湖北省武汉市勤学早2020届元月调考数学模拟试卷(一)(PDF 有答案)
2020年湖北省武汉市九年级元月调考数学模拟试卷(一)(解析版)

2020年湖北省武汉市九年级元月调考数学模拟试卷(一)一、选择题(共10小题,每小题3分,共30分)1.(3分)若一元二次方程x2﹣2kx+1=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1D.22.(3分)二次函数y=﹣2(x﹣3)2﹣2的顶点坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(3,﹣2)D.(3,2)3.(3分)如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A 的坐标为(﹣3,4),则点C的坐标为()A.(﹣3,﹣4)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)4.(3分)掷一枚质地均匀的硬币100次,下列说法正确的是()A.不可能100次正面朝上B.不可能50次正面朝上C.必有50次正面朝上D.可能50次正面朝上5.(3分)如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3C.2D.46.(3分)已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1B.m<﹣2C.m≥0D.m<07.(3分)现有A、B、C三个不透明的盒子,A盒中装有红、黄、蓝球各1个,B盒中装有红、黄球各1个,C盒中装有红、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球,摸出的三个球至少有一个红球的概率是()A.B.C.D.8.(3分)从地面竖直向上先后抛出两个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系式为h=﹣(t﹣3)2+40,若后抛出的小球经过2.5s比先抛出的小球高m,则抛出两个小球的间隔时间是()s.A.1B.1.5C.2D.2.59.(3分)如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+2 10.(3分)已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)某校图书馆的藏书在两年内从5万册增加到7.2万册,设平均每年藏书增长的百分率为x,则依据题意可得方程.12.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为事件.13.(3分)将抛物线y=2x2向上平移2个单位,再向左平移1个单位,得到的抛物线的解析式为.14.(3分)如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC 的度数是.15.(3分)已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n =.16.(3分)如图,定直线l经过圆心O,P是半径OA上一动点,AC⊥l于点C,当半径OA绕着点O旋转时,总有OP=OC,若OA绕点O旋转60°时,P、A两点的运动路径长的比值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣4x﹣3=0.18.(8分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.19.(8分)不透明的袋子中装有3个红球和2个绿球,它们除颜色外无其它差别.(1)随机摸出一个球后,放回并摇匀,再随机摸出一个球,用列表或画树状图的方法求出所有等可能的结果;(2)同时摸出两个球,直接写出“摸出的两个球都是红球”的概率是.20.(8分)如图,由边长为1的小正方形构成的网格中,每个小正方形的顶点叫做格点,△ABC的顶点在格点上.(1)直接写出△ABC的面积为;(2)请用无刻度的直尺画出将CB绕C点顺时针旋转α(α=2∠BAC)角后得到的线段CD,并写出点D的坐标为;(3)若一个多边形各点都不在⊙M外,则称⊙M全覆盖这个5多边形,已知点E(6,5),⊙M全覆盖四边形ABCE,则⊙M的直径最小为.21.(8分)如图,在△ABC中,∠ACB=90°,点O是BC上一点.(1)尺规作图:作⊙O,使⊙O与AC,AB都相切(不写作法与证明,保留作图痕迹);(2)在(1)所作的图中,若⊙O与AB相切于点D,与BC的另一个交点为点E,BE=2,BD=4,求AO的长.22.(10分)如图,用长33米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长15米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,院墙的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若院墙的面积为143平方米,求x的值;(3)若在墙的对面再开一个宽为a(a<3)米的门,且面积S的最大值为165平方米,求a的值.23.(10分)在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为.24.(12分)如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论.2020年湖北省武汉市九年级元月调考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)若一元二次方程x2﹣2kx+1=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1D.2【分析】将x=﹣1代入方程即可求出k的值.【解答】解:将x=﹣1代入方程可得:1+2k+1=0,∴k=﹣1,故选:A.【点评】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.2.(3分)二次函数y=﹣2(x﹣3)2﹣2的顶点坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(3,﹣2)D.(3,2)【分析】因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x﹣3)2﹣2的顶点坐标.【解答】解:∵二次函数y=﹣2(x﹣3)2﹣2是顶点式,∴顶点坐标为(3,﹣2).故选:C.【点评】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.3.(3分)如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A 的坐标为(﹣3,4),则点C的坐标为()A.(﹣3,﹣4)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)【分析】根据平行四边形的对角线互相平分,再由对角线的交点为原点,则点A与点C 的坐标关于原点成中心对称,据此可解.【解答】解:∵四边形ABCD为平行四边形∴OA=OC,且点A与点C关于原点成中心对称∵点A的坐标为(﹣3,4),∴点C的坐标为(3,﹣4)故选:D.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形的相关性质,是解题的关键.4.(3分)掷一枚质地均匀的硬币100次,下列说法正确的是()A.不可能100次正面朝上B.不可能50次正面朝上C.必有50次正面朝上D.可能50次正面朝上【分析】根据概率的意义即可判断.【解答】解:掷一枚质地均匀的硬币100次,此事件是随机事件,因此有可能100次正面朝上,有可能50次正面朝上,故A、B、C错误;故选:D.【点评】本题考查概率的意义,属于基础题型.5.(3分)如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3C.2D.4【分析】如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD 可以求得CD的长度.则BC=2CD.【解答】解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.【点评】本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.(3分)已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1B.m<﹣2C.m≥0D.m<0【分析】因为关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,所以△=4+4m >0,解此不等式即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,∴△=4+4m>0,即m>﹣1.故选:A.【点评】本题考查了一元二次方程根的判别式的应用.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)现有A、B、C三个不透明的盒子,A盒中装有红、黄、蓝球各1个,B盒中装有红、黄球各1个,C盒中装有红、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球,摸出的三个球至少有一个红球的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,摸出的三个球中至少有一个红球的结果有10种,由概率公式即可得出结果.【解答】解:画树形图如下:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,所以摸出的三个球中至少有一个红球的概率为:=;故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.(3分)从地面竖直向上先后抛出两个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系式为h=﹣(t﹣3)2+40,若后抛出的小球经过2.5s比先抛出的小球高m,则抛出两个小球的间隔时间是()s.A.1B.1.5C.2D.2.5【分析】把t=2.5代入h=﹣(t﹣3)2+40,求得h=,当h=﹣=时,解方程即可得到结论.【解答】解:把t=2.5代入h=﹣(t﹣3)2+40,得,h=,当h=﹣=时,即﹣(t﹣3)2+40=,解得:t=4或t=2(不合题意舍去),∴抛出两个小球的间隔时间是4﹣2.5=1.5,故选:B.【点评】此题主要考查了二次函数的应用,正确理解题意是解题关键.9.(3分)如图,在边长为2的正方形ABCD中,以点D为圆心,AD为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S2﹣S1的值为()A.﹣4B.+4C.﹣2D.+2【分析】根据图形得到S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积,根据扇形面积公式计算即可.【解答】解:由图形可知,扇形ADC的面积+半圆BC的面积+阴影部分①的面积﹣正方形ABCD的面积=阴影部分②的面积,∴S2﹣S1=扇形ADC的面积+半圆BC的面积﹣正方形ABCD的面积=+π×12﹣22=﹣4,故选:A.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.10.(3分)已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0【分析】利用直线y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,由根的判别式求出c的值,即可求得直线的解析式.【解答】解:把y=2x代入y=x2﹣c,整理得x2﹣2x﹣c=0,根据题意△=(﹣2)2+4c=0,解得c=﹣1,把x=﹣1代入y=2x与y=x2﹣c得,c=3,把x=2代入y=2x与y=x2﹣c得,c=0,∴当0<c≤3或c=﹣1时,函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,故选:A.【点评】本题主要考查了一次函数和二次函数图象上点坐标特征.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)某校图书馆的藏书在两年内从5万册增加到7.2万册,设平均每年藏书增长的百分率为x,则依据题意可得方程5(1+x)2=7.2.【分析】利用平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增长的百分率为x,根据“某校图书馆的藏书在两年内从5万册增加到7.2万册”,即可得出方程.【解答】解:设平均每年增长的百分率为x;第一年藏书量为:5(1+x);第二年藏书量为:5(1+x)(1+x)=5(1+x)2;依题意,可列方程:5(1+x)2=7.2.故答案为:5(1+x)2=7.2.【点评】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为随机事件.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为随机事件,故答案为:随机.【点评】此题主要考查了随机事件,关键是掌握随机事件定义.在一定条件下,可能发生也可能不发生的事件,称为随机事件.13.(3分)将抛物线y=2x2向上平移2个单位,再向左平移1个单位,得到的抛物线的解析式为y=2(x+1)2+2.【分析】根据解析式平移的规律“左加右减,上加下减”求解即可.【解答】解:将抛物线y=2x2向上平移2个单位,再向左平移1个单位,得到的抛物线的解析式为y=2(x+1)2+2.故答案为y=2(x+1)2+2.【点评】本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.14.(3分)如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC 的度数是121°.【分析】先利用⊙O截△ABC的三条边所得的弦长相等,得出即O是△ABC的内心,从而,∠1=∠2,∠3=∠4,进一步求出∠BOC的度数.【解答】解:∵△ABC中∠A=70°,⊙O截△ABC的三条边所得的弦长相等,∴O到三角形三条边的距离相等,即O是△ABC的内心,∴∠1=∠2,∠3=∠4,∠1+∠3=(180°﹣∠A)=(180°﹣62°)=59°,∴∠BOC=180°﹣(∠1+∠3)=180°﹣59°=121°.故答案是:121°.【点评】本题考查的是三角形的内心,及三角形内角和定理,比较简单.15.(3分)已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n=2020.【分析】由A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2018上两点,可得A (h﹣4,0),B(h+4,0),当x=h+4时,n=﹣(h+4﹣h)2+2018=2002【解答】解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4,n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.【点评】本题考查二次函数图象上的点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.(3分)如图,定直线l经过圆心O,P是半径OA上一动点,AC⊥l于点C,当半径OA绕着点O旋转时,总有OP=OC,若OA绕点O旋转60°时,P、A两点的运动路径长的比值是1.【分析】设⊙O的半径为R,l与⊙O交于点B,由直角三角形的性质得出OC=OA=OB,由已知得出OP=OA,证明△AOB是等边三角形,得出BP⊥OA,∠OPB=90°,得出点P在以OB为直径的圆上运动,圆心为C,由圆周角定理得出∠PCB=2∠AOB=120°,由弧长公式求出点A的路径长为=πR,点P的路径长为=πR,即可得出答案.【解答】解:设⊙O的半径为R,l与⊙O交于点B,连接AB、BP、PC、如图所示:∵AC⊥l于点C,∠AOB=60°,∴∠OAC=30°,∴OC=OA=OB,∵OP=OC,∴OP=OA,∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴BP⊥OA,∴∠OPB=90°,∴点P在以OB为直径的圆上运动,圆心为C,∴∠PCB=2∠AOB=120°,∴点A的路径长为=πR,点P的路径长为=πR,∴P、A两点的运动路径长的比值是1,故答案为:1.【点评】本题考查了轨迹、等边三角形的判定与性质、圆周角定理、直角三角形的性质以及弧长公式等知识;熟练掌握圆周角定理和等边三角形的判定与性质是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣4x﹣3=0.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣4x=3,配方得x2﹣4x+4=3+4,即(x﹣2)2=,开方得x﹣2=±,∴x1=2+,x2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.18.(8分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.19.(8分)不透明的袋子中装有3个红球和2个绿球,它们除颜色外无其它差别.(1)随机摸出一个球后,放回并摇匀,再随机摸出一个球,用列表或画树状图的方法求出所有等可能的结果;(2)同时摸出两个球,直接写出“摸出的两个球都是红球”的概率是.【分析】(1)根据题意画出树状图得出所有等可能的结果数即可;(2)画树状图展示所有20种等可能的结果数,找出两次摸出的球都是红球的结果数,然后根据概率公式求解.【解答】解:(1)画树状图如下:共有25种等可能的结果数;(2)画树状图为:共有20种等可能的结果数,其中“摸出的两个球都是红球”的有6种,所以两次取出的球都是红球的概率==;故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)如图,由边长为1的小正方形构成的网格中,每个小正方形的顶点叫做格点,△ABC的顶点在格点上.(1)直接写出△ABC的面积为10;(2)请用无刻度的直尺画出将CB绕C点顺时针旋转α(α=2∠BAC)角后得到的线段CD,并写出点D的坐标为(9,5);(3)若一个多边形各点都不在⊙M外,则称⊙M全覆盖这个5多边形,已知点E(6,5),⊙M全覆盖四边形ABCE,则⊙M的直径最小为.【分析】(1)利用三角形的面积公式计算即可.(2)根据要求画出点D即可解决问题.(3)作出△ABC,△ACE,△ABE,△ECB的外接圆可知:△BCE的外接圆⊙M全覆盖四边形ABCE,且⊙M的直径最小.=×5×4=10.【解答】解:(1)S△ABC故答案为10.(2)如图,点D即为所求,D(9,5).故答案为(9,5).(3)如图,作出△ABC,△ACE,△ABE,△ECB的外接圆可知:△BCE的外接圆⊙M全覆盖四边形ABCE,且⊙M的直径最小,直径=BE==故答案为.【点评】本题考查作图﹣旋转变换,三角形的外接圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)如图,在△ABC中,∠ACB=90°,点O是BC上一点.(1)尺规作图:作⊙O,使⊙O与AC,AB都相切(不写作法与证明,保留作图痕迹);(2)在(1)所作的图中,若⊙O与AB相切于点D,与BC的另一个交点为点E,BE=2,BD=4,求AO的长.【分析】(1)尺规作图:作∠CAB的平分线交BC于点O,以点O为圆心,OC为半径作⊙O,使⊙O与AC,AB都相切即可;(2)在(1)所作的图中,若⊙O与AB相切于点D,与BC的另一个交点为点E,BE=2,BD=4,根据勾股定理即可求AO的长.【解答】解:(1)如图,作∠CAB的平分线交BC于点O,以点O为圆心,OC为半径作⊙O,则⊙O与AC,AB都相切;(2)连接OD,设OD=OE=R,在Rt△OBD中,R2+42=(R+2)2解得R=3,则CE=6,设AC=AD=x,在Rt△ABC中,x2+82=(x+4)2解得x=6,∴AO===3.【点评】本题考查了作图﹣复杂作图、切线的判定与性质,解决本题的关键是准确作图.22.(10分)如图,用长33米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长15米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,院墙的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若院墙的面积为143平方米,求x的值;(3)若在墙的对面再开一个宽为a(a<3)米的门,且面积S的最大值为165平方米,求a的值.【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=143代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(35﹣2x+a)m,根据矩形的面积公式即可求解.【解答】解:(1)根据题意得,S=(33﹣2x+2)x=﹣2x2+35x;(2)当S=143时,即143=﹣2x2+35x,解得:x1=11,x2=,∵墙长15米,∴33﹣13+2=22>15,∴x的值为11;(3)∵S=(33﹣2x+a+2)x=﹣2x2+(35+a)x,∵面积S的最大值为165平方米,∴=165,(35+a)2=1320,解得a1=2﹣35,a2=﹣2﹣35(舍去),答:a的值为(2﹣35)米.【点评】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.23.(10分)在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为8.【分析】(1)由菱形的性质得出BC=DC,∠BCD=120°,由旋转的性质得PC=QC,∠PCQ=120°,得出∠BCP=∠DCQ,由SAS得出△BCP≌△DCQ即可(2)①由全等三角形的性质得出BP=DQ,得出∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,则∠QEN=∠QNE,得出∠QED=∠QNC=∠PMB,证明△PBM≌△QDE(AAS),即可得出结论;②由①知PM=QN,得出MN=PQ=PC,当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,菱形ABCD的面积=2△ABC的面积,即可得出答案.【解答】(1)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴∠PBM=∠PBC=∠ABC=30°,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°由旋转的性质得:PC=QC,∠PCQ=120°,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①证明:由(1)得:△BCP≌△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,,∴△PBM≌△QDE(AAS),∴PM=QE=QN.②解:由①知PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,=2××42=8;∴菱形ABCD的面积=2S△ABC故答案为:8.【点评】本题是四边形综合题目,考查了菱形的性质、全等三角形的判定与性质、等腰三角形的性质、直角三角形的性质等知识;熟练掌握菱形的性质,证明三角形全等是解题的关键.24.(12分)如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论.【分析】(1)先将抛物线M1:y=﹣x2+4x化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M2的解析式;(2)分别求出点A,点B,点C的坐标,求出m的取值范围,再用含m的代数式表示出△CPQ的面积,可用函数的思想求出其最大值;(3)设将直线OB向下平移k个单位长度得到直线EH,分别求出点E,F,G,H的横坐标,分别过G,H作y轴的平行线,过E,F作x轴的平行线,构造相似三角形△GEM 与△HFN,可通过相似三角形的性质求出的值为1.【解答】解:(1)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y=﹣(x﹣5)2+7=﹣x2+10x﹣18;(2)∵抛物线M1与M2交于点B,∴﹣x2+4x=﹣x2+10x﹣18,解得,x=3,∴B(3,3),将点B(3,3)代入y=kx,得,k=1,∴y OB=x,∵抛物线M2与直线OB交于点C,∴x=﹣x2+10x﹣18,解得,x1=3,x2=6,∴C(6,6),∵点P的横坐标为m,∴点P(m,﹣m2+4m),则Q(m,﹣m2+10m﹣18),∴QP=﹣m2+10m﹣18﹣(﹣m2+4m)=6m﹣18,=(6m﹣18)(6﹣m)∴S△PQC=﹣3m2+27m﹣54,=﹣3(m﹣)2+,在y=﹣m2+4m中,当y=0时,x1=0,x2=4,∴A(4,0),∵B(3,3),∴3≤m≤4,∴在S=﹣3(m﹣)2+中,根据二次函数的图象及性质可知,当m=4时,△PCQ有最大值,最大值为6;(3)的值是定值1,理由如下:设将直线OB向下平移k个单位长度得到直线EH,则y EH=x﹣k,∴令x﹣k=﹣x2+4x,解得,x1=,x2=,∴x F=,x E=,令x﹣k=﹣x2+10x﹣18,解得,x1=,x2=,∴x H=,x G=,∴ME=x G﹣x E=﹣=3,FN=x H﹣x F=﹣=3,分别过G,H作y轴的平行线,过E,F作x轴的平行线,交点分别为M,N,Q,则∠HFN=∠GEM,∠HNF=∠GME=90°,∴△GEM∽△HFN,∴=,∴===1,∴的值是定值1.【点评】本题考查了二次函数的图象平移规律,二次函数的图象及性质,相似三角形的判定与性质等,解题关键是掌握用函数的思想求极值等.。
湖北省武汉市武昌区2020届高三元月调研考试数学(理)试题及答案

绝密★启用前湖北省武汉市武昌区普通高中2020届高三年级上学期元月调研考试数学(理)试题2020年1月注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}02|{2<--=x x x A ,}2|{a x a x B <<-=,若}01|{<<-=x x B A I ,则=B A YA .)2,1(- B. )2,0( C .)1,2(- D .)2,2(-2.已知复数z 满足i i=-z z ,则z 在复平面内对应的点位于 A .第一象限 B. 第二象限 C .第三象限 D .第四象限3.已知}{n a 是各项均为正数的等比数列,11=a ,3223+=a a ,则=n aA .23-n B. 13-n C .12-n D .22-n4.已知2.0log 1.0=a ,2.0log 1.1=b ,2.01.1=c ,则a ,b ,c 的大小关系为A .c b a >>B .b c a >>C .a b c >>D .b a c >>5.等腰直角三角形ABC 中,2π=∠ACB ,2==BC AC ,点P 是斜边AB 上一点,且PA BP 2=,那么=⋅+⋅CB CP CA CPA .4- B. 2- C .2 D .46.某学校成立了A 、B 、C 三个课外学习小组,每位学生只能申请进入其中一个学习小组学习.申请其中任意一个学习小组是等可能的,则该校的任意4位学生中,恰有2人申请A 学习小组的概率是A B E C D M A 1 A .643 B. 323 C .274 D .278 7.已知数列}{n a 的前n 项和n n S n 21232-=,设11+=n n n a a b ,n T 为数列}{n b 的前n 项和.若对任意的*∈N n ,不等式39+<n T n λ恒成立,则实数λ的取值范围为A .)48,(-∞ B. )36,(-∞ C .)16,(-∞ D .),16(+∞8.已知过抛物线x y 42=焦点F 的直线与抛物线交于点A ,B ,||2||FB AF =,抛物线的准线l与x 轴交于点C ,l AM ⊥于点M ,则四边形AMCF 的面积为A .425 B. 225 C .25 D .210 9.如图,已知平行四边形ABCD 中,ο60=∠BAD ,AD AB 2=,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成DE A 1∆.若M 为线段C A 1的中点,则在ADE ∆翻折过程中,给出以下命题:①线段BM 的长是定值;②存在某个位置,使C A DE 1⊥;③存在某个位置,使//MB 平面DE A 1.其中,正确的命题是A .①B .①③C .②③D .①②③10.函数)sin()(ϕω+=x A x f (0>A ,0>ω,2π0<<ϕ)的部分图象如图所示,给出下列说法: ①函数)(x f 的最小正周期为π;②直线12π5-=x 为函数)(x f 的一条对称轴; ③点)0,3π2(-为函数)(x f 的一个对称中心; ④函数)(x f 的图象向右平移3π个单位后得 到x y 2sin 2=的图象.其中正确说法的个数是A .1B .2C .3D .411.已知F 1,F 2分别为双曲线14922=-y x 的左、右焦点,过F 2且倾斜角为60°的直线与双曲线。
湖北省武汉市市新观察2020年九年级数学元月调考复习交流卷(一) (解析版)

武汉市市新观察2020年九年级数学元月调考复习交流卷(一) 一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 2.(3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=(x﹣3)2﹣2向左平移()个单位后经过点A(2,2)A.1 B.2 C.3 D.44.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球5.(3分)如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为()A.45°B.60°C.70°D.90°6.(3分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.(3分)从甲、乙、丙三人中任选两人参加“武汉军运会志愿者”活动,甲被选中的概率为()A.B.C.D.8.(3分)如图,点A在⊙O上,BC为⊙O的直径,AB=4,AC=3,D是的中点,CD与AB相交于点P,则CP的长为()A.B.C.D.9.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.410.(3分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)关于x的一元二次方程x2+2x+a=0的一个根为1,则方程的另一根为.12.(3分)已知点A(2,a)、点B(b,﹣3)关于原点对称,则a+b的值为.13.(3分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子颗.14.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为cm.15.(3分)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)16.(3分)如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是.三、解答题(本大题共8小题,共72分)17.(8分)解方程:x2﹣4x﹣7=0.18.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.19.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.(1)他随手拿出一只,恰好是右脚鞋的概率为;(2)他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.20.(8分)如图,△ABC中,AB=BC,点O为高AD上一点,以OD为半径的⊙O与AB相切于点E.(1)求证:点O在直线CE上;(2)若AE:EB=2:3,AC=,求⊙O的半径.21.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,建立平面直角坐标系A(﹣1,7),B(﹣6,3),C(﹣2,3).(1)将△ABC绕格点P(1,1)顺时针旋转90°,得到△A'B'C',画出△A'B'C',并写出下列各点坐标:A'(,),B'(,),C'(,);(2)找格点M,连CM,使CM⊥AB,则点M的坐标为(,);(3)找格点N,连BN,使BN⊥AC,则点N的坐标为(,).22.(10分)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商店第一次购进多少千克这种商品?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,且每千克的利润不低于10元且不高于18元.①请直接写出自变量x的取值范围;②求该商店某天的最大利润.23.(10分)如图所示,已知正△ABC中射线CM⊥AB于F,射线BA绕B顺时针旋转,旋转后的射线记作a,同时线段AB所在直线绕A顺时针旋转,旋转后的直线记作直线l,当直线l旋转的角度是射线a旋转角度的4倍时,直线l于射线CM相交于E,与射线a相交于D,且∠D=30°.(1)求射线a的旋转角是多少度;(2)求证:DE=AB;(3)探索:线段DE,EF,DB的数量关系.24.(12分)如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,∠ABC=90°时.①求该抛物线解析式;②求BC的解析式;(2)如图2,过点D作DE⊥x轴于点E,当a为任意负数时,试探究CO与OE的数量关系?参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.2.(3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选:D.3.(3分)将抛物线y=(x﹣3)2﹣2向左平移()个单位后经过点A(2,2)A.1 B.2 C.3 D.4【分析】直接利用二次函数平移规律结合二次函数图象上点的坐标特点得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设向左平移a个单位,故y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a1=﹣1(不合题意舍去),a2=3,即将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故选:C.4.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、3个球都是黑球是随机事件;B、3个球都是白球是不可能事件;C、3个球中有黑球是必然事件;D、3个球中有白球是随机事件;故选:B.5.(3分)如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为()A.45°B.60°C.70°D.90°【分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B =30°,然后利用∠CAB′=∠CAC′﹣∠C′AB′进行计算.【解答】解:∵以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.6.(3分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.7.(3分)从甲、乙、丙三人中任选两人参加“武汉军运会志愿者”活动,甲被选中的概率为()A.B.C.D.【分析】画出树状图,共有6个等可能的结果,1其中甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,其中甲被选中的结果有4个,则甲被选中的概率为=;故选:A.8.(3分)如图,点A在⊙O上,BC为⊙O的直径,AB=4,AC=3,D是的中点,CD与AB相交于点P,则CP的长为()A.B.C.D.【分析】如图作PH⊥BC于H.首先证明AP=PH,设PA=PH=x,根据勾股定理构建方程即可解决问题;【解答】解:如图作PH⊥BC于H.∵=,∴∠ACD=∠BCD,∵BC是直径,∴∠BAC=90°,∴PA⊥AC,∵PH⊥BC,∴PA=PH,设PA=PH=x,∵PC=PC,∴Rt△PCA≌Rt△PCH,∴AC=CH=3,∵BC==5,∴BH=2,在Rt△PBH中,∵PB2=PH2+BH2,∴(4﹣x)2=x2+22,解得x=,∴PC==,故选:D.9.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.10.(3分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3【分析】取OP的中点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=OQ =1,则点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1.【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)关于x的一元二次方程x2+2x+a=0的一个根为1,则方程的另一根为﹣3 .【分析】设方程的另一个根为x2,根据韦达定理即可得到结论.【解答】解:设方程的另一个根为x2,根据题意得x2+1=﹣2,解得:x2=﹣3.故方程的另一个根为﹣3.故答案为:﹣3.12.(3分)已知点A(2,a)、点B(b,﹣3)关于原点对称,则a+b的值为 1 .【分析】直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】解:∵点A(2,a)、点B(b,﹣3)关于原点对称,∴b=﹣2,a=3,则a+b的值为:1.故答案为:1.13.(3分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子 4 颗.【分析】首先根据题意得方程组:,解此方程组即可求得答案.【解答】解:根据题意得:,解得:,∴原来盒中有白色棋子4颗.故答案为:4.14.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为 1 cm.【分析】设剪去的小正方形的边长为xcm,根据矩形的面积公式结合方盒的底面积(图中阴影部分)是32cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去的小正方形的边长为xcm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7(不合题意,舍去).故答案为:1.15.(3分)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)【分析】过点O作OD⊥BC于点D,交于点E,则可判断点O是的中点,由折叠的性质可得OD=OE=R=2,在Rt△OBD中求出∠OBD=30°,继而得出∠AOC,求出扇形AOC的面积即可得出阴影部分的面积.【解答】解:过点O作OD⊥BC于点D,交于点E,连接OC,则点E是的中点,由折叠的性质可得点O为的中点,∴S弓形BO=S弓形CO,在Rt△BOD中,OD=DE=R=2,OB=R=4,∴∠OBD=30°,∴∠AOC=60°,∴S阴影=S扇形AOC==.故答案为:.16.(3分)如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是﹣2≤h≤2 .【分析】由于函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,故可先分别得出点A和点B的坐标,因为这两个点为抛物线与与正方形ABCD有公共点的临界点,求出即可得解.【解答】解:∵点O是边长为2的正方形ABCD的中心,∴点A和点B坐标分别为(1,1)和(﹣1,1),∵函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形ABCD有公共点的临界点为点A和点B,把点B坐标代入y=(x﹣h)2,得1=(﹣1﹣h)2∴h=0(舍)或h=﹣2;把点A坐标代入y=(x﹣h)2,得1=(1﹣h)2∴h=0(舍)或h=2.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是﹣2≤h≤2.故答案为:﹣2≤h≤2.三、解答题(本大题共8小题,共72分)17.(8分)解方程:x2﹣4x﹣7=0.【分析】移项后配方得出x2﹣4x+4=7+4,推出(x﹣2)2=11,开方后得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=7,配方得:x2﹣4x+4=7+4,即(x﹣2)2=11,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.18.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.【分析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则弧CFD=弧AEB,由FD=EB,得,弧FD=弧EB,由等量减去等量仍是等量得:弧CFD﹣弧FD=弧AEB﹣弧EB,即弧FC=弧AE,由等弧对的圆周角相等,得∠D=∠B.【解答】方法(一)证明:∵AB、CD是⊙O的直径,∴弧CFD=弧AEB.∵FD=EB,∴弧FD=弧EB.∴弧CFD﹣弧FD=弧AEB﹣弧EB.即弧FC=弧AE.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.19.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.(1)他随手拿出一只,恰好是右脚鞋的概率为;(2)他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【解答】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.20.(8分)如图,△ABC中,AB=BC,点O为高AD上一点,以OD为半径的⊙O与AB相切于点E.(1)求证:点O在直线CE上;(2)若AE:EB=2:3,AC=,求⊙O的半径.【分析】(1)连接CE,证明△BEC≌△BDA(SAS),得∠BEC=∠BDA=90°,根据圆的切线垂直于过切点的半径,可得点O在直线CE上;(2)设AE=2x,BE=3x,则AB=BC=5x,根据勾股定理得:AD2=AB2﹣BD2=AC2﹣CD2,列方程可得x的值,设⊙O的半径为r,则AO=8﹣r,由勾股定理列方程可得半径的值.【解答】(1)证明:连接CE,∵AD⊥BC,AD过点O,∴BC为⊙O的切线,∵AB是⊙O的切线,∴BD=BE,在△BEC和△BDA中,∵,∴△BEC≌△BDA(SAS),∴∠BEC=∠BDA=90°,∴CE⊥AB,∴点O在直线CE上;(2)解:设AE=2x,BE=3x,则AB=BC=5x,∴BD=BE=3x,CD=2x,由勾股定理得:AD2=AB2﹣BD2=AC2﹣CD2,,x=2,∴AD=4x=8,设⊙O的半径为r,则AO=8﹣r,在Rt△AEO中,AE2+OE2=AO2,42+r2=(8﹣r)2,r=3,则⊙O的半径是3.21.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,建立平面直角坐标系A(﹣1,7),B(﹣6,3),C(﹣2,3).(1)将△ABC绕格点P(1,1)顺时针旋转90°,得到△A'B'C',画出△A'B'C',并写出下列各点坐标:A'(7 , 3 ),B'( 3 ,8 ),C'( 3 , 4 );(2)找格点M,连CM,使CM⊥AB,则点M的坐标为(﹣6 ,8 );(3)找格点N,连BN,使BN⊥AC,则点N的坐标为(﹣2 , 2 ).【分析】(1)依据△ABC绕格点P(1,1)顺时针旋转90°,即可得到△A'B'C';(2)依据AB的方向和格点C的位置,即可得到格点M的位置;(3)依据AC的方向和格点B的位置,即可得到格点N的位置.【解答】解:(1)如图所示,△A'B'C'即为所求,A'(7,3),B'(3,8),C'(3,4);故答案为:7,3,3,8,3,4;(2)如图所示,M(﹣6,8);故答案为:﹣6,8;(3)如图所示,N(﹣2,2).故答案为:﹣2,2.22.(10分)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商店第一次购进多少千克这种商品?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,且每千克的利润不低于10元且不高于18元.①请直接写出自变量x的取值范围;②求该商店某天的最大利润.【分析】(1)根据“商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克”列出分式方程求解即可;(2)列出函数关系式根据每千克的利润不低于10元且不高于18元得到自变量的取值范围,然后配方后确定最值即可.【解答】(1)设第一次购进m千克,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,m=1000是原方程的解,∴第一次购进1000千克.(2)①该商品的原价为20000÷1000=20元/千克,∵每千克的利润不低于10元且不高于18元,∴10≤x﹣20≤18,∴自变量x的取值范围:30≤x≤38;②设每天的利润为W元,则W=(x﹣20)(﹣10x+500)=﹣10(x﹣35)2+2250,当x=35时,W max=2250.23.(10分)如图所示,已知正△ABC中射线CM⊥AB于F,射线BA绕B顺时针旋转,旋转后的射线记作a,同时线段AB所在直线绕A顺时针旋转,旋转后的直线记作直线l,当直线l旋转的角度是射线a旋转角度的4倍时,直线l于射线CM相交于E,与射线a相交于D,且∠D=30°.(1)求射线a的旋转角是多少度;(2)求证:DE=AB;(3)探索:线段DE,EF,DB的数量关系.【分析】(1)根据三角形的一个外角等于与它不相邻的两内角的和,直线a,l的旋转角的关系建立方程4α=30°+α即可;(2)先判断出∠BEC=∠DBE,得出OE=OB,进而判断出△DOE≌△COB(AAS),得出DE =BC,即可得出结论;(3)判断出△BDE≌△ECA,再代换即可.【解答】解:(1)设直线l旋转角为α,∴∠ABD=α∵射线l旋转的角度是射线a旋转角度的4倍,∴∠BAE=4α,∵∠BAE=∠ABD+∠D,∴4α=α+30°,∴α=10°,射线a的旋转角是10°;(2)连接BE,BD与CM的交点记作点O,∵△ABC是正三角形,CM⊥AB,∴CM是AB的垂直平分线,∴AF=BF,EA=EB,∴∠EBA=∠BAE=40°,∴∠BEC=∠AEB=(180°﹣2∠BAE)=50°,∠DBE=∠AEB+∠ABD=40°+10°=50°,∴∠BEC=∠DBE,∴OE=OB,∵∠D=∠BCO=30°,∠DOE=∠COB,∴△DOE≌△COB(AAS),∴DE=BC,∵BC=AB,∴DE=AB,(3)∵∠BAE=40°,∴∠AEC=50°,∵∠ABE=40°,∠ABD=10°,∴∠EBD=∠AEC=50°∵∠BDE=∠ACE=30°,DE=AC,∴△BDE≌△ECA,∴BD=EC=EF+FC=EF+AB=EF+DE.24.(12分)如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,∠ABC=90°时.①求该抛物线解析式;②求BC的解析式;(2)如图2,过点D作DE⊥x轴于点E,当a为任意负数时,试探究CO与OE的数量关系?【分析】(1)①点A(4,0),则抛物线的表达式为:y=ax(x﹣4),则顶点B的坐标为:(﹣,﹣),而函数的对称轴为:x=2,即﹣=2,解得:a=﹣1,即可求解;②函数的对称轴为x=2,故:B(2,4),设C(0,t),∠ABC=∠AOC=90°,则AC2=BC2+AB2=OC2+AO2,即:42+t2=(2﹣4)2+(4﹣0)2+22+(4﹣t)2,即可求解;(2)由y=ax2+4x=0得x1=0,x2=﹣,则A(﹣,0),又y=ax2+4x=a(x+)2﹣,顶点B的坐标为(﹣,﹣),将B(﹣,﹣)代入y=kx+m,得:﹣+m =﹣,解得m=,点C(0,),即OC=,由得x=﹣或x=,故E(,0),即可求解.【解答】解:(1)①点A(4,0),则抛物线的表达式为:y=ax(x﹣4),则顶点B的坐标为:(﹣,﹣),而函数的对称轴为:x=2,即﹣=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x;②函数的对称轴为x=2,故:B(2,4),设C(0,t),∵∠ABC=∠AOC=90°,∴AC2=BC2+AB2=OC2+AO2,∴42+t2=(2﹣4)2+(4﹣0)2+22+(4﹣t)2,∴t=3,∴OC=3,C(0,3),∴BC的解析式为y=x+3;(2)由y=ax2+4x=0得x1=0,x2=﹣,则A(﹣,0),又y=ax2+4x=a(x+)2﹣,∴顶点B的坐标为(﹣,﹣),将B(﹣,﹣)代入y=kx+m,得:﹣+m=﹣,解得m=,∴点C(0,),即OC=,由得x=﹣或x=,∴E(,0),∴OE=,∴OC:OE==2,∴OC=2OE.。
2020年湖北省武汉市九年级元月调考数学模拟试卷(包含答案)

2020年湖北省武汉市九年级元月调考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°9.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =﹣1,与x 轴的一个交点为(2,0).若于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二.填空题(满分18分,每小题3分)10.已知A (m ,n ),B (m +8,n )是抛物线y =﹣(x ﹣h )2+2036上两点,则n = . 11.如图,小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形,由弦A 1C 1和弧A 1C 1围成的弓形面积记为S 1,由弦A 2C 2和弧A 2C 2围成的弓形面积记为S 2,…,以此下去,由弦A n ∁n 和弧A n ∁n 围成的弓形面积记为S n ,其中S 2020的面积为 .12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.解:∵二次函数y=x2﹣1,∴该函数图象的顶点坐标为(0,﹣1),故选:B.4.解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,并不能说明每次抛出硬币一定向上,即抛掷硬币正面向上的概率不是1,此选项错误;故选:A.5.解:A、原方程可变形为5x2﹣4x+2=0,∵△=(﹣4)2﹣4×5×2=﹣24<0,∴方程5x2﹣4x=﹣2无实数根;B、原方程可变形为6x﹣1=0,∴方程(x﹣1)(5x﹣1)=5x2只有一个实数根;C、∵△=(﹣5)2﹣4×4×1=9>0,∴方程4x2﹣5x+1=0有两个不相等的实数根;D、∵(x﹣4)2=0,∴x1=x2=4,∴方程(x﹣4)2=0有两个相等的实数根.故选:C.6.解:∵OA=OP=2.5,⊙O的半径为3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选:A.7.解:设比赛组织者应邀请x个队参赛,依题意,得: x(x﹣1)=28.故选:A.8.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.9.解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x2+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)10.解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4, n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.11.解:∵小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,∴S1=S﹣S=﹣××,S2=﹣2×1S3=﹣4×2…发现规律:Sn=﹣×(2n﹣1)×2n﹣2=×22n﹣2﹣22n﹣4×=22n﹣4(﹣)∴S2020的面积为:24036(﹣).故答案为:24036(﹣).12.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.13.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.14.解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.15.解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段==π,第二段==π.故B点翻滚一周所走过的路径长度=π+π=π,三次一个循环,∵40÷3=13……1,若翻滚了40次,则B点所经过的路径长度为13×π+π=18π.故答案为:18π.三.解答题(共8小题,满分72分)16.解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x=﹣2+;1x=﹣2﹣.217.解:∵AB是⊙O的弦,OC⊥AB于点C,AB=8,∴AC=BC=4,∠ACO=90°,由勾股定理得:OC===2;18.解:(1)答:不正确,P(抽出“太阳”卡片)=,P(抽出“小花”卡片)=;(2)设“太阳”卡片与“小花”卡片分别为A,B,列表得:(A,B)(B,B)﹣﹣﹣(A,B)﹣﹣﹣﹣(B,B)﹣﹣﹣﹣﹣(B,A)(B,A)∴两张卡片都是“小花”的概率为=;(3)设应添加x张“太阳”卡片,,解得x=3.∴应添加3张“太阳”卡片.19.解:(1)画图形如右图所示:证明:由旋转的性质可得:CS=CN,AS=BN,又∵MN2=BN2+AM2,∴MN2=AS2+AM2=MS2,∴MS=MN,又∵CS=CN,CM=CM,∴△MCN≌△MCS(SSS).(2)由(1)得:△MCN≌△MCS,∴∠NCM=∠MCS=45°.20.证明:∵AE平分∠BAC,∴∠BAD=∠CAD,∵EF∥AC,∴∠FEA=∠CAD,∴∠BAD=∠FEA,∴FA=FE,∵AE⊥BE,∴∠BEF+∠AEF=90°,∵∠ABE+∠BAE=90°,∴∠ABE=∠BEF,∴FB=FE,∴FB=FA,即点F是AB的中点.21.解:(1)y=90﹣3(x﹣50)即y=﹣3x+240;(2)w=(x﹣40)y=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200∵a=﹣3<0,∴当销售价x=60元时,利润w最大.最大利润为1200元.22.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.23.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=C O=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).。
【答案】武昌区2020届高三元月调考 理科数学

武昌区2020届高三年级元月调研考试理科数学参考答案一、选择题:二、填空题: 13. 240 14.11-,3,17 15.8 16.3π4或9π81.答案:D 解析:{|12},{|2},{|10},0A x x B x a x a A B x x a =-<<=-<<=-<<∴=I ,(1,2),(2,0),(2,2)A B A B ∴=-=-=-U .2.答案:A 解析:11i 11i(i)i 1,(1i)1,i 1i (1i)(1i)22z z z z z +=-=⋅+∴-====+--+,则z 在复平面内对应的点为11,22⎛⎫⎪⎝⎭,位于第一象限. 3.答案:B 解析:设等比数列{}n a 的公比为q ,则0q >,由3223a a =+,可得2223,230q q q q =+--=,(1)(3)0q q +-=,1113,3n n n q a a q --∴===.4.答案:D解析:0.10,10.1log 1log 0.2log 0.1<<,即01a <<, 1.1 1.1log 0.2log 10b =<=,0.201.1 1.11c =>=,所以c a b >>.5.答案:D 解析:以C 为坐标原点建立如图所示平面直角坐标系, 则42(0,0),(2,0),(0,2),,33C A B P ⎛⎫⎪⎝⎭, 则424284,(2,0),(0,2)4333333CP CA CP CB ⎛⎫⎛⎫⋅+⋅=⋅+⋅=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r .6.答案:D 解析:每位学生有3种选择,则4位学生共有4381=种选择,则恰有2人申请A 学习小组的情况有242224C ⨯⨯=种,所以所求概率为2488127P ==. 7.答案:A 解析:易求得32n a n =-,则111111(32)(31)33231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 1211111111113447323133131n n n T b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L , 由93n T n λ<+,得9331nn n λ<++,所以23(31)n n λ+<恒成立,即2min3(31)n n λ⎡⎤+<⎢⎥⎣⎦,因为223(31)3(961)1396n n n n n n n +++⎛⎫==++ ⎪⎝⎭,记1()96(1)f x x x x =++≥,则21()90f x x '=->,所以函数()f x 在[1,)+∞上单调递增,所以min ()(1)16f x f ==,所以2min3(31)31648n n ⎡⎤+=⨯=⎢⎥⎣⎦, 故48λ<.8.答案:C 解析:(1,0),(1,0)F C -,设AFx θ∠=,则22,1cos 1cos AF BF θθ==-+,由2AF FB =, 得241cos 1cos θθ=-+,解得1cos 3θ=,所以直线AB的斜率tan k θ==AB 的方程为:1)y x =-,将其代入24y x =,并整理得:22520x x -+=,解得1212,2x x ==,(2,A ∴,DE , 取DE 中点F ,连接1,A F CF ,1A DE Q △是正三角形,1A F DE ∴⊥,若1DE A C ⊥,则可得出DE ⊥平面1A CF ,从而DE CF ⊥,显然DE 与CF 不垂直,得出矛盾,所以②错误;1//,//MN A D BN DE Q ,,MN BN ⊄平面1A DE ,1,A D DE ⊂平面1A DE ,//MN ∴平面1A DE ,//BN 平面1A DE ,又MN BN N =I ,∴平面//BMN 平面1A DE ,//BM ∴平面1A DE ,③正确.10.答案:C 解析:72,,241234T A T T πππππω==-=∴===,当3x π=时,2,33x ππωϕϕπϕ+=+=∴=, 故()23f x x π⎛⎫=+ ⎪⎝⎭,显然①正确;当512x π=-时,232x ππ+=-,所以②正确;C当23x π=-时,23x ππ+=-,所以③正确;函数()f x 的图象向右平移π3个单位,得22333y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故④错误.所以正确说法的个数是3.11.答案:A解析:如图,设圆1O 与1221,,F F AF AF 分别相切于点,,D E G ,则1212222DF DF GF EF AF AF a -=-=-=,又12122DF DF F F c +==,12,DF c a DF c a ∴=+=-,同理可知,圆2O 与12F F 也相切于D 点,2121120,60AF F BF F ∠=︒∠=︒,,所以11223O D rr O D==.2e ()ln x g x x x x -=+-,设2e x s x -=,则0s >,ln 2ln s x x =--,ln ln 2x x s ∴-=--,所以2e ()ln ln 2(0)x g x x x s s s x-=+-=-->,所以()f x 的最小值和()g x 的最小值相等. 13.答案:240 解析:展开式的通项为36662166(2)2kk k k k k k T C x C x ---+==,令3632k -=,得2k =,所以展开式中3x 项的系数为24621516240C ⨯=⨯=.14.答案:11-,3,17解析:平均数为257x +,众数为2,中位数可能是2或x 或4,依据题意可得,25247x++=或2x 或8,解得11x =-或3或17,经检验,均符合题意,所以x 所有可能的取值为11-,3,17.15.答案:8AB CD 解析:设(,)M x y ,则22222222(2)(2)1,,,MNx y MO x y MN MO MN MO =-+--=+=∴=Q ,即2222(2)(2)1x y x y -+--=+,整理得:4470x y +-=,MN 的最小值即为MO 的最小值,即为原点O 到直线4470x y +-=的距离8d ==. 16.答案:3π4或9π8解析:当04a π<≤时,22a π≤,[0,][,2]sin ,sin 2a a a M a M a ==,且sin sin 2a a <,显然不满足条件;当42a ππ<<时,则22a ππ<<,此时[0,][,2]sin ,1a a a M a M ==,也不满足条件;在ABD △中,由正弦定理,得sin sin AB ADADC B =∠,sin 5sin 60sin 5AD ADC B AB ∠⨯︒===, 所以45B =︒或135B =︒(舍去). ……………(4分) (2)由(1)知75BAD ∠=︒,且sin 754︒=所以1sin 2ABDS AB AD BAD ⋅∠=△, 1sin 2ADC S DA DC ADC =⋅∠=△ABC ABD ADC S S S =+=△△△. …………(12分) 18.解析:(1)因为AC AB ⊥,//DE AC ,所以DE AB ⊥.因为1AA ⊥平面ABC ,DE ⊂平面ABC , 所以1AA DE ⊥.因为1AB AA A =I ,所以DE ⊥平面11AA B B . 因为1A F ⊂平面11AA B B ,所以1DE A F ⊥.易证11DB A F ⊥,因为11DB D E D =I ,所以1A F ⊥平面1B DE .因为1A F ⊂平面11AC F ,所以平面11A C F ⊥平面1B DE . ……………(4分) (2)方法一:过B 作1BH B D ⊥,垂足为H ,过H 作1HG B E ⊥于G ,连结BG ,由(1)知DE ⊥平面11AA B B ,而BH ⊂平面11AA B B ,DE BH ∴⊥,又1BH B D ⊥,1DE B D D =I ,BH ∴⊥平面1B DE ,1B E ⊂Q 平面1B DE ,1B E BH ∴⊥,又1HG B E ⊥,BH HG H =I ,1B E ∴⊥平面BGH ,从而1B E BG ⊥ ,所以BGH ∠为二面角1B B E D --的平面角.在1Rt B BD △中,求得BH =;在1Rt B BE △中,求得BG =.所以sin BH BGH BG ∠==. ……………………………(12分)方法二:以A 为坐标原点,1,,AC AB AA 所在方向为,,x y z 轴的正方向建立如图所示空间直角坐标系,则1(0,2,0),(0,1,0),(1,1,0),(0,2,2)B D E B ,1(1,1,0),(1,1,2),(1,0,0)EB EB ED =-=-=-u u u r u u u r u u u r, 设平面1BB E 的法向量为111(,,)m x y z =u r,则 111111020m EB x y m EB x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩u r u u u rur u u u r ,取11x =,得(1,1,0)m =u r . 设平面1B ED 的法向量222(,,)n x y z =r,则1222220n EB x y z n ED x ⎧⋅=-++=⎪⎨⋅=-=⎪⎩r u u u r r u u u r ,取21z =-,则(0,2,1)n =-r .则cos ,m n m n m n⋅===⋅u r ru r r u r r . A 1C BAB 1DC 1EFGH设二面角1B B E D --的大小为θ,则sin 5θ==. 19.解析:(1)由1,bc a c ⎧=⎪⎨⎪-=⎩及222a b c =+,得2a =,b =所以,椭圆E 的方程为22143x y +=. ……………………………(4分) (2)当直线l 的斜率存在时,设其方程为(0)y kx m m =+≠,代入椭圆方程,整理,得222(43)84120k x kmx m +++-=.由0∆>,得22430k m -+>.设11(,)A x y ,22(,)B x y ,则122843kmx x k +=-+,212241243m x x k -⋅=+.于是243AB k ==+.又坐标原点O 到直线l的距离为d =.所以,OAB △的面积12S AB d m =⋅⋅=因为2222(43)12432m k m m k +-+==+,所以,12S AB d =⋅⋅当直线l 的斜率不存在时,设其方程为x m =,同理可求得1122S AB d m =⋅⋅=.所以,OAB △……………………………(12分)20.解析:(1)因为(1000.000503000.000755000.001007000.00125900x =⨯+⨯+⨯+⨯+⨯0.0010011000.00050)200620+⨯⨯=(元),所以,预估2020年7、8两月份人均健身消费为620元. ……………(2分)(2)列联表如下:…因为22100(10302040) 4.762 3.84150503070K ⨯-⨯==>⨯⨯⨯,因此有95%的把握认为“健身达人”与性别有关系. ……………………………………(6分) (3)若选择方案一:则需付款900元;若选择方案二:设付款X 元,则X 可能取值为700,800,900,1000.33311(700)28P X C ⎛⎫=== ⎪⎝⎭,22313(800)28P X C ⎛⎫=== ⎪⎝⎭, 31313(900)28P X C ⎛⎫=== ⎪⎝⎭,30311(1000)28P X C ⎛⎫=== ⎪⎝⎭,所以1331()70080090010008508888E X =⨯+⨯+⨯+⨯=(元)因为850900<,所以选择方案二更划算. ……………………………(12分)21.解析:(1)令()()(e)e (1)1xg x f x ax a x =--=+--,则()e 1xg x a '=+-.由题意,知()0g x ≥对R x ∈恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()e (1)1xg x a x =+--在R 上单调递增. 因为1(1)(1)10g a e-=---<,所以1a ≤不合题意; 当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>, 所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增. 所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥. 记()2(1)ln(1) (1)h a a a a a =-+-->,则()ln(1) h a a '=--. 易知()h a 在(1,2)单调递增,在(2,)+∞单调递减, 所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤. 而min ()2(1)ln(1)0g x a a a =-+--≥,所以2(1)ln(1)0a a a -+--=,解得2a =. ……………………………(6分) (2)因为12()()0f x f x +=,所以1212e e 2(e 1)xxx x +++=+. 因为12122e e 2ex x x x ++≥,12x x ≠,所以12122e e2ex x x x ++>.令12x x t +=,则22e 2e 20t t +--<.记2()2e 2e 20t m t t =+--<,则2()e 10t m t '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22e 2e 20t t +--<,得()(2)m t m <,所以2t <,即122x x +<.…………(12分) 另证:不妨设12x x <,因为()e 10xf x '=+>,所以()f x 为增函数. 要证122x x +<,即要证212x x <-,即要证21()(2)f x f x <-.因为12()()0f x f x +=,即要证11()(2)0f x f x +->. 记2()()(2)e e2e xxh x f x f x -=+-=+-,则(e e)(e e)()e x x xh x -+'=.所以min ()(1)0h x h ==,从而()()(2)0h x f x f x =+->,得证.22.解析:(1)方程,222x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩可化为20x y +-=. 方程22.932cos ρθ=-可化为22193x y +=. ……………………(5分) (2)将,222x y ⎧=-⎪⎪⎨⎪=+⎪⎩代入22193x y +=,得2230t ++=.设方程2230t ++=的两根分别为1t ,2t ,则1232MA MB t t ⋅=⋅=.…………………(10分) 23.解析:(1)方法一:因为()()f x f x x a x x a x a ==-+--=≥, 因为存在实数x ,使()2f x <成立,所以2a <,解得22a -<<. 方法二:当0a =时,符合题意.当0a >时,因为2, ,(), 0,2, 0,x a x a f x x a x a x a x a x ->⎧⎪=-+=⎨⎪-+<⎩≤≤ 所以min ()f x a =.因为存在实数x ,使()2f x <成立,所以2a <. 当0a <时,同理可得2a >-.综上,实数a 的取值范围为(2,2)-. ……………………………(5分)(2)因为3m n +=,所以1414141553333m n n m m n m n m n ⎛⎫+⎛⎫⎛⎫+=+=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥, 当且仅当1,2m n ==时取等号. ……………………………(10分)。
武昌区2020届高三元月调考 理科数学及答案

武昌区2020届高三年级元月调研考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20},{|2}A x x x B x a x a =--<=-<< ,若{|10}A B x x =-<<I ,则A B =U ( ) A .(1,2)- B .(0,2)C .(2,1)-D .(2,2)-2.已知复数z 满足i izz =-,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知{}n a 是各项均为正数的等比数列,11a =,3223a a =+,则n a =( ) A .23n -B .13n -C .12n -D .22n -4.已知0.1log 0.2a =, 1.1log 0.2b =,0.21.1c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .c b a >>D .c a b >>5.等腰直角三角形ABC 中,π2ACB ∠=,2AC BC ==,点P 是斜边AB 上一点,且2BP PA =,那么CP CA CP CB ⋅+⋅=u u u r u u u r u u u r u u u r( )A .4-B .2-C .2D .4 6.某学校成立了A 、B 、C 三个课外学习小组,每位学生只能申请进入其中一个学习小组学习.申请其中任意一个学习小组是等可能的,则该校的任意4位学生中,恰有2人申请A 学习小组的概率是( ) A .364B .332C .427D .8277.已知数列{}n a 的前n 项和23122n S n n =-,设11n n n b a a +=,n T 为数列{}n b 的前n 项和.若对任意的N n *∈,不等式93n T n λ<+恒成立,则实数λ的取值范围为( )A .(,48)-∞B .(,36)-∞C .(,16)-∞D .(16,)+∞8.已知过抛物线24y x =焦点F 的直线与抛物线交于点A ,B ,2AF FB =,抛物线的准线l 与x 轴交于点C ,AM l ⊥于点M ,则四边形AMCF 的面积为( ) ABC.D.9.如图,已知平行四边形ABCD 中,60BAD ∠=︒,2AB AD =,E 为边AB 的中点,将ADE △沿直线DE 翻折成1A DE △.若M 为线段1A C 的中点,则在ADE △翻折过程中,给出以下命题:ABE CDMA 1①线段BM 的长是定值; ②存在某个位置,使1DE A C ⊥; ③存在某个位置,使//MB 平面1A DE . 其中,正确的命题是( ) A .① B .①③ C .②③D .①②③10.函数()sin()f x A x ωϕ=+(0A >,0ω>,π02ϕ<<)的部分图象如图所示,给出下列说法: ①函数()f x 的最小正周期为π; ②直线5π12x =-为函数()f x 的一条对称轴; ③点2π,03⎛⎫-⎪⎝⎭为函数()f x 的一个对称中心; ④函数()f x 的图象向右平移π3个单位后得到22y x =的图象. 其中正确说法的个数是( ) A .1B .2C .3D .411.已知12,F F 分别为双曲线22194x y -=的左、右焦点,过F 2且倾斜角为60︒的直线与双曲线的右支交于,A B 两点,记12AF F △的内切圆半径为r 1,12BF F △的内切圆半径为r 2,则12r r 的值等于( ) A .3B .2C 3D 212.已知函数()e ln 2xf x x x x =---,2e ()ln x g x x x x-=+-的最小值分别为a ,b ,则( ) A .a b = B .a b < 二、填空题:本题共4小题,每小题5分,共20分.13.62x x ⎛+ ⎝的展开式中,3x 项的系数是______.14.已知一组数据10,5,4,2,2,2,x ,且这组数据的平均数与众数的和是中位数的2倍,则x 所有可能的取值为______.15.过动点M 作圆C :22(2)(2)1x y -+-=的切线,N 为切点.若MN MO =(O 为坐标原点),则MN 的最小值为______.16.用I M 表示函数sin y x =在闭区间I 上的最大值,若正数a 满足[0,][,2]2a a a M M =,则a 的值为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本题12分) 在ABC △中,已知2AB =,7AC =,D 是BC 边上的一点,5AD =,3DC =. (1)求B ;(2)求ABC △的面积. 18.(本题12分)如图,在直三棱柱111ABC A B C -中,AC AB ⊥,12A A AB AC ===,D ,E ,F 分别为AB ,BC ,1B B 的中点.(1)证明:平面11A C F ⊥平面1B DE ; (2)求二面角1B B E D --的正弦值. 19.(本题12分)已知椭圆E :22221(0)x y a b a b+=>>的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.(1)求椭圆E 的方程;(2)若不过原点的直线l 与椭圆交于A ,B 两点,求OAB △面积的最大值. 20.(本题12分)某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:[0,200),[200,400) [400,600),…,[1000,1200](单位:元),得到如图所示的频率分布直方图:(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”.经数据处理,现在列元) ABCDA 1B 1C 1F联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有95%的把握认为“健身达人”(3 方案一:每满800元可立减100元; 方案二:金额超过800元可抽奖三次,每次中奖的概率为12,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案. 22()()()()()n ad bc K a b c d a c b d -=++++.21.(本题12分)已知函数()e e 1xf xx =+--.(1)若()e f x ax -≥对R x ∈恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](本题10分)在直角坐标系xOy 中,曲线C 1的参数方程为,222x t y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为22.932cos ρθ=-.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 与y 轴交于点M ,1C 与2C 相交于A 、B 两点,求MA MB ⋅的值. 23.[选修4-5:不等式选讲](本题10分)(1)已知()f x x a x =-+,若存在实数x ,使()2f x <成立,求实数a 的取值范围;(2)若0m >,0n >,且3m n +=,求证:143m n+≥.武昌区2020届高三年级元月调研考试理科数学参考答案1.答案:D 解析:{|12},{|2},{|10},0A x x B x a x a A B x x a =-<<=-<<=-<<∴=I ,(1,2),(2,0),(2,2)A B A B ∴=-=-=-U .2.答案:A 解析:11i 11i(i)i 1,(1i)1,i 1i (1i)(1i)22z z z z z +=-=⋅+∴-====+--+,则z 在复平面内对应的点为11,22⎛⎫⎪⎝⎭,位于第一象限. 3.答案:B 解析:设等比数列{}n a 的公比为q ,则0q >,由3223a a =+,可得2223,230q q q q =+--=,(1)(3)0q q +-=,1113,3n n n q a a q --∴===.4.答案:D解析:0.10,10.1log 1log 0.2log 0.1<<,即01a <<, 1.1 1.1log 0.2log 10b =<=,0.201.1 1.11c =>=,所以c a b >>.5.答案:D 解析:以C 为坐标原点建立如图所示平面直角坐标系, 则42(0,0),(2,0),(0,2),,33C A B P ⎛⎫⎪⎝⎭, 则424284,(2,0),(0,2)4333333CP CA CP CB ⎛⎫⎛⎫⋅+⋅=⋅+⋅=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r .6.答案:D 解析:每位学生有3种选择,则4位学生共有4381=种选择,则恰有2人申请A 学习小组的情况有242224C ⨯⨯=种,所以所求概率为2488127P ==. 7.答案:A 解析:易求得32n a n =-,则111111(32)(31)33231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 1211111111113447323133131n n n T b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L , 由93n T n λ<+,得9331nn n λ<++,所以23(31)n n λ+<恒成立,即2min3(31)n n λ⎡⎤+<⎢⎥⎣⎦,因为223(31)3(961)1396n n n n n n n +++⎛⎫==++ ⎪⎝⎭,记1()96(1)f x x x x =++≥,则21()90f x x '=->,所以函数()f x 在[1,)+∞上单调递增,所以min ()(1)16f x f ==,所以2min3(31)31648n n ⎡⎤+=⨯=⎢⎥⎣⎦, 故48λ<.8.答案:C 解析:(1,0),(1,0)F C -,设AFx θ∠=,则22,1cos 1cos AF BF θθ==-+,由2AF FB =, 得241cos 1cos θθ=-+,解得1cos 3θ=,所以直线AB的斜率tan k θ==AB 的方程为:1)y x =-,将其代入24y x =,并整理得:22520x x -+=,解得1212,2x x ==,(2,A ∴,DE , 取DE 中点F ,连接1,A F CF ,1A DE Q △是正三角形,1A F DE ∴⊥,若1DE A C ⊥,则可得出DE ⊥平面1A CF ,从而DE CF ⊥,显然DE 与CF 不垂直,得出矛盾,所以②错误;1//,//MN A D BN DE Q ,,MN BN ⊄平面1A DE ,1,A D DE ⊂平面1A DE ,//MN ∴平面1A DE ,//BN 平面1A DE ,又MN BN N =I ,∴平面//BMN 平面1A DE ,//BM ∴平面1A DE ,③正确.10.答案:C 解析:72,,241234T A T T πππππω==-=∴===,当3x π=时,2,33x ππωϕϕπϕ+=+=∴=, C故()23f x x π⎛⎫=+ ⎪⎝⎭,显然①正确;当512x π=-时,232x ππ+=-,所以②正确;当23x π=-时,23x ππ+=-,所以③正确;函数()f x 的图象向右平移π3个单位,得22333y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故④错误.所以正确说法的个数是3.11.答案:A解析:如图,设圆1O 与1221,,F F AF AF 分别相切于点,,D E G ,则1212222DF DF GF EF AF AF a -=-=-=,又12122DF DF F F c +==,12,DF c a DF c a ∴=+=-,同理可知,圆2O 与12F F 也相切于D 点,2121120,60AF F BF F ∠=︒∠=︒,,所以11223O D rr O D==.2e ()ln x g x x x x -=+-,设2e x s x -=,则0s >,ln 2ln s x x =--,ln ln 2x x s ∴-=--,所以2e ()ln ln 2(0)x g x x x s s s x-=+-=-->,所以()f x 的最小值和()g x 的最小值相等. 13.答案:240 解析:展开式的通项为36662166(2)2kk k k k k k T C x C x ---+==,令3632k -=,得2k =,所以展开式中3x 项的系数为24621516240C ⨯=⨯=.14.答案:11-,3,17 解析:平均数为257x +,众数为2,中位数可能是2或x 或4,依据题意可得,25247x++=或2x 或8,AB CD 解得11x =-或3或17,经检验,均符合题意,所以x 所有可能的取值为11-,3,17. 15.答案:8解析:设(,)M x y ,则22222222(2)(2)1,,,MNx y MO x y MN MO MN MO =-+--=+=∴=Q ,即2222(2)(2)1x y x y -+--=+,整理得:4470x y +-=,MN 的最小值即为MO 的最小值,即为原点O 到直线4470x y +-=的距离8d ==. 16.答案:3π4或9π8解析:当04a π<≤时,22a π≤,[0,][,2]sin ,sin 2a a a M a M a ==,且sin sin 2a a <,显然不满足条件;当42a ππ<<时,则22a ππ<<,此时[0,][,2]sin ,1a a a M a M ==,也不满足条件;在ABD △中,由正弦定理,得sin sin AB ADADC B =∠,sin 5sin 60sin 52AD ADC B AB ∠⨯︒===, 所以45B =︒或135B =︒(舍去). ……………(4分) (2)由(1)知75BAD ∠=︒,且sin 75︒=所以13)sin 28ABDS AB AD BAD ⋅∠=△, 1sin 24ADC S DA DC ADC =⋅∠=△758ABC ABD ADC S S S =+=△△△. …………(12分) 18.解析:(1)因为AC AB ⊥,//DE AC ,所以DE AB ⊥.因为1AA ⊥平面ABC ,DE ⊂平面ABC ,所以1AA DE ⊥.因为1AB AA A =I ,所以DE ⊥平面11AA B B . 因为1A F ⊂平面11AA B B ,所以1DE A F ⊥.易证11DB A F ⊥,因为11DB D E D =I ,所以1A F ⊥平面1B DE .因为1A F ⊂平面11AC F ,所以平面11A C F ⊥平面1B DE . ……………(4分) (2)方法一:过B 作1BH B D ⊥,垂足为H ,过H 作1HG B E ⊥于G ,连结BG ,由(1)知DE ⊥平面11AA B B ,而BH ⊂平面11AA B B ,DE BH ∴⊥,又1BH B D ⊥,1DE B D D =I ,BH ∴⊥平面1B DE ,1B E ⊂Q 平面1B DE ,1B E BH ∴⊥,又1HG B E ⊥,BH HG H =I ,1B E ∴⊥平面BGH ,从而1B E BG ⊥ ,所以BGH ∠为二面角1B B E D --的平面角.在1Rt B BD △中,求得BH =;在1Rt B BE △中,求得BG =.所以sin BH BGH BG ∠==. ……………………………(12分)方法二:以A 为坐标原点,1,,AC AB AA 所在方向为,,x y z 轴的正方向建立如图所示空间直角坐标系,则1(0,2,0),(0,1,0),(1,1,0),(0,2,2)B D E B ,1(1,1,0),(1,1,2),(1,0,0)EB EB ED =-=-=-u u u r u u u r u u u r, 设平面1BB E 的法向量为111(,,)m x y z =u r,则 111111020m EB x y m EB x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩u r u u u rur u u u r ,取11x =,得(1,1,0)m =u r . 设平面1B ED 的法向量222(,,)n x y z =r,则A 1C BAB 1DC 1EFGH1222220n EB x y z n ED x ⎧⋅=-++=⎪⎨⋅=-=⎪⎩r u u u r r u u ur ,取21z =-,则(0,2,1)n =-r .则cos ,5m n m n m n⋅===⋅u r ru r r u r r . 设二面角1B B E D --的大小为θ,则sin θ==. 19.解析:(1)由1,bc a c ⎧=⎪⎨⎪-=⎩及222a b c =+,得2a =,b =所以,椭圆E 的方程为22143x y +=. ……………………………(4分) (2)当直线l 的斜率存在时,设其方程为(0)y kx m m =+≠,代入椭圆方程,整理,得222(43)84120k x kmx m +++-=.由0∆>,得22430k m -+>.设11(,)A x y ,22(,)B x y ,则122843kmx x k +=-+,212241243m x x k -⋅=+.于是AB ==. 又坐标原点O 到直线l的距离为d =所以,OAB △的面积21243S AB d m k =⋅⋅=⋅+.因为22222(43)1243432m k m m k k +-+⋅==++,所以,12S AB d =⋅⋅当直线l 的斜率不存在时,设其方程为x m =,同理可求得1122S AB d m =⋅⋅=所以,OAB △……………………………(12分)20.解析:(1)因为(1000.000503000.000755000.001007000.00125900x =⨯+⨯+⨯+⨯+⨯0.0010011000.00050)200620+⨯⨯=(元),所以,预估2020年7、8两月份人均健身消费为620元. ……………(2分)(2)列联表如下:…因为22100(10302040) 4.762 3.84150503070K ⨯-⨯==>⨯⨯⨯, 因此有95%的把握认为“健身达人”与性别有关系. ……………………………………(6分)(3)若选择方案一:则需付款900元;若选择方案二:设付款X 元,则X 可能取值为700,800,900,1000.33311(700)28P X C ⎛⎫=== ⎪⎝⎭,22313(800)28P X C ⎛⎫=== ⎪⎝⎭, 31313(900)28P X C ⎛⎫=== ⎪⎝⎭,30311(1000)28P X C ⎛⎫=== ⎪⎝⎭, 所以1331()70080090010008508888E X =⨯+⨯+⨯+⨯=(元) 因为850900<,所以选择方案二更划算. ……………………………(12分)21.解析:(1)令()()(e)e (1)1x g x f x ax a x =--=+--,则()e 1x g x a '=+-. 由题意,知()0g x ≥对R x ∈恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()e (1)1x g x a x =+--在R 上单调递增. 因为1(1)(1)10g a e-=---<,所以1a ≤不合题意; 当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增.所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥.记()2(1)ln(1) (1)h a a a a a =-+-->,则()ln(1) h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减,所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥, 所以2(1)ln(1)0a a a -+--=,解得2a =. ……………………………(6分)(2)因为12()()0f x f x +=,所以1212e e 2(e 1)x x x x +++=+. 因为12122e e 2ex x x x ++≥,12x x ≠,所以12122e e 2e x x x x ++>.令12x x t +=,则22e 2e 20t t +--<. 记2()2e 2e 20tm t t =+--<,则2()e 10t m t '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22e 2e 20t t +--<,得()(2)m t m <,所以2t <,即122x x +<.…………(12分)另证:不妨设12x x <,因为()e 10x f x '=+>,所以()f x 为增函数. 要证122x x +<,即要证212x x <-,即要证21()(2)f x f x <-.因为12()()0f x f x +=,即要证11()(2)0f x f x +->.记2()()(2)e e 2e x x h x f x f x -=+-=+-,则(e e)(e e)()e x x xh x -+'=. 所以min ()(1)0h x h ==,从而()()(2)0h x f x f x =+->,得证.22.解析:(1)方程,22x y ⎧=-⎪⎪⎨⎪=+⎪⎩可化为20x y +-=. 方程22.932cos ρθ=-可化为22193x y +=. ……………………(5分) (2)将,22x y ⎧=⎪⎪⎨⎪=+⎪⎩代入22193x y +=,得2230t ++=.设方程2230t ++=的两根分别为1t ,2t ,则1232MA MB t t ⋅=⋅=.…………………(10分) 23.解析:(1)方法一:因为()()f x f x x a x x a x a ==-+--=≥,因为存在实数x ,使()2f x <成立,所以2a <,解得22a -<<.方法二:当0a =时,符合题意.当0a >时,因为2, ,(), 0,2, 0,x a x a f x x a x a x a x a x ->⎧⎪=-+=⎨⎪-+<⎩≤≤ 所以min ()f x a =.因为存在实数x ,使()2f x <成立,所以2a <.当0a <时,同理可得2a >-.综上,实数a 的取值范围为(2,2)-. ……………………………(5分)(2)因为3m n +=,所以1414141553333m n n m m n m n m n ⎛⎫+⎛⎫⎛⎫+=+=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥,当且仅当1,2m n ==时取等号. ……………………………(10分)。
2020武汉元调数学试卷及答案(Word精校版)
第1页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2514x x 化成一般形式后,二次项系数和一次项系数分别是( ) A .5,-1 B .5,4 C .5,-4 D .5,12.下列四张扑克牌的牌面,不是中心对称图形的是( )A .B .C .D .3.抛物线22y x 与22yx 相同的性质是( ) A .开口向下 B .对称轴是y 轴 C .有最低点 D .对称轴是x 轴4.一个不透明的袋子中只有4个黑球,2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5.已知O 的半径等于3cm ,圆心O 到点P 的距离为5cm ,那么点P 与O 的位置关系是( ) A .点P 在O 内 B . 点P 在O 外 C .点P 在O 上 D .无法确定6.要将抛物线2y x 平移后得到抛物线223y x x ,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位7.如图,将△ABC 绕顶点C 逆时针旋转角度得到A B C ,且点B 刚好落在A B 上,若∠A =28°,BCA =43°,则等于( )A .36°B .37°C .38°D .39°8.小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等,小明上学经过三个路口时,不全是红灯的概率是( )A .38 B . 12 C . 58 D . 789.如果m 、n 是一元二次方程24x x +=的两个实数根,那么多项式222n mn m --的值是( )A .16B .14C .10D .610.如图,△ABC 的两个顶点A ,B的O 上,∠A =60°,∠B =30°.若固定点A ,点B 在O 上运动,则OC 的最小值是( )A第2页 / 共12页A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (1,2)关于原点对称的点坐标是________. 12. 一个盒子中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别,从盒中随机取出一枚棋子,记下颜色,再放回盒子中,不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有________枚白棋子.13.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,∠BCD 的大小是 .14.为响应全民阅读活动,某校面向社会开放图书馆,自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次,若进馆人次的月增长率相同,为求进馆人次的月增长率,设进馆人次的月增长率为x ,依题意可列方程为 .15.已知二次函数()20y ax bx c c =++<的图像开口向上,对称轴为直线1x =,下列结论中,一定正确的 是 (填序号即可).①0b <; ②420a b c ++<; ③a c b +>; ④()a b t at b +≤+(t 是一个常数).16.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率,某圆半径为R ,其内接正十二边形的周长为C . 若R ,则C = ,2CR≈ ,(结果精确到0.01 2.449≈ 1.414≈).三、解答题(共8题,共72分)17.(本题8分)若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,求m 的值及此时方程的根.B第3页 / 共12页18. (本题8分)如图,A .B .C 三点在半径为1的O 上,四边形ABCD 是菱形,求的长.19. (本题8分)在5种同型号的产品中,有1件不合格品和4件合格品. (1)从这5件产品中随机选取1件,直接写出抽到合格品的概率; (2)从这5件产品中随机选取2件,求抽到都是合格品的概率.20.(本题8分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果). (1)如图(1),P 是平行四边形ABCD 边AD 上一点,过点P 画一条直线把这个四边形分成面积相等的两部分; (2)如图(2),五边形ABCDE 是正五边形,画一条直线把这个五边形分成面积相等的两部分; (3)如图(3),△ABC 的外接圆的圆心是点O ,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.(1)(2)(3)AED CBAD21.(如图8分)如图,P A,PB 分别与O相切于A,B两点,AC 是O的直径,AC=AP,连接OP交AB于点D,连接PC 交O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求BDDE的值.22.(本题10分)某公司经过市场调查,整理出来某种商品在某个月的第x天的销售价与销售量的相关信息如(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.第4页 / 共12页23.(本题10分)问题背景:如图(1),在四边形ABCD中,若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD,小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足1013AD AB,BD=AB,点P是AD的中点,直接写出PCAB的值.(1) (2) (3)BB第5页 / 共12页24.(本题12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>-2),且与x轴相切于点B.y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记做曲线F.(1)如图(1),①当y=32时,直接写出P的半径;②当m=-1,x=-2时,直接写出P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图(2),若曲线F最低点总在直线y=12x+3的下方,点C(-2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.3第6页 / 共12页第7页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷参考答案9.答案:B 解析:∵m ,n 为方程x ²+x =4的解∴m +n =-1;mn =-4,且代n 到原式,得n ²=4-n∴原式=2(4-n )-mn -2m =8-2n -2m -mn =8-2(m +n )-mn =8+2+4 =1410.答案:A 解析:延长BC 交圆O 与D ,连O D .取AD 的中点E ,连OE ,连CE ∵ ∠B =30°,∴∠DOA =60°,∴△DAO 为等边三角形 ∵3OA ,∴3AD∵∠DCA =90°,∴点C 在以点E为半径的圆上运动∵OC OE CE ,∴3322OC ,故答案选A二、填空题(本大题共6个小题,每小题3分,共18分) 11. ()1,2-- 12.20 13.130°14.()()220020012001872x x ++++=15.①②④16.答案:24; 3.1116.解析:过C 作CD ⊥AB 于D , 正十二边形中心角∠CAD =30°B第8页 / 共12页∴12CD AC ==AD ==,BD AB AD =- 在Rt △CDB中,2CB =,∴24C =, 3.112CR≈三、解答题(共8题,共72分) 17. m =1,方程的根为x 1=x 2=-118. 23π19.(1)45;(2)3520. (1)(2)(作法不唯一)(3)21. 证明:(1)∵P A 为O 切线,∴∠P AO =90° ∵AC 为O 直径,∴∠ABC =90°∴∠BAC +∠ACB =∠BAC +∠P AD ,∴ ∠ACB =∠P ADBE第9页 / 共12页∵P A ,PB 为O 切线,∴P A =PB∵OA =OB ,P A =PB ,∴OP ⊥AB ,∴∠ADP =90° 在△ABC 和△PDA 中 ∠=∠=⎧⎪⎨⎪⎩=∠∠ACB PAD AC PA ABC PDA ∴△ABC ≌△PDA (AAS )解:(2)连接AE ,连接BE 交DP 于点F ∵∠ADO =∠ABC =90°,∴OP ∥BC ,∴∠BCE =∠FPE ,∵AC 为直径,∴∠AEC =90°, ∵∠P AO =90°,AC =AP ,∴∠ACE =45°,CE =PE 在△CEB 和△PEF 中 ∠=∠=∠⎧⎪⎨⎩=∠⎪BCE FPE CE PECEB PEF ∴△CEB ≌△PEF (ASA ) ∴BE =FE∵∠ABE =∠ACE =45°,∠BDP =∠ADP =90°,∴BD =DF 在Rt △BDF 中,222+=BD DF BF ,∴222=BD BF ,∴BF∵BE =EF ,∴BDDE22. 解:(1)y =[(x +40)-20](100-2x ) ,∴y =-2x 2+60x +2000 (2)由(1)知y =-2x 2+60x +2000当日销售利润为2250元时,有-2x 2+60x +2000=2250 解得:x 1=5; x 2=25故该销售商品第5天或第25天时,日销售利润为2250元. (3)11天当销售利润为2400时,有-2x 2+60x +2000=2400 解得:x 1=10; x 2=20 由二次函数图像性质可知:共有11天(第10天到第20天),销售利润不低于2400元.23. (1) 解:第10页 / 共12页(2) 证明:延长DC 至点F ,使CF =AE ,连接BE ,BF在△ABE 和△CBF 中 ==BCF =AB BC A AE CF ⎧⎪⎨⎪⎩∠∠ ∴△ABE ≌△CBF (SAS ),∴BE =BF 又∵DE =AE +CD 且AE =CF ,∴DE =DF 在△BDE 和△BDF 中 BE BF DE DF BD BD =⎧⎪=⎨⎪=⎩∴△BDE ≌△BDF (SSS )∴∠BDE =∠BDF ,∴BD 平分∠CDE (3)①当D 在AB 左侧时连接CP ,过点C 作CE ⊥CP ,交DA 的延长线于E 点∵AB =BD ,且P 是AD 的中点,∴BP ⊥AD ,即∠CBP =∠CAE∵AD =1013AB ,∴AP =12AD =513AB ,BP1213AB∵=ACE PCB ∠∠,在△BCP 和△ACE 中第11页 / 共12页CBP CAE BC ACBCP ACE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△BCP ≌△ACE (ASA )∴AE =PB =1213AB ,PE =AP +AE =1713AB ∵PC =CE ,PC ⊥CE ,∴△PCE 为等腰直角三角形PCPE,即PC AB ②当D 在AB 右侧时连接CP ,过点C 作CQ ⊥CP 交BP 于点Q由①可知:∠APB =∠ACB =90°,AP =513AB ,PB =1213AB ∵PC ⊥CQ ,∴∠PCQ =∠ACB =90°,∴∠ACP =∠BCQ ∵∠APB =∠ACB ,∴∠CAP =∠CBQ在△ACP 和△BCQ 中CAP CBQ AC BCACP BCQ =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACP ≌△BCQ (ASA )∴BQ =AP =513AB PQ =BP -BQ =713AB ,PC =PQ ∵PC ⊥CQ ,∴△PCQ 为等腰直角三角形∴PCPQAB ,即PC = 综上所述:PC AB =24.解:(1)①32②54(2)依题意得:PB =P Ay = B D第12页 / 共12页 ()()22224y y m x m ---=-,∴()()21242y x m m m =-+++, 即顶点(m ,m +2)(3)方法一:顶点(m ,m +2)在直线y =x +2运动 又∵最低点一直在132y x =+下方,x +2<132x +,即m <2,∴-2<m <2 ∵C (-2,y 1),D (1,y 2),∴()()212242m y m m +=+++,()()221242m y m m =+++- ()()()()()2212213214242m m m y y m m +--+-==++,令y 1=y 2,解得12m =- ①当-2<m <12-时,()()32142m m ++<0 ,即y 1-y 2<0,故y 1<y 2; ②当12m =-时,()()32142m m ++=0,y 1=y 2; ③当-12<m <2时,()()32142m m ++>0,y 1>y 2. 综上①当-2<m <12-时,y 1<y 2;②当12m =-时,y 1=y 2;③当-12<m <2时,y 1>y 2. 方法二:(3)函数值的大小可以比较点到对称轴的距离当m =12-时,y 1=y 2 ;当-2<m <12-时,y 1<y 2 ;当-12<m <2时,y 1>y 2.。
湖北省武汉市江岸区2019-2020学年高三上学期2020年元月调研测试理科数学(教师详细解析)
D. ②③④
4
【答案】B 【解析】 【分析】 由方差的定义和性质可判断①;由残差点分布区域特点可判断②;由正态分布的特点可判断③;由随机变 量的观测值的大小可判断④. 【详解】解:①若将一组样本数据中的每个数据都加上同一个常数后,由方差的计算公式可得样本的方差 不变,故正确; ②在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,故正确;
A. 2
B. 3
C. 4
D. 5
【答案】D 【解析】 【分析】
利用对数的运算法则,将原式化成 log2 a1a2 a5 ,再利用等比数列性质,对真数计算后即可求出. 【详解】解:各项为正数的等比数列an 中,且 a3 2 , 则 a1a2a3a4a5 a1a5 a2a4 a3 a35 32 , 所以 log2 a1 log2 a2 log2 a5 log2 a1a2 a5 log2 32 5 ,
2 部都不是现代译本的方法数为 C42 6 (种),
由对立事件的概率计算公式得至少有一部是现代译本的概率 P 1 6 13 . 45 15
2
故选:A.
【点睛】本题考查概率的计算,考查组合知识,属于基础题.
5.已知平面向量 a
3,1
,b
1,
3
,则
a
2 部作为课外读物,至少有一部是现代译本的概率是( )
13
A.
15
2
B.
3
8
C.
15
【答案】A
D. 1 3
【解析】 【分析】
求出从 10 部著作中选择 2 部古汉语本的方法数,即 2 部都不是现代译本的方法数,由对立事件的概率计算
2020届湖北省武汉市高三1月调研考试数学(文科)试卷Word版含解斩
2020届湖北省武汉市高三1月调研考试数学(文科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈N|0≤x≤5},B={x|2﹣x<0},则A∩(∁RB)=()A.{1} B.{0,1} C.{1,2} D.{0,1,2}2.在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若x,y满足约束条件,则z=x+y的最大值为()A.﹣3 B.C.1 D.4.执行如图所示的程序框图,若输入的 x=2017,则输出的i=()A.2 B.3 C.4 D.55.设公比为q(q>0)的等比数列{an }的前项和为Sn,若S2=3a2+2,S4=3a4+2,则a1=()A.﹣2 B.﹣1 C.D.6.已知函数f ( x)=2ax﹣a+3,若∃x0∈(﹣1,1),f ( x)=0,则实数 a 的取值范围是()A.(﹣∞,﹣3)∪(1,+∞) B.(﹣∞,﹣3)C.(﹣3,1)D.(1,+∞)7.在平行四边形ABCD中,点M,N分别在边BC,CD上,且满足BC=3MC,DC=4NC,若AB=4,AD=3,则=()A.B.0 C.D.78.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器﹣﹣商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2 B.1.6 C.1.8 D.2.49.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁10.已知函数 f ( x)的部分图象如图所示,则 f ( x)的解析式可以是()A.f(x)=B.f(x)=C.f(x)=D.f(x)=11.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则的最小值为()A.6 B.3 C.D.12.若在区间上是增函数,则实数a的取值范围为()A.[﹣2,+∞)B.(﹣2,+∞)C.(﹣∞,﹣4)D.(﹣∞,﹣4]二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线l将圆C:x2+y2+x﹣2y+1=0平分,且与直线x+2y+3=0垂直,则l的方程为.14.已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 0347 4373 8636 9647 1417 46980371 6233 2616 8045 6011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为.15.设等差数列{an }的前n项和为Sn,已知a1=9,a2为整数,且Sn≤S5,则数列的前9项和为.16.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确结论的序号是.(写出所有正确结论的序号)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.△ABC的内角A,B,C的对边分别为a,b,c,已知3acosC=2ccosA,,(Ⅰ)求B;(Ⅱ)若b=5,求△ABC的面积.18.如图,四棱锥S=ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求四棱锥S﹣ABCD的高.19.我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超过x的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.20.已知直线y=k(x﹣2)与抛物线相交于A,B两点,M是线段AB的中点,过M 作y轴的垂线交Γ于点N.(Ⅰ)证明:抛物线Γ在点N处的切线与AB平行;(Ⅱ)是否存在实数k使?若存在,求k的值;若不存在,说明理由.21.已知函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a<0,若对∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xoy中,曲线C的参数方程为(t为参数,a>0)以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为.(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.[选修4-5:不等式选讲](共1小题,满分0分)23.设函数f(x)=|x﹣2|+2x﹣3,记f(x)≤﹣1的解集为M.(Ⅰ)求M;(Ⅱ)当x∈M时,证明:x[f(x)]2﹣x2f(x)≤0.2020届湖北省武汉市高三1月调研考试数学(文科)试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.B)=()1.已知集合A={x∈N|0≤x≤5},B={x|2﹣x<0},则A∩(∁RA.{1} B.{0,1} C.{1,2} D.{0,1,2}【考点】交、并、补集的混合运算.【分析】化简集合A、B,根据补集与交集的定义写出运算结果即可.【解答】解:集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},B={x|2﹣x<0}={x|x>2},B={x|x≤2},则∁R所以A∩(∁B)={0,1,2}.R故选:D.2.在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数==的共轭复数对应的点位于第三象限.故选:C.3.若x,y满足约束条件,则z=x+y的最大值为()A.﹣3 B.C.1 D.【考点】简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,z取得最大值,由,解得A(1,)时,目标函数有最大值,为z=1+=.故选:D.4.执行如图所示的程序框图,若输入的 x=2017,则输出的i=()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出输出i的值.【解答】解:根据题意,得a=2017,i=1,b=﹣,i=2,a=﹣,b=,i=3,a=,b=2017,不满足b≠x,退出循环,故选B.5.设公比为q(q>0)的等比数列{an }的前项和为Sn,若S2=3a2+2,S4=3a4+2,则a1=()A.﹣2 B.﹣1 C.D.【考点】等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:∵S2=3a2+2,S4=3a4+2,∴=3,q>0,解得q=,代入a1(1+q)=3a1q+2,解得a1=﹣1.故选:B.6.已知函数f ( x)=2ax﹣a+3,若∃x0∈(﹣1,1),f ( x)=0,则实数 a 的取值范围是()A.(﹣∞,﹣3)∪(1,+∞) B.(﹣∞,﹣3)C.(﹣3,1)D.(1,+∞)【考点】函数零点的判定定理.【分析】利用零点判定定理以及一次函数的性质,列出不等式求解即可.【解答】解:函数f ( x)=2ax﹣a+3,若∃x0∈(﹣1,1),f ( x)=0,可得(﹣3a+3)(a+3)<0,解得a∈(﹣∞,﹣3)∪(1,+∞).故选:A.7.在平行四边形ABCD中,点M,N分别在边BC,CD上,且满足BC=3MC,DC=4NC,若AB=4,AD=3,则=()A.B.0 C.D.7【考点】平面向量数量积的运算.【分析】由题意画出图形,把向量转化为向量求解.【解答】解:如图,∵BC=3MC,DC=4NC,且AB=4,AD=3,则===.故选:B.8.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器﹣﹣商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2 B.1.6 C.1.8 D.2.4【考点】由三视图求面积、体积.【分析】由三视图知,商鞅铜方升由一圆柱和一长方体组合而成.利用体积求出x.【解答】解:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成.由题意得:1,(5.4﹣x)×3×1+π•( 2)2x=12.6,x=1.6.故选:B.9.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁【考点】进行简单的合情推理.【分析】这个问题的关键是四人中有两人说真话,另外两人说了假话,这是解决本题的突破口;然后进行分析、推理即可得出结论.【解答】解:在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假(即都是真话或者都是假话,不会出现一真一假的情况);假设乙、丁两人说的是真话,那么甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯.故选B.10.已知函数 f ( x)的部分图象如图所示,则 f ( x)的解析式可以是()A.f(x)=B.f(x)=C.f(x)=D.f(x)=【考点】函数的图象;函数解析式的求解及常用方法.【分析】利用函数图象判断奇偶性,排除选项,然后利用函数的特殊值判断即可.【解答】解:由函数的图象可知函数是奇函数,排除f(x)=,x=π时,f(x)==<0,f(x)==,不满足题意;f(x)==<0,因为y=cosx是周期函数,由函数的图象可知,函数具有波动性,所以函数的解析式可能是D.故选:D.11.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则的最小值为()A.6 B.3 C.D.【考点】椭圆的简单性质;双曲线的简单性质;圆锥曲线的综合.【分析】通过图象可知F1F2=F2M=2c,利用椭圆、双曲线的定义及离心率公式可得的表达式,通过基本不等式即得结论.【解答】解:由题意可知:F1F2=F2M=2c,又∵F1M+F2M=2a1,F1M﹣F2M=2a2,∴F1M+2c=2a1,F1M﹣2c=2a2,两式相减,可得:a1﹣a2=2c,∵==,∴===4+2+,∵2+≥2=2,当且仅当时等号成立,∴的最小值为6,故选:A.12.若在区间上是增函数,则实数a的取值范围为()A.[﹣2,+∞)B.(﹣2,+∞)C.(﹣∞,﹣4)D.(﹣∞,﹣4]【考点】正弦函数的单调性.【分析】首先把函数变形成标准型的二次函数,进一步利用复合函数的单调性求出结果.【解答】解:∵=1﹣2sin2x﹣asinx=﹣2+1﹣,令t=sinx,则f(x)=g(t)=﹣2+1﹣.由于t=sinx在区间上是增函数,故t∈(,1),∴﹣≥1,∴a≤﹣4故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线l将圆C:x2+y2+x﹣2y+1=0平分,且与直线x+2y+3=0垂直,则l的方程为2x ﹣y+2=0 .【考点】直线与圆相交的性质.【分析】求出圆的圆心,以及直线的斜率,利用点斜式方程即可得到直线的方程.【解答】解:∵圆C:x2+y2+x﹣2y+1=0的圆心坐标为(﹣,1),直线x+2y+3=0的斜率k=﹣,则与直线x+2y+3=0垂直的直线斜率k=2,∴所求的直线方程为y﹣1=2(x+),即2x﹣y+2=0.故答案为2x﹣y+2=0.14.已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 0347 4373 8636 9647 1417 46980371 6233 2616 8045 6011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为0.75 .【考点】古典概型及其概率计算公式.【分析】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示种射击4次至少击中3次的有多少组,可以通过列举得到共多少组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次至少击中3次的有:5727 0293 9857 0347 4373 8636 9647 46986233 2616 8045 3661 9597 7424 4281,共15组随机数,∴所求概率为=0.75.故答案为 0.75.15.设等差数列{an }的前n项和为Sn,已知a1=9,a2为整数,且Sn≤S5,则数列的前9项和为﹣.【考点】数列的求和.【分析】通过Sn ≤S5得a5≥0,a6≤0,利用a1=9、a2为整数,由等差数列的通项公式,解不等式可得d=﹣2,进而可得通项公式;通过an =11﹣2n,可得bn===(﹣),运用数列的求和方法:裂项相消求和即可得到所求值.【解答】解:在等差数列{an }中,设公差为d,由Sn≤S5得:可得a5≥0,a6≤0,又∵a1=9,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣2,∴{an }的通项为:an=11﹣2n;∴设bn===(﹣),∴数列的前9项和为T=(﹣+﹣+﹣+…+﹣)9=(﹣+)=﹣.故答案为:﹣.16.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确结论的序号是②.(写出所有正确结论的序号)【考点】命题的真假判断与应用.【分析】先根据翻折前后的变量和不变量,计算几何体中的相关边长,若①成立,则需BD⊥EC,这与已知矛盾;若②成立,则A在底面BCD上的射影应位于线段BC上,可证明位于BC 中点位置,故②成立;若③成立,则A在底面BCD上的射影应位于线段CD上,这是不可能的.【解答】解:如图,AE⊥BD,CF⊥BD,依题意不妨令,AB=1,BC=,AE=CF=,BE=EF=FD=,①,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除①;②,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故②正确;③,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除③;故答案为:②三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.△ABC的内角A,B,C的对边分别为a,b,c,已知3acosC=2ccosA,,(Ⅰ)求B;(Ⅱ)若b=5,求△ABC的面积.【考点】正弦定理.【分析】(Ⅰ)由题设条件及正弦定理得3sinAcosC=2sinCcosA,利用同角三角函数基本关系式可求,结合已知可求tanC,tanA,利用两角和的正切函数公式可求tanB,结合B的范围可求B的值.(Ⅱ)由,,利用同角三角函数基本关系式可求sinA,sinC的值,利用正弦定理可求a,进而利用三角形面积公式即可计算得解.【解答】解:(Ⅰ)由题设条件及正弦定理,得3sinAcosC=2sinCcosA,∴;∵,∴,∴,∵0<B<π,∴.(Ⅱ)在△ABC中,由,,得,,由正弦定理,得,解得:,可得:.18.如图,四棱锥S=ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求四棱锥S﹣ABCD的高.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(Ⅰ)取AB的中点E,连结DE,SE,则四边形BCDE为矩形,推导出SD⊥SA,SD⊥SB,由此能证明SD⊥平面SAB.(Ⅱ)设四棱锥S﹣ABCD的高为h,则h也是三棱锥S﹣ABD的高,由VS﹣ABD =VD﹣SAB,能求了四棱锥S﹣ABCD的高.【解答】证明:(Ⅰ)如图,取AB的中点E,连结DE,SE,则四边形BCDE为矩形,∴DE=CB=2,∴,∵侧面SAB为等边三角形,AB=2,∴SA=SB=AB=2,且,又∵SD=1,∴SA2+SD2=AD2,SB2+SD2=BD2,∴SD⊥SA,SD⊥SB,∵SA∩SB=S,∴SD⊥平面SAB.解:(Ⅱ)设四棱锥S﹣ABCD的高为h,则h也是三棱锥S﹣ABD的高,由(Ⅰ)知,SD⊥平面SAB,由VS﹣ABD =VD﹣SAB,得,∴,又,,SD=1,∴,故四棱锥S﹣ABCD的高为.19.我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超过x的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【考点】频率分布直方图.【分析】(Ⅰ)由频率分布直方图中小矩形的面积之和为1,能求出a.(Ⅱ)由频率分布直方图求出100位居民每人月用水量不低于3吨的人数的频率,由此能估计全市80万居民中月均用水量不低于3吨的人数.(Ⅲ)求出前6组的频率之和为0.88>0.85,前5组的频率之和为0.73<0.85,从而得到2.5≤x<3,由此能估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.【解答】解:(Ⅰ)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.(Ⅱ)由频率分布直方图可知,100位居民每人月用水量不低于3吨的人数为(0.12+0.08+0.04)×0.5=0.12,由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800000×0.12=96000.(Ⅲ)∵前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,∴2.5≤x<3由0.3×(x﹣2.5)=0.85﹣0.73,解得x=2.9,因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.20.已知直线y=k(x﹣2)与抛物线相交于A,B两点,M是线段AB的中点,过M 作y轴的垂线交Γ于点N.(Ⅰ)证明:抛物线Γ在点N处的切线与AB平行;(Ⅱ)是否存在实数k使?若存在,求k的值;若不存在,说明理由.【考点】圆锥曲线的范围问题;直线与抛物线的位置关系.【分析】(Ⅰ)由消去y并整理,设A(x1,y1),B(x2,y2),利用韦达定理求出MN坐标,写出抛物线Γ在点N处的切线l的方程为,将x=2y2代入上式,推出m=k,即可证明l∥AB.(Ⅱ)假设存在实数k,使,则NA⊥NB,利用(Ⅰ),求出弦长,然后求出斜率,说明存在实数k使.【解答】解:(Ⅰ)由消去x并整理,得2k2x2﹣(8k2+1)x+8k2=0,设A(x1,y1),B(x2,y2),则,∴,,由题设条件可知,,,∴,设抛物线Γ在点N处的切线l的方程为,将x=2y2代入上式,得,∵直线l与抛物线Γ相切,∴,∴m=k,即l∥AB.(Ⅱ)假设存在实数k,使,则NA⊥NB,∵M是AB的中点,∴,由(Ⅰ)得=,∵MN⊥y轴,∴,∴,解得,故存在,使.21.已知函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a<0,若对∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的定义域为(0,+∞),求导数,若a≤0,若a>0,判断导函数的符号,然后推出函数的单调性.(Ⅱ)不妨设x1≤x2,而a<0,由(Ⅰ)知,f(x)在(0,+∞)上单调递增,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),4x1﹣f(x1)≥4x2﹣f(x2),令g(x)=4x﹣f(x),通过函数的导数求解函数的最值,推出结果.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),求导数,得,若a≤0,则f'(x)>0,此时f(x)在(0,+∞)上单调递增,若a>0,则由f'(x)=0得x=a,当0<x<a时,f'(x)<0,当x>a时,f'(x)>0,此时f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)不妨设x1≤x2,而a<0,由(Ⅰ)知,f(x)在(0,+∞)上单调递增,∴f(x1)≤f(x2)从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),4x1﹣f(x1)≥4x2﹣f(x2)①令g(x)=4x﹣f(x),则,因此,①等价于g(x)在(0,+∞)上单调递减,∴对∀x∈(0,+∞)恒成立,∴对∀x∈(0,+∞)恒成立,∴,又,当且仅当,即x=1时,等号成立.∴a≤﹣1,故a的取值范围为(﹣∞,﹣1].请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xoy中,曲线C的参数方程为(t为参数,a>0)以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为.(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)求出直线的普通方程,设P(2cost,2sint),则P到直线l的距离,即可求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,则对∀t∈R,有acost﹣2sint+4>0恒成立,即(其中)恒成立,即可求a的取值范围.【解答】解:(Ⅰ)由,得,化成直角坐标方程,得,即直线l的方程为x﹣y+4=0.依题意,设P(2cost,2sint),则P到直线l的距离,当,即时,.故点P到直线l的距离的最小值为.(Ⅱ)∵曲线C上的所有点均在直线l的右下方,∴对∀t∈R,有acost﹣2sint+4>0恒成立,即(其中)恒成立,∴,又a>0,解得,故a的取值范围为.[选修4-5:不等式选讲](共1小题,满分0分)23.设函数f(x)=|x﹣2|+2x﹣3,记f(x)≤﹣1的解集为M.(Ⅰ)求M;(Ⅱ)当x∈M时,证明:x[f(x)]2﹣x2f(x)≤0.【考点】函数与方程的综合运用.【分析】(Ⅰ)化简,通关当x≤2时,当x>2时,分别求解f(x)≤﹣1的解集.(Ⅱ)求出当x∈M时,f(x)=x﹣1,化简x[f(x)]2﹣x2f(x),利用二次函数的性质求解即可.【解答】解:(Ⅰ)由已知,得,当x≤2时,由f(x)=x﹣1≤﹣1,解得,x≤0,此时x≤0.当x>2时,由f(x)=3x﹣5≤﹣1,解得,显然不成立,故f(x)≤﹣1的解集为M={x|x≤0}.(Ⅱ)证明:当x∈M时,f(x)=x﹣1,于是,∵函数在(﹣∞,0]上是增函数,∴g(x)≤g(0)=0,故x[f(x)]2﹣x2f(x)≤0.。
2020年湖北省武汉市九年级元月调考数学模拟试卷
2020年湖北省武汉市九年级元月调考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°9.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二.填空题(满分18分,每小题3分)10.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n=.11.如图,小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,由弦A1C1和弧A1C1围成的弓形面积记为S1,由弦A2C2和弧A2C2围成的弓形面积记为S2,…,以此下去,由弦A n∁n和弧A n∁n围成的弓形面积记为S n,其中S2020的面积为.12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.。