 即△2426455OCD t S =-+(6≤t <11), 所以当t=6时,△OCD 面积最大,为△2462642455OCD S ⨯=-+=; 当D 在OB 上运动时,O 、C 、D 在同一直线上,S=0(11≤t ≤16). (3)设当运动t 秒时,△OCD ∽△ADE ,则O CO DA DA E=,即521222tt t=-,所以t=3.5;设当运动t 秒时,△OCD ∽△AED ,则O C O DA E A D=,即522122t t t =-,所以225300t t +-=,所以152654t -+=,252654t --=(舍去),所以当t 为3.5秒或52654-+秒时两三角形相似.【涉及知识点】一次函数的最值、平面直角坐标系、相似三角形【点评】本题是综合性比较强的问题,它巧妙的运用运动的观点,把相似三角形和平面直角坐标系以及一次函数等知识结合起来,属于难度较大的问题.【推荐指数】★★★★★。
2010年江苏省扬州市中考数学试卷(含解析版)
2010年江苏省扬州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1、(2010•扬州)﹣5的倒数是()A、错误!未找到引用源。
B、5C、﹣错误!未找到引用源。
D、﹣52、(2010•扬州)下列计算正确的是()A、x4+x2=x6B、x4﹣x2=x2C、x4•x2=x8D、(x4)2=x83、(2010•扬州)如图,由几个相同的小立方块所搭成的物体的俯视图是()A、B、C、D、4、(2010•扬州)下列事件中,必然事件是()A、打开电视,它正在播广告B、掷两枚质地均匀的正方体骰子,点数之和一定大于6C、早晨的太阳从东方升起D、没有水分,种子发芽5、(2010•扬州)已知⊙O1、⊙O2的半径分别为5cm、8cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系为()A、外离B、相交C、相切D、内含6、(2010•扬州)一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是()A、4B、5C、6D、77、(2010•扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A、1个B、2个C、3个D、4个8、(2010•扬州)电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按上述规则一直跳下去,第n次落点为P n(n 为正整数),则点P2007与P2010之间的距离为()A、1B、2C、3D、4二、填空题(共10小题,每小题3分,满分30分)9、(2010•扬州)16的算术平方根是.10、(2010•扬州)今年5月1日,上海世界贸易博览会正式对外开放,当日参观人数大约有204000人.204000用科学记数法表示为.11、(2010•扬州)在函数y=错误!未找到引用源。
2010年各地中考数学题精选
(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第一次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为( )A .1B .2C .3D .4【答案】C2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得A B C ∆为等腰三角形.....,则点C 的个数是A .6B .7C .8D .9【答案】C(2010湖北襄樊)已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或4【答案】A(2010黑龙江绥化)Rt △ABC 中,∠BAC=90°,AB=AC=2,以AC 为一边,在△ABC 外部作等腰直角三角形 ACD ,则线段BD 的长为 。
【答案】4或(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是边AB 、AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是03第8题A 、15米B 、20米C 、25米D 、30米 (2010四川广安)等腰三角形的两边长为4、9,则它的周长是 A .17 B .17或22 C .20 D .22【答案】D(2010 天津)如图,已知A C F E =,BC D E =,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件, 这个条件可以是 .如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .(2010四川宜宾,13(3),5分)如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分别为E 、F .求证:BF =CE .(第5题图)CB D(第25题)第(13)题ACD BE F【答案】∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△CDE (AAS ),∴BF =CE . (2010青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. ……………………………2分(2)方案(Ⅱ)可行. ……………………………3分证明:在△OPM 和△OPN 中 ⎪⎩⎪⎨⎧===OP OP PN PM OP OM∴△OPM ≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) ……………………………5分 (3)当∠AOB 是直角时,此方案可行. ……………………………6分∵四边形内角和为360°,又若PM ⊥OA,PN ⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°, ∴∠AOB=90°∵若PM ⊥OA,PN ⊥OB,且PM=PN∴OP 为∠AOB 的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB 不为直角时,此方案不可行. …………8分(2010 内蒙古包头)如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇?【答案】解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10A B =厘米,点D 为AB 的中点, ∴5B D =厘米.又∵8P C B C B P B C =-=,厘米, ∴835P C =-=厘米, ∴P C B D =. 又∵A B A C =, ∴B C ∠=∠,∴BPD CQP △≌△. ························································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433B P t ==秒,P∴515443Q C Q v t===厘米/秒. ············································································ (7分)(2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯,解得803x =秒.∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. (12分)2.(2010 湖北孝感)(本题满分10分)[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。
2010江苏省扬州中考试题 解析 任梦送-推荐下载
人.204 000 用科学记数法表示为__________. 2.04×105【解析】考查点:科学记数法。解题思路:科学记数法的一般形式为 a×10n,这里 1≤a<10,n
为整数位数减去 1.204 000==2.04×105。 1
11.(2010 江苏扬州)在函数 y=x-2中,自变量 x 的取值范围是__________. x≠2 【解析 】考查点:函数自变量取值范围,分式有意义的条件。解题思路:函数有意义需要 x-2≠0
处,且 BP3=BP2;……;跳蚤按上述规则一直跳下去,第 n 次落点为 Pn(n 为正整数),则点 P2007
与 P2010 之间的距离为( )
A.1 B.2 C.3
D.4
【解析 】考查点:动点找规律问题。解题思路:经过探究可知当跳蚤跳到第六次时,与开始位置重合, 即 P6 与 P0 重合,P7 与 P1 重合。据此规律可知 P2007 与 P3 重合,P2010 与 P0 重合,原题即求 P3 与 P0 之间的 距离为 3。
1 D.5
D.(x4) 2=x8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年江苏省扬州市中考数 学 试 题一、选择题(本题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应的位置上) 1.-5的倒数是A .-5B .5C .- 15D .152.下列计算正确的是A .x 4+x 2=x 6B .x 4-x 2=x 2C .x 4·x 2=x 8D .(x 4) 2=x 8 3.如图,由几个相同的小立方块所搭成的物体的俯视图是()4.下列事件中,必须事件是()A .打开电视,它正在播广告B .掷两枚质地均匀的正方体骰子,点数之和一定大于6C .早晨的太阳从东方升起D .没有水分,种子发芽5.已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系为() A .外离 B .相交 C .相切 D .内含6.一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是() A .4 B .5 C .6 D .77.在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为() A .1个 B .2个 C .3个 D .4个8.电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一直跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为() A .1 B .2 C .3 D .4二、填空题(本题共10个小题,每小题3分,共30分.不需写出解答过程,请把正确答案直接填写在答题卡相应位置上)9. 16的算术平方根是__________.10.今年5月1日,上海世界贸易博览会正式对外开放,当日参观人数大约有204 000人.204 000用科学记数法表示为__________.1正面 A B CD1 2 -3 3-2 -1 0 12.抛物线y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 13.反比例函数的图象经过点(-2,3),则此反比例函数的关系式是__________.14.如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ′,则点B ′的坐标为__________.15.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠BOC =70°,AD ∥OC ,则∠AOD =__________. 16.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,按图中所示方法将△BCD 沿BD 折叠,使点C落在边AB 上的点C ′处,则折痕BD 的长为__________.17.一个圆锥的底面半径为4cm ,将侧面展开后所得扇形的半径为5cm ,那么这个圆锥的侧面积等于条款_________ cm 2(结果保留).18.如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为__________.三、解答题(本题共10个小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:(-1)2+tan60°-(π+2010)0(2)因式分解:m 2-4m20.(本题满分8分)解不等式组:⎪⎩⎪⎨⎧<--≤-1213)34(2125x x x ,并把它的解集在数轴上表示出来.21.(本题满分8分)某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为,请回答下列问题: (1)在这个问题中,总体是_________________________________________,样本容量是________;(2)请补全成绩在21.5~24.5这一组的频数分布直方图; (3)如果成绩在18分以上的为“合格”,请估计该校初中毕业生中体育成绩为“合格”的人数22.(本题满分8分)在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有2个,蓝球有1个.现从中任意摸出一个小球是白球的概率是12 .(1)袋子中黄色小球有____________个;(2)如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列表格的方法求两次都摸出白球的概率.23.(本题满分10分)为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?24.(本题满分10分)如图,四边形ABCD 是菱形,点G 是BC 延长线上一点,连接AG ,分别交BD 、CD 于点E 、F ,连接CE . (1)求证:∠DAE =∠DCE ;(2)当AE =2EF 时,判断FG 与EF 有何等量关系?并证明你的结论?25.(本题满分10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:3,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)26.(本题满分10分)如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 交BC 于点D ,DE ⊥AC ,垂足为E . (1)求证:点D 是BC 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论; (3)如果⊙O 的直径为9,cos B =13,求DE 的长.27.(本题满分12分)我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB 、CD 分别表示甲、乙两机离玉树机场的距离S (百千米)和所用去的时间t (小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S 的单位定为(百千米)).观察图象回答下列问题:(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?(2)求甲、乙两机各自的S 与t 的函数关系式;(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?28.(本题满分12分)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB 上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在线段AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围)②当x取何值时,y有最大值?并求其最大值;(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.2010年扬州市中考数学参考答案及评分建议一、选择题(本大题共有8小题,每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 选项CDDCBABC二、填空题(本大题共有10小题,每小题3分,共30分) 9.410.2.04×105 11.x ≠2的一切实数 12.413.y= - 6x14.(4,2) 15.4016.3517.20π 18.3三、解答题(本大题共有10小题,共96分,解答必须写出必要的文字说明,推理步骤或证明过程) 19.解:(1)原式=1+3-1………………………………………………………………3分=3………………………………………………………………………4分(2)原式=m(m 2-4) ………………………………………………………………2分 =m(m+2)(m —2) …………………………………………………………4分 20.解:解不等式(1),得2x ≥-………………………………………………………2分 解不等式(2),得x <1…………………………………………………………4分 所以原不等式组的解集为—2≤x <1……………………………………………6分 在数轴上表示解集为:…………………………………………………………8分0-1-2-312321.解:(1)某校600名初中毕业生体育考试成绩情况的全体…………………………1分 50………………………………………………………………………………2分 (2)………………………………………5分(3)抽取的学生中,成绩合格的人数共有50—3=47人,所以该校成绩合格以上的人数为4750×600=564人。
………………………………8分176分开始白1蓝蓝黄白2黄蓝黄白1黄白1白2蓝白1白2白2 (2)解法一:用树状图分析如下 错误!未指定书签。
解法二:用列表法分析如下:白1 白2 黄 蓝 白1 白2白1 黄白1 蓝白1 白2 白1白2 黄白2 蓝白2 黄 白1黄 白2黄 蓝黄 蓝白1蓝 白2蓝 黄蓝…………………6分所以,P (两次都摸到白球)=212 = 16 ……………………………………………………8分23.解:设每个小组有x 名学生,……………………………………………………1分根据题意,得2402x —2403x=4…………………………………………………………………5分 解这个方程,得x=10…………………………………………………………8分经检验:x=10是原方程的根…………………………………………………9分 答:每个小组有10名学生。
……………………………………………………10分 24.证明;(1)∵四边形ABCD 是菱形, ∴∠ADE=∠CDE ,AD=CD ∵DE 是公共边, ∴△ADE ≌△CDE (SAS ) ∴∠DAE=∠DCE (2)FG=3EF 理由如下: 证明: ∵四边形ABCD 是菱形, ∴AD ∥BC , ∴∠DAE=∠G , ∵∠DAE=∠DCE , ∴∠DCE=∠G , ∵∠CEF=∠GEC ∴△ECF ∽△EGC∴EF EC =ECEG∵△ADE ≌△CDE ∴AE=CE∴EF AE =AE EG∵AE=2EF ∴EG=2AE=4EF ∴FG=EG —EF=4EF —EF=3EF25.解:过点B 作BF 垂直于AE ,垂足为点F ,过点B 作BG 垂直 于CE ,垂足为点G 。