选修1-2 第1章 2.2独立性检验导学案
北师大版数学-选修1-2 独立性检验的基本思想和应用习题导学案

选修1-2陕西省榆林育才中学高中数学 第1章《统计案例》1.2.1独立性检验的基本思想和应用习题导学案学习目标1.借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的必要性;2.会根据22 列联表求统计量2K . 学习过程2. 用独立性检验来考察两个事件x 与y 是否有关系,当统计量χ2的值( )A .越大,“x 与y 有关系”成立的可能性越小B .越大,“x 与y 有关系”成立的可能性越大C .越小,“x 与y 没有关系”成立的可能性越小D .与“x 与y 有关系”成立的可能性无关3. 如果根据性别与是否爱好运动的列联表得到χ2≈3.852>3.841,所以判断性别与运动有关,那么这种判断犯错的可能性不超过 ( )A .2.5%B .0.5%C .1%D .5%4. 在吸烟与患肺病这两个变量的计算中,下列说法正确的是( )A .若χ2的值大于6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D .以上三种说法都不正确5. 某班主任对全班50名学生进行了作业量的调查,数据如表认为作业量大认为作业量不大合计男生18927女生81523合计262450则推断“学生的性别与认为作业量大有关”,这种推断犯错误的概率不超过( ) A.0.1 B.0.05 C.0.9 D.0.956.在一个2×2列联表中,由其数据计算得χ2=7.097,则两个事件有关系的把握为( ) A.99% B.95%C.90% D.无关系二、能力提升10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:支持新教材支持旧教材合计教龄在15年以122537上的教师教龄在15年以102434下的教师合计22497111.在一次天气恶劣的飞行航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞行航程中,男乘客是否比女乘客更容易晕机?12.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系.三、探究与拓展13.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:积极支持教育改革不太赞成教育改革合计大学专科以上学历39157196 大学专科以下学历29167196 合计68324392。
1.2《独立性检验的基本思想及其初步应用》教案(新人教选修1-2)

1.2独立性检验的基本思想及其初步应用(第一课时)。
教学目标:1理解独立性检验的基本思想2、会从列联表、柱形图、条形图直观判断吸烟与患癌有关。
3、了解随机变量K 2的含义。
教学重点:理解独立性检验的基本思想。
教学难点;1、理解独立性检验的基本思想、2、了解随机变量K 2的含义。
教学过程:一、引入:从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表,柱形图,和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。
二、独立性检验就是检验两个分类变量是否有关的一种统计方法:用字母表示吸烟与患肺癌的列联表:不患肺癌 患肺癌 合计不吸烟 a b a+b吸烟 c d c+d合计 a+c b+d a+b+c+d样本容量 n=a+b+c+d假设H 0 : 吸烟与患肺癌没有关系。
则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a c a c d c a b ad bc a b c dad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++--=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱.构造随机变量 其中()()2781721489874916.635⨯⨯≈⨯⨯⨯≥≈≥f 2020220202若H 成立,则K 应该很小. 把表中数据代入公式9965777549-422099K =56.632在H 成立的情况下.统计学家估算出如下概率P K 0.01即在H 成立的情况下,K 的值大于6.635的概率非常小.如果K 6.635,就断定H 不成立,出错的可能性有多大?出现K =56.632 6.635 的概率不超过1% .因此,我们有99%的把握认为"吸烟与患肺癌有关系."三、作业:预习17页。
高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案第一章统计案例第一课时 1.1回归分析的基本思想及其初步应用(一)教学目标1、知识与技能目标 认识随机误差;2、过程与方法目标(1)会使用函数计算器求回归方程; (2)能正确理解回归方程的预报结果. 3、情感、态度、价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8 身高/cm165165 157 170 175 165 155 170 体重/kg 4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程 第三步:代值计算010203040506070150155160165170175180身高/cm体重/k g② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. ③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.第二课时 1.1回归分析的基本思想及其初步应用(二)教学目标:1知识与技能:会建立回归模型,进而学习相关指数(相关系数r 、总偏差平方和、随机误差的效应即残差、残差平方和、回归平方和、相关指数R2、残差分析) 2过程与方法:通过学习会求上述的相关指数3情感态度价值观:从实际问题发现已有知识不足,激发好奇心、求知欲。
高中数学选修1,2《独立性检验的基本思想及其初步应用》教案

高中数学选修1,2《独立性检验的基本思想及其初步应用》教案高中数学选修1-2《独立性检验的基本思想及其初步应用》教案教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算得到的观察值 . 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.不健康健康总计不优秀41626667优秀37296333三、课时小结:独立性检验的方法、原理、步骤四、巩固练习:某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?五、课外作业课时练习六、板书设计。
2021学年高中数学第一章统计案例2.2_2.4学案北师大版选修1_2

2.2 独立性检验2.3 独立性检验的根本思想2.4 独立性检验的应用学习目标χ2的意义和独立性检验的根本思想.知识点一2×2列联表思考某教育行政部门大力推行素质教育,增加了高中生的课外活动时间,某校调查了学生的课外活动方式,结果整理成下表:体育文娱总计男生210230440女生60290350总计270520790如何判定“喜欢体育还是文娱与性别是否有联系〞?答案可通过表格与图形进展直观分析,也可通过统计分析定量判断.梳理设A,B为两个变量,每一变量都可以取两个值,得到表格.BAB1B2总计A1 a b a+bA2 c d c+d总计a+c b+d n=a+b+c+d其中,a表示变量A取A1,且变量B取B1时的数据,b表示变量A取A1,且变量B取B2时的数据;c表示变量A取A2,且变量B取B1时的数据;d表示变量A取A2,且变量B取B2时的数据.上表在统计中称为2×2列联表.知识点二统计量χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).(其中n=a+b+c+d为样本容量)知识点三独立性检验当χ2≤2.706时,没有充分的证据判定变量A,B有关联;当χ2>2.706时,有90%的把握判定变量A,B有关联;当χ2>3.841时,有95%的把握判定变量A,B有关联;当χ2>6.635时,有99%的把握判定变量A,B有关联.1.列联表中的数据是两个分类变量的频数.( √)2.事件A与B的独立性检验无关,即两个事件互不影响.( ×)3.χ2是判断事件A与B是否相关的统计量.( √)类型一2×2列联表及其应用例1 (1)两个变量X,Y,它们的取值分别为x1,x2和y1,y2,其列联表为:YXy1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+d假设两个变量X,Y独立,那么以下结论:①ad≈bc;②aa+b≈cc+d;③c+da+b+c+d≈b+da+b+c+d;④c+aa+b+c+d≈b+da+b+c+d;⑤(a+b+c+d)(ad-bc)(a+b)(b+d)(a+c)(c+d)≈0.共中正确的序号是________.(2)甲、乙两个班级进展一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如以下联表:成绩优秀不优秀总计用频率估计的方法可判断成绩与班级________关.(填“有〞或“无〞) 考点 定性分析的两类方法 题点 利用列联表定性分析 答案 (1)①②⑤ (2)无 解析 (1)因为变量X ,Y 独立, 所以aa +b +c +d ≈a +c a +b +c +d ×a +ba +b +c +d,化简得ad ≈bc ,故①⑤正确;②式化简得ad ≈bc ,故②正确. (2)根据2×2列联表得频率表如下:由于1790×12=17180,而19=20180;7390×12=73180,而718=70180; 1790×12=17180,而790=14180; 7390×12=73180,而1945=76180. 这些频率之间相差不大,可以认为成绩是否优秀与班级没有关系.反思与感悟 (1)2×2列联表X ,Y 对应的数据是从总体中抽取样本的统计数据,所以即使X ,Y 独立,ad -bc 一般也不恰好等于零.(2)2×2列联表中,|ad -bc |越小,说明“X ,Y 独立〞正确的可能性越大;|ad -bc |越大,说明“X ,Y 有关联〞(即X ,Y 不独立)正确的可能性越大.跟踪训练1 在列联表中,相差越大,两个变量之间的关系越强的两个比值是( ) A.a a +b 与c c +d B.a c +d 与c a +b C.aa +d 与cb +cD.ab +d 与ca +c考点 定性分析的两类方法 题点 利用列联表定性分析 答案 A 解析aa +b 和cc +d相差越大,说明ad 与bc 相差越大,两个变量之间的关系越强.类型二 利用χ2公式判断两变量的关系例2 为研究时下的“韩剧热〞,对某班45位同学的爸爸、妈妈进展了问卷调查,结果如下表所示.喜欢韩剧 不喜欢韩剧总计 妈妈 31 13 44 爸爸 15 21 36 总计463480试问:是否有99%以上的把握认为“喜欢韩剧和性别有关系〞? 考点 独立性检验及其根本思想 题点 独立性检验的方法 解 由表中的数据,得χ2=80×(31×21-15×13)244×36×46×34≈6.715.因为6.715>6.635,所以有99%以上的把握认为喜欢韩剧和性别有关系. 反思与感悟 解独立性检验问题的根本步骤跟踪训练2 某研究小组调查了在2~3级风时的海上航行中男女乘客的晕船情况,共调查了71人,其中女性34人,男性37人.女性中有10人晕船,另外24人不晕船;男性中有12人晕船,另外25人不晕船.(1)根据以上数据建立2×2列联表; (2)判断晕船是否与性别有关系. 考点 独立性检验及其根本思想 题点 独立性检验的方法 解 (1)2×2列联表如下:晕船情况性别晕船 不晕船 总计 女 10 24 34 男 12 25 37 总计224971(2)χ2=71×(10×25-12×24)222×49×37×34≈0.08.因为0.08<2.706,所以我们没有理由说晕船与性别有关.1.变量X 和Y 的列联表如下,那么( )Y X y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +dA.ad -bc 越小,说明X 与Y 的关系越弱 B .ad -bc 越大,说明X 与Y 的关系越强 C .(ad -bc )2越大,说明X 与Y 的关系越强 D .(ad -bc )2越接近于0,说明X 与Y 的关系越强 考点 定性分析的两类方法 题点 利用列联表定性分析 答案 C解析 χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d ),假设(ad -bc )2越大,那么χ2越大,说明X 与Y 的关系越强.2.如果有95%的把握说事件A 与B 有关系,那么具体计算出的数据( ) A .χ2B .χ2C .χ2D .χ2考点 独立性检验及其根本思想 题点 独立性检验的方法 答案 A解析 把χ2的值与临界值比,从而确定A 与B 有关的可信程度. 当χ2>6.635时,有99%的把握认为A 与B 有关系; 当χ2>3.841时,有95%的把握认为A 与B 有关系; 当χ2>2.706时,有90%的握认为A 与B 有关系;当χ2≤2.706时,就没有充分的证据认为A 与B 有关系.应选A.3.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得到“吸烟与患肺癌有关系〞的结论,并且有99%以上的把握认为这个结论是成立的,那么以下说法中正确的选项是( ) A .100个吸烟者中至少有99人患有肺癌B .1个人吸烟,那么这个人有99%的概率患有肺癌C .在100个吸烟者中一定有患有肺癌的人D .在100个吸烟者中可能一个患肺癌的人也没有 考点 独立性检验及其根本思想 题点 独立性检验的思想 答案 D解析 独立性检验的结论是一个数学统计量,它与实际问题中确实定性是存在差异的. 4.为了判断高三学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:根据表中数据,得到χ2=50×(13×20-10×7)223×27×20×30≈4.844,那么认为选修文科与性别有关系出错的可能性约为________. 考点 独立性检验及其根本思想 题点 独立性检验的方法解析 由χ2公式计算得χ2≈4.844>3.841,故认为选修文科与性别有关系出错的可能性约为0.05.5.某省进展高中新课程改革已经四年了,为了解教师对新课程教学模式的使用情况,某一教育机构对某学校的教师关于新课程教学模式的使用情况进展了问卷调查,共调查了50人,其中有老教师20人,青年教师30人.老教师对新课程教学模式赞同的有10人,不赞同的有10人;青年教师对新课程教学模式赞同的有24人,不赞同的有6人. (1)根据以上数据建立一个2×2列联表;(2)判断是否有99%的把握说明对新课程教学模式的赞同情况与教师年龄有关系. 考点 独立性检验及其根本思想 题点 独立性检验的方法 解 (1)2×2列联表如下所示:赞同 不赞同 总计 老教师 10 10 20 青年教师 24 6 30 总计341650(2)假设“对新课程教学模式的赞同情况与教师年龄无关〞. 由公式,得χ2=50×(10×6-24×10)234×16×20×30≈4.963<6.635,所以没有99%的把握认为对新课程教学模式的赞同情况与教师年龄有关.1.独立性检验的思想:先假设两个事件无关,计算统计量χ2的值.假设χ2值较大,那么拒绝假设,认为两个事件有关. 2.独立性检验的步骤 ①画列联表. ②计算χ2.③将得到的χ2值和临界值比拟,下结论.一、选择题1.下面是一个2×2列联表:那么表中a,b的值分别为( )A.94,96 B.52,50C.47,46 D.54,52考点分类变量与列联表题点求列联表中的数据答案 C解析a=68-21=47,b=21+25=46.2.以下关于独立性检验的说法中,错误的选项是( )A.独立性检验依据小概率原理B.独立性检验得到的结论一定正确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判断两个分类变量是否相关的唯一方法考点独立性检验及其根本思想题点独立性检验的思想答案 B解析独立性检验得到的结论不一定正确,如我们得出有90%的把握认为A与B有关,只是说这种判断的正确性为90%,具体问题中A与B可能有关,也可能无关,应选B.3.下面关于χ2的说法正确的选项是( )A.χ2在任意相互独立的问题中都可以用于检验有关还是无关B.χ2的值越大,两个事件的相关性就越大C.χ2是用来判断两个变量是否相关的统计量,当χ2的值很小时可以判定两个变量不相关D.χ2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)考点独立性检验及其根本思想题点独立检验的思想答案 B解析χ2只适用于2×2列联表问题,且χ2只能推断两个变量相关,但不能判断两个变量不相关.选项D中公式错误,分子上少了平方.应选B.4.利用独立性检验来考察两个分类变量X与Y是否有关系时,通过查阅下表来确定“X与Y有关系〞的可信程度.如果χ2≥5.024,那么就有把握认为“X与Y有关系〞的百分比为( )A.25% B.75%C.2.5% D.97.5%考点独立性检验及其根本思想题点独立性检验的方法答案 D解析由表中数据可知,当χ2≥5.024,P(χ2≥k)=97.5%,应选D.5.在吸烟与患肺病这两个变量的计算中,以下说法中:①假设统计量χ2>6.635,我们有99%的把握说吸烟与患肺病有关,那么某人吸烟,那么他有99%的可能患有肺病;②假设从统计中求出,有99%的把握说吸烟与患肺病有关,那么在100个吸烟者中必有99个人患有肺病;③假设从统计中求出有95%的把握说吸烟与患肺病有关,是指有5%的可能性使得推断错误.正确的个数为( )A.0B.1C.2D.3考点独立性检验及其根本思想题点独立性检验的思想答案 B解析统计量χ2仅仅说明一个统计推断,并不能说明个别案例或某些情况,从而③正确,应选B.6.高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如以下联表:那么统计量χ2的值约为( )考点 分类变量与列联表 题点 答案 A解析 根据列联表中的数据,可得统计量 χ2=90×(11×37-34×8)245×45×19×71≈0.600.应选A.7.假设有两个变量x 和y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:对同一样本,以下数据能说明x 与y 有关的可能性最大的一组是( ) A .a =5,b =4,c =3,d =2 B .a =5,b =3,c =4,d =2 C .a =2,b =3,c =4,d =5 D .a =3,b =2,c =4,d =5 考点 分类变量与列联表 题点 求列联表中的数据 答案 D解析 对于同一样本,|ad -bc |越小,说明x 与y 相关性越弱.而|ad -bc |越大,说明x 与y 相关性越强,通过计算知,对于选项A ,B ,C 都有|ad -bc |=|10-12|=2.对于选项D ,有|ad -bc |=|15-8|=7.显然7>2,应选D. 二、填空题8.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算得χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________.(填“有关的〞或“无关的〞) 考点 独立性检验及其根本思想 题点 独立性检验的方法 答案 有关的解析 χ2=27.63>6.635,有99%以上的把握认为这两个量是有关的.9.下表是某届某校本科志愿报名时,对其中304名学生进入高校时是否知道想学专业的调查表:根据表中数据,那么以下说法正确的选项是________. ①性别与知道想学专业有关; ②性别与知道想学专业无关; ③女生比男生更易知道所学专业. 考点 独立性检验及其根本思想 题点 独立性检验的方法 答案 ②解析 χ2=304×(63×82-42×117)2180×124×105×199≈0.041,因为值非常小,所以性别与知道想学专业无关.10.有两个变量x 与y ,其一组观测值如下面的2×2列联表所示:那么正整数a 的最小值为________时,有90%以上的把握认为“x 与y 之间有关系〞. 考点 独立性检验及其根本思想 题点 独立性检验的方法 答案 1解析 由题意χ2=65[a (30+a )-(20-a )(15-a )]215×50×45×20=13(13a -60)290×60>2.706,易得a =1满足题意. 三、解答题11.某旅行社为调查市民喜欢“人文景观〞景点是否与年龄有关,随机抽取了55名市民,得到数据如下表所示:临界值有:(1)判断是否有99.5%的把握认为喜欢“人文景观〞景点与年龄有关?(2)用分层抽样的方法从喜欢“人文景观〞景点的市民中随机抽取6人作进一步调查,将这6名市民作为一个样本,从中任选2人,求恰有1位大于40岁的市民和1位20岁至40岁的市民的概率.考点 独立性检验思想的应用题点 分类变量与统计、概率的综合性问题解 (1)由公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得χ2≈11.978>7.879,所以有99.5%以上的把握认为喜欢“人文景观〞景点与年龄有关.(2)由题意知抽取的6人中大于40岁的市民有4个,20岁至40岁的市民有2个,分别记为B 1,B 2,B 3,B 4,C 1,C 2,从中任选2人的根本领件有(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,B 4),(B 2,C 1),(B 2,C 2),(B 3,B 4),(B 3,C 1),(B 3,C 2),(B 4,C 1),(B 4,C 2),(C 1,C 2),共15个,其中恰有1位大于40岁的市民和1 位20岁至40岁的市民的事件有(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(B 4,C 1),(B 4,C 2),共8个,所以恰有1位大于40岁的市民和1位20岁至40岁的市民的概率为815.四、探究与拓展12.某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进展调查,对高于40岁的调查了50人,不高于40岁的调查了50人,所得数据制成如以下联表:假设工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为35,那么有______的把握认为年龄与西班牙队的被喜欢程度有关. 答案 95%解析 设“从所有人中任意抽取一个,取到喜欢西班牙的人〞为事件A ,由得P (A )=q +35100=35, 所以p =25,q =25,a =40,b =60.χ2=100×(25×35-25×15)240×60×50×50=256≈4.167>3.841.故有95%的把握认为年龄与西班牙队的被喜欢程度有关.13.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填写下面的2×2列联表,并问能否在犯错误的概率不超过0.01的前提下认为“两个分厂生产的零件的质量有差异〞?解 (1)甲厂抽查的产品中有86+182+92=360(件)优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有85+159+76=320(件)优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)2×2列联表如下:χ2=1000×(360×180-320×140)2500×500×680×320≈7.353>6.635,所以能够在犯错误的概率不超过0.01的前提下认为“两个分厂生产的零件的质量有差异.〞。
人教B版选修1-2高中数学1.1《独立性检验》教学设计

1.1独立性检验教学设计一.教学内容解析:(1)“独立性检验”是人教B版高中数学选修1-2中第一章第一节的内容,是对必修3概率统计知识的进一步提升和应用.独立性检验作为统计推断的重要内容之一,能培养学生的统计思维、统计态度、批评性精神等,具有丰富的教学价值.了解独立性检验思想能够帮助学生形成合理的统计推断观,同时也为回归分析做了准备.独立性检验是考察两个变量是否独立的统计学方法,具体做法是:首先对两个变量的关系作假设,然后选取合适的统计量,并根据实测样本计算出该统计量的观测值,最后根据预先设定的显著性水平进行检验,做出接受或拒绝原假设的判断.其本质就是运用假设检验原理的一种特例,在现有的有关独立性检验(大学)教材看,都是先介绍假设检验知识,然后介绍独立性检验,即通过假设检验的原理来理解独立性检验的思想.(2)教学重点:通过典型案例的探究体会独立性检验的思想方法.二.教学目标设置:高中课程标准中,要求通过对典型案例的探究,了解独立性检验的基本思想、方法及初步应用,课时安排为三课时.在高考中基本以考察操作规则,套用卡方公式进行计算为主,根据以往经验,应用公式对于学生来说较为简单,所以作为本节课的第一课时教学目标设置如下:(1)知识与技能:解两个事件相互独立的含义,通过对典型案例的探究,理清不同的样本,数据不同,比例不同,数据所体现的差异性不同,怎样针对不同样本数据设置统一的评判标准?针对不同的样本数据,可能做出不同的判断,那么你有多大的把握认为自己的判断是正确的?这两个问题从而了解独立性检验的基本思想,方法和简单应用,进一步体会运用统计方法解决实际问题的基本思想.(2)过程与方法:通过生活中实例的探索、研究、比较归纳等,了解知识的发生发展过程,进一步提高学生对统计思想的认识.(3)情感态度与价值观:通过体验独立性检验思想的过程,体会统计知识在生活中的作用,激发学生的学习兴趣.通过卡方统计量的构造过程培养学生严谨的思维和态度.三.学生学情分析:(1)学生通过必修三的学习能够了解到事件的概率可以用相应的频率来估计,了解到统计中用部分数据来推测全体数据性质的思想.但是对于事件的独立的含义不了解,反证法也没有学习;根据以往对学生的了解,运用公式判断两个分类变量的相关性不是难点,但是独立性检验的思想及原理,为什么要构造卡方统计量,为什么要这样构造卡方统计量,以及卡方统计量的概率统计含义等都是学生的疑问点,考虑到文科学生的知识储备及课标的要求,本节课尽量用生活中的实际例子去引导学生,让学生感受到卡方统计量构造的必要性及独立性检验思想的重要性。
1.2独立性检验的基本思想及其应用第1课时 选修1-2精品教案
§1.2独立性检验的基本思想及其应用(一)【学情分析】:在实际的问题中,经常会面临需要推断的问题,比如研制一种新药,需要推断此药是否有效?有人怀疑吸烟的人更容易患肺癌,那么吸烟是否与患肺癌有关呢?等等。
在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的分析推断.在本节的学习中,通过案例分析,使学生学会用假设检验的思想方法解决对于两个分类变量是否有关系的判断问题,并理解统计思维与确定性思维的差异。
【教学目标】:(1)知识与技能:理解分类变量的含义;会根据收集的数据列出2×2列联表,并会阅读三维柱形图和二维条形图,并粗略判断两个分类变量是否有关系;理解假设检验思想,会利用独立性检验精确判断两个分类变量是否有关系;(2)过程与方法:利用学生身边熟悉的问题引入分类变量是否相关的问题;运用统计学解决问题的一般思路引导学生;让学生经历假设检验思想的形成及运用过程,领会分析、总结的方法; (3)情感态度与价值观:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对问题的解决,可提高学生应用数学能力。
【教学重点】:理解独立性检验的基本思想及实施步骤。
【教学难点】:.(1)了解独立性检验的基本思想;(2)了解随机变量2K 的含义,2K 太大认为两个分类变量是有关系的。
【课前准备】:课件【教学过程设计】:同步练习与测试:(基础题) 1、根据下表计算:计算随机变量的观测值k= 。
解:把表格补充完整≈⨯⨯⨯⨯-⨯=17812222872)358514337(3002k 4.512、独立性检验常作的图形是 和 。
答案 :三维柱形图 ,二维条形图3、两个临界值为3.841与6.635。
当23.841k ≤时,认为事件A 与B 是 (填“有关的”或“无关的”);当26.635k >时,有99%的把握说事件A 与B 是 (填“有关的”或“无关的”)。
人教B版选修1-2高中数学1.1《独立性检验》word教案
§1.1.1 独立性检验
一.学习目标
1.了解独立性检验(只要求2⨯2列联表)的基本思想、方法及其简单应用
2.了解假设检验的基本思想、方法及其简单应用
重点:能够根据题目所给数据列出列联表及求2χ
难点:独立性检验的基本思想、方法及其初步应用
二、自主学习
三.合作探究
调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表
.试问能有多大把握认为
规律方法 解决一般的独立性检验问题的步骤:
(1)通过列联表确定n 11,n 12,n 21,n 22,n 的值,根据实际问题需要的可信程度确定临界值
3.841和6.635;
(2)利用2χ=
112212211212()n n n n n n n n n ++++- 求出2χ的值; (3)若2χ>3.841,有95%的把握说事件A 与B 有关;当2χ>6.635,有99%的把握说事件A 与B
有关;当2
χ≤3.841时,认为事件A 与B 是无关的.
四.自我检测
1.如果根据性别与饮酒的列联表,得到k≈3.852>3.841,那么判断性别与饮酒有关时这种判断出错的可能性为()
A. 20%
B.50%
C.10%
D.5%
2.有2⨯2列联表如下:
由上表可计算≈____________
3.为了研究性格与血型的关系,抽取80名被测试者,相关数据如下表,试判断性格与血型是否相
五、学习小结
六、自我评价
你完成本节导学案的情况为().
A. 很好
B. 较好
C. 一般
D. 较差。
人教A版 选修1-2 独立性检验的基本思想及其初步应用(一) 教案
在该规则下,把结论h0错判成H0不成立的概率不会超过P(K2>=)=0.010这里计算的前提是H0成立。上面解决问题的想法类似于反正法,要判断“两个分类变量有关系”,首现假设该结论不成立。即H0:两个变量没有关系成立,在该假设下我们所构造的随机变量K2应该很小,如果由观测值数据计算得到的K2的观测值k很大,则断言H0不成立即认为“两个分类变量有关系”;如果观测值k很小,则说明在样本数据组没有发现足够理由拒绝H0。怎么样判断K2的观测值k是大还是小?这仅需要一个确定的整数k0,当k>=k0时就认为K2的观测值k大。此时相应于k0的判断规则:如果k>=k0,就认为“两个分类变量有关系”;否则就认为“两个分类变量没有关系”,我们称这样的一个k0为临界值。
上述利用随机变量K2判断“两个随机分类变量有关系”的方法称为独立性检验
目标三导
学做思一:独立性检验原理
列联表:列出两个变量的频数表。解决问题的想法类似于反正法,要判断“两个分类变量有关系”,首现假设该结论不成立。
即H0:两个变量没有关系成立,在该假设下我们所构造的随机变量K2应该很小,如果由观测值数据计算得到的K2的观测值k很大,则断言H0不成立即认为“两个分类变量有关系”;如果观测值k很小,则说明在样本数据组没有发现足够理由拒绝H0。怎么样判断K2的观测值k是大还是小?这仅需要一个确定的整数k0,当k>=k0时就认为K2的观测值k大。此时相应于k0的判断规则:如果k>=k0,就认为“两个分类变量有关系”;否则就认为“两个分类变量没有关系”,我们称这样的一个k0为临界值。
独立性检验原理
在假设H0下,如果推出了一个与H0相矛盾的小概率事件,就推断H0不成立,且该推论犯错误的概率不超过这个小概率。
苏教版高中数学选修1-2《独立性检验》教案2
1.1 独立性检验(共计5课时)一、教学内容与教学对象分析通过典型案例,学习下列一些常用的统计方法,并能初步应用这些方法解决一些实际问题。
通过对典型案例(如“患肺癌与吸烟有关吗”等)的探究。
了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。
二. 学习目标1、知识与技能通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。
明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。
2、过程与方法在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。
从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。
最后介绍了独立性检验思想的综合运用。
3、情感、态度与价值观通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。
加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。
明确数学在现实生活中的重要作用和实际价值。
教学中,应多给学生提供自主学习、独立探究、合作交流的机会。
养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。
三.教学重点、难点教学重点:理解独立性检验的基本思想;独立性检验的步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 独立性检验、基本思想及其应用
【学习目标】1、了解独立性检验的基本思想和方法;
2、能对两个分类变量是否有关,运用独立性检验的思想方法作出判断; 【学习重点】:利用22⨯列联表进行独立性检验及利用
χ
2
的值判断变量的关联度
【学习难点】:了解独立性检验的基本思想及实施步骤及随机变量χ
2
的含义
【问题导思】:阅读教材p21~27页回答以下问题: 1. 什么是2×2列联表?
2. 粗略判断两个变量是否有关系的方法?
3. 随机变量χ
2
统计量的计算公式是什么?
4.
χ
2
临界值是什么?
5. 独立性检验的基本思想是什么?
6. 两个变量独立性检验的解题步骤是什么? 【自学检测】
1、独立性检验中的统计假设是假设A,B :_________
A 、 互斥
B 、不互斥
C 、 相互独立
D 、不独立 2、在22⨯列联表中,若计算得
n
d b n b a n b +∙+=,则可以认为:_________ A 、A 1与B 1独立 B 、A 1与B 2独立 C 、A 2与B 1独立 D 、A 2与B 2独立
3、下列哪种情况有把握说明两个变量之间无关_________ A 、
χ
2
>12 B 、
χ
2
<10 C 、
χ
2
>4 D 、
χ
2
<2.5
4、在一次独立性检验中,根据计算结果,认为变量A 与B 无关的可能性不足 1℅,那么
χ
2
的一个可能值为:_________
A 、2.706
B 、3.841
C 、6.635
D 、7.897 5、某校对学生课外活动进行调查,结果整理成下表:试用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?
6、为了探究学生选报文、理是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人。
试分析学生选报文、理科与对外语的兴趣是否有关?
【当堂检测】
1、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( ) A. 若
χ
2
=6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99
个患肺病.
B. 从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能性患肺病.
C. 若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使推断出现错误.
D. 以上三种说法都不对.
2、某班主任对全班50名学生进行了作业量多少的调查,数据如下表: 则认为喜欢玩游戏与认为作业量多少有关系的把握大约为 ( )
A. 99%
B. 95%
C. 90%
D.无充分依据
3、在一项打鼾与患心脏病的调查中,共调查1768人,经计算的
χ
=27.63,根据这一数据
分析,我们有理由认为打鼾与患心脏病是_____的.(填“有关”“无关”)
4、为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:
由表中数据计算得到
χ
的观察值
513.4=χ
. 在多大程度上可以认为高中生的性别
与是否数学课程之间有关系?为什么?
5、在对人们的休闲方式的一次调查中,共调查了124人。
其中女性70人,男性54人。
女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动 根据以上数据建立一个2×2的列联表
能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?。