2FSK--FSK通信系统调制解调综合实验电路设计

合集下载

2FSK综合设计实验3(1)

2FSK综合设计实验3(1)
册,提出使用器材; ② 拟定测试项目、提出测试所用仪器及测试方法; ③ 记录实验的波形和数据,总结设计、调试、过程 中的收获和体会。并写出符合规范的综合设计实 验报告。
五、 2FSK调制解调原理
在实际信道中,大多数信道具有带通传输特性,数字基 带信号不能直接在这种带通传输特性的信道中传输,必须用数 字基带信号对载波进行调制,完成频谱搬移,变换成频带信号 后,才能在带通传输特性的信道中传输。 FSK 是数字通信中用得较广的一种调制方式,在话带内进 行数据传输。国际电联推荐在话音频带内低于1200bit/s 数据 率时使用FSK 方式。在衰落信道中传输数据时,它也被广泛采 用。 FSK 通信系统通常由 2个不同频率的载波来代表数字信号 的2种电平,通过频移调制,输出FSK信号;解调时则通过带通 滤波,分离出这两种不同频率的载波,然后再通过比较器,还 原出原始数字信号。
六、2FSK调制与解调电路设计方案的说明: (3)2FSK信号的解调方案(非相干)

微分、整流、展宽电路组成与工作原理
从前面原理的介绍中,我们知道2FSK调制信号的解调若用非相干过零检测法,
由图可见,必须有七个单元模块来完成。考虑到2FSK信号的产生和解调集于同一仿 真电路中,已调信号未经信道传输,没有畸变、没有信道的干扰,因而采用数字电 路完成限幅、微分、整流和脉冲形成四大功能是较简单的,其参考电路如图1所示。
2FSK传输系统综合设计
武汉理工大学信息工程学院专业综合实验中心.
一、综合设计实验目的
1. 经历综合设计与实现过程,为后续进行课程设计与毕业设 计奠定工作基础; 2.加深理解2FSK调制器与解调器的工作原理,学会对2FSK系
统电路的设计;掌握2FSK的调制器与解调器的工程实现方 法;掌握对2FSK传输系统工作过程进行检查及对主要性能

2FSK综合设计实验剖析

2FSK综合设计实验剖析

微分 c
整流 d 脉 冲 e 形成器
低通 f 滤波器
的观点看,相干解调具有
a
最佳的抗干扰性能,但相 干解调必需依靠于解调端 b
复原精确频率和相位的参 c
考载波,在移频键控系统 d 中,提取f1和f2会大大增 e
f
加系统的困难度。接受非
相干解调的原理图如图所
五、 2FSK调制解调电路设计方案
(3)2FKS 调制与解调系统组成方案
六、2FSK调制与解调单元电路设计说明:
(3)2FSK信号的解调方案(非相干)
② 低通滤波器电路与工作原理
为了获得良好的幅频特性,脉冲展宽电路输出端所接的低通滤波器的带外衰减应 很快,达40dB/十倍频程。试验中要求接受巴特沃斯低通滤波器,其电路如图所示。
图中所示的低通滤波器为二阶有源 低通滤波器。能供应40dB/十倍频 程衰减量,由截止频率公式:
二、综合设计内容与技术指标
1. 设计内容:
依据2FSK调制器与解调器的组成原理,设计出整个2FSK传 输系统的实现方案与电路;
2. 电路技术指标: ① 主载频为11800HZ(或16KHZ); ② f1= 2950HZ(或8KHZ); f2 =1475HZ(或4KHZ)。
数字基带信号时钟频率fs=400(或1000)bit/s; ③ 数字基带信号用m序列产生器(7位或15位)供应; ④ 调制器接受键控电路;
图1是试验系统中4级 伪随机序列码发生器电 原理图。
从图中可知,这是由 4级D触发器和异或门组 成的4级反馈移位寄存 器。本电路是利用带有 两个反馈抽头的4级反 馈移位寄存器,其示意 图见图2,状态转移图 见表1,该电路输出的 信码序列为:

图1 图2
表1

2FSK调制与解调电路

2FSK调制与解调电路

一、设计基本原理和系统框图2FSK 系统分调制和解调两部分。

①调制部分:2FSK 信号的产生方法主要有两种。

第一种是用二进制基带矩形脉冲信号去调制一个调频器,如(a)图所示,使其能够输出两个不同频率的码元。

第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如(b)图所示。

这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号,在相邻码元之间的相位是连续的,如(c)图所示;而开关法产生的2FSK 信号,则分别由两个独立的频率源产生不同频率的信号,故相邻码元的相位不一定是连续,如(d)图所示。

本次设计用键控法实现2FSK 信号。

(c)相位连续 (d)相位不连续②解调部分:2FSK 信号的接收主要分为相干和非相干接收两类,本次设计采用非相干法(即包络解调法),其方框图如下。

用两个窄带的分路滤波器分别滤出频率为1f 和2f 的高频脉冲,经过包络检波后分别取出它们的包络。

把两路输出同时送到抽样判决器进行比较,从而判决输出基带数字信号。

FSK 信号包络解调方框图设频率1f 代表数字信号1;2f 代表数字信号0,则抽样判决器的判决准则:式中x1和x2分别为抽样判决时刻两个包络检波器的输出值。

这里的抽样判决器,要比较x1、x2的大小,或者说把差值x1-x2与零电平比较。

因此,有时称这种比较判决器的判决电平为零电平。

当FSK 信号为1f 时,上支路相当于接收“1”码的情况,其输出x1为正弦波加窄带高斯噪声的包络,它服从莱斯分布。

而下支路相当于接收“0”码的情况,输出x2为窄带高斯噪声的包络,它服从瑞利分布。

如果FSK 信号为2f ,上、下支路的情况正好相反,此时上支路输出的瞬时值服从瑞利分布,下支路输出的瞬时值服从莱斯分布。

无论输出的FSK 信号是1f 或2f ,两路输出的判决准则不变,因此可以判决出FSK 信号。

二、各单元电路设计2.1 2FSK调制单元要将NRZ码经过2FSK调制成为2FSK信号,我们采用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出。

2FSK调制及解调器的设计与实现设计

2FSK调制及解调器的设计与实现设计

2FSK调制与解调一、设计目的1. 经历工程设计与实现过程,为后续进行毕业设计奠定工作基础;2.掌握2FSK的调制与解调的实现方法;3.遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;4.加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。

二、设计内容1. 根据2FSK调制器与解调器的组成原理设计实现方案;2. 理顺低通滤波器3db带宽与基带信号传输速率间的关系,两个载频间隔和基带信号速率间的关系;3. 用硬件电路或软件模拟实现设计方案。

4. 着眼于时间、频率、频谱、频带,观察2FSK信号。

在时域,观察单元电路各点的波形、眼图、误码;在频域,观察已调信号、调制信号的频谱,测算传输带宽;测量两个载频频率;5. 根据实验记录的波形和数据,分析2FSK调制解调过程和性能。

三、2FSK信号调制解调原理在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输,必须用数字基带信号对载波进行调制,完成频谱搬移,变换成频带信号后,才能在带通传输特性的信道中传输。

在二进制数字调制中,若载波的频率随二进制数字基带信号在f1和f2两个载频间切换,则产生二进制移频键控制信号(2FSK信号)。

二进制移频键控制信号的产生方法如图1所示。

图1(a)是采用数字键控的实现方法,图1(b)是方波2FSK信号的时间波形。

2图1 (a)2FSK调制框图在图1(a )中,两个载频受输入的二进制基带信号控制,在一个码元 TS 期间,输出 f1 或 f2 两载频之一。

若二进制基带信号的“1”对应于载频 f1,“0”对应于载频 f2,则二进制移频键控制信号的时域表达式为:式中,A 为两个载波的幅度(数字电路的输出幅度,设两幅度正好相等)ω1=2πf1,ω2=2πf2,θ1和θ2是两个载频的初始相角;m1(t) 和 m2(t)是周期开关函数,定义为:且m 1(t)和m 2(t)满足下列关系式:二进制移频键控信号的解调可采用相干解调和非相干解调。

2FSK调制与解调实验

2FSK调制与解调实验

广州大学学生实验报告“FSK判决电压调节”单稳1相加单稳2LPF 抽样判决调制输入解调输出电压判决BS输入单稳输出1单稳输出2过零检测滤波输出判压输出旋转电位器图14-32FSK 解调过零检测法原理框图2FSK 信号的过零点数随不同载频而异, 故检出过零点数可以得到关于频率的差异。

“单稳输出1”和“单稳输出2”两波形相加, 得“过零检测”信号, 即对应2FSK 已调信号全部的过零点有一个尖脉冲。

“过零检测”信号经二阶低通滤波器滤除高频分量, 得“滤波输出”信号。

“滤波输出”信号再经电压比较器判决, 得“判压输出”信号。

用来作比较的判决电压电平可通过“FSK判决电压调节”旋转电位器来调节。

最后“判压输出”信号经位同步抽样判决, 得“解调输出”信号。

过零检测判压输出判决电平解调输出NRZ码调制输入滤波输出单稳输出1单稳输出211100111000011001图14-4 2FSK 解调各测试点波形四、实验步骤1.将信号源模块、数字调制模块、数字解调模块小心地固定在主机箱中, 确保电源接触良好。

2、插上电源线, 打开主机箱右侧的交流开关, 再分别按下三个模块中的电源开关, 对应的发光二极管灯亮, 三个模块均开始工作。

3.信号源模块设置 (1)“码速率选择”拨码开关设置为8分频, 即拨为00000000 00001000。

24位“NRZ 码型选择”拨码开关任意设置。

(2)调节“384K 调幅”旋转电位器, 使“384K 正弦载波”输出幅度与“192K 正弦载波”输出幅度相等, 为3.6V 左右。

4.2FSK 调制(1)实验连线如下:信号源模块 数字调制模块NRZ ———————— NRZ 输入(数字键控法调制) 384K 正弦载波————载波1输入(数字键控法调制) 192K 正弦载波————载波2输入(数字键控法调制)(2)数字调制模块“键控调制类型选择”拨码开关拨成1010, 即选择2FSK 调制方式。

实验二 FSK调制解调系统实验

实验二  FSK调制解调系统实验

实验三 FSK 调制解调系统实验一、实验目的1、理解FSK 调制的工作原理及电路组成。

2、理解FSK 解调的原理及实现方法。

二、实验内容1、观察2FSK 调制信号波形。

2、观察2FSK 解调信号波形。

三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、同步信号提取模块5、20M 双踪示波器 一台6、连接线 若干四、实验原理1. 2FSK 调制原理2FSK 信号是用载波频率的变化来表征被传信息的状态的,被调载波的频率随二进制序列0、1状态而变化,即载频为0f 时代表传0,载频为1f 时代表传1。

显然,2FSK 信号完全可以看成两个分别以0f 和1f 为载频、以n a 和n a 为被传二进制序列的两种2ASK 信号的合成。

2FSK 信号的典型时域波形如图1所示。

-A 图1 2FSK 信号的典型时域波形其一般时域数学表达式为t nT t g a t nT t g a t S n s n n s n FSK 102cos )(cos )()(ωω⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=∑∑式中,002f πω=,112f πω=,n a 是n a 的反码,即⎩⎨⎧=P P a n -概率为概率为110 ⎩⎨⎧=P P a n -概率为概率为101因为2FSK 属于频率调制,通常可定义其移频键控指数为s s R f f T f f h /0101-=-=显然,h 与模拟调频信号的调频指数的性质是一样的,其大小对已调波带宽有很大影响。

2FSK 信号与2ASK 信号的相似之处是含有载频离散谱分量,也就是说,二者均可以采用非相干方式进行解调。

可以看出,当h<1时,2FSK 信号的功率谱与2ASK 的极为相似,呈单峰状;当h>>1时,2FSK 信号功率谱呈双峰状,此时的信号带宽近似为s FSK R f f B 2012+-=(Hz )2FSK 信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。

2FSK调制解调电路设计

南昌大学实验报告课题二 2FSK调制、解调电路综合设计一、实验目的1、掌握2FSK调制和解调的工作原理及电路组成;2、学会低通滤波器和放大器的设计;3、掌握LM311设计抽样判决器的方法,判决门限的合理设定;4、进一步熟悉Multisim10.0的使用二、设计要求设计2FSK调制解调电路,载波f1=64KHz,f2=32KHz,基带信号位7位伪随机绝对码(1110010),码元速率为4KHz。

要求调制的信号波形失真小,不会被解调电路影响,并且解调出来的基带信号尽量延时小,判决准确。

三、实验原理与电路组成调制部分:4066的四个输入端,第一个载波S1为32KHz方波经模拟信号发生器(同步信源)产生的32KHz正弦波,第一个输入基带信号IN1为码元速率为4KHz的7位伪随机绝对码(1110010)第二个载波S2为64KHz方波经模拟信号发生器(同步信源)产生的64KHz 正弦波,第二个输入基带信号IN2为码元速率为4KHz的7位伪随机绝对码的反相信号(0001101)。

4066的D1、D4输出信号叠加后形成所需要的2FSK调制信号。

如下图:解调部分:调制信号作为4066的载波S1,64KHz方波作为输入IN1,两个信号经4066开关电路相乘输出的信号即为解调出的一路信号,由于是2FSK,解调出了一路信号,则另一路信号也就知道了。

接下来要做的就是滤波,将4066输出的信号的包络解调出,由于基带信号是4KHz,低通滤波器的门限就是4KHz。

对于RC滤波器,有f=经过RC低通滤波器时,令R32=1K,得C20=39.8n F,之后经过运放组成的低通滤波器,由于R33=10 K,得C21=3.98n F.如下图:此时由于信号电压较小,需要放大才能更容易判决。

故经过一个运放组成的放大器。

放大后经过抽样判决器LM311,经示波器观察,判决电平设为103.7m V较合适(引脚3所接电平)。

解调输入IN1为64KHz,而此时基带信号是0,要判决出0,需经过一个反相器74HC04(如下图)。

2FSK调制解调电路设计

2FSK调制解调电路设计引言:频移键控调制(Frequency Shift Keying, FSK)是一种数字调制方式,通过改变载波频率的方式来传输信号。

2FSK(2 Frequency Shift Keying)是一种常见的FSK调制方式,其基本原理是通过输入的数字信号决定载波频率的两个离散状态,从而实现数字信息的传输。

在本文中,我们将介绍2FSK调制解调电路的设计。

一、2FSK调制电路设计:1.信号波形产生器:首先,我们需要设计一个信号波形产生器来生成数字信号。

该数字信号表示要传输的信息,通常是基带信号。

可以使用微处理器、FPGA或其他数字电路来实现波形产生器。

2.带通滤波器:接下来,我们需要设计一个带通滤波器来选择一个特定频率范围内的频率。

2FSK调制需要选择两个离散频率用于传输数据,所以我们需要设计一个可以在这两个频率范围内切换的带通滤波器。

3.频率切换电路:在2FSK调制中,我们需要能够在两种不同的频率之间切换的载波信号。

为了实现这一点,我们可以使用一个开关电路,根据输入的数字信号来选择不同的频率。

4.调制电路:最后,我们将基带信号和切换后的载波信号相乘,利用频谱合并来实现2FSK调制。

这个乘法操作可以通过模拟乘法器或数字乘法器来实现。

二、2FSK解调电路设计:1.频谱分离电路:为了将调制信号中的两个频率分离开来,我们需要设计一个频谱分离电路。

这个电路可以通过使用带通滤波器和差分器来实现,带通滤波器选择一个频率范围内的信号,差分器可以根据输入信号的相位差来判断频率是高频还是低频。

2. 相位检测电路:在2FSK解调中,我们需要检测信号的相位来确定接收到的信号是1还是0。

相位检测电路可以使用锁相环(Phase Locked Loop, PLL)或其他相位检测技术来实现。

3.信号解码器:最后,我们需要设计一个信号解码器来将解调得到的数字信号转化为原始信息。

这个解码器可以通过使用微处理器或其他数字电路来实现。

2FSK调制解调电路的设计

2FSK调制解调电路的设计引言:调频键控(Frequency Shift Keying, FSK)是一种常见的数字调制解调技术,其原理是通过改变载波频率来传输数字信号。

二进制FSK(2FSK)是最基本的FSK调制方式,其中两个不同的频率代表了二进制中的0和1、本文将介绍2FSK调制解调电路的设计。

一、2FSK调制电路1.频率可调的带通滤波器频率可调的带通滤波器用于接收输入信号,并将频率转换为两个不同的预设频率。

该滤波器通常由一个带可调中心频率的VoltageControlled Oscillator (VCO)和一个窄带滤波器组成。

输入信号经过一级放大后进入VCO,VCO将输入信号频率转换为预设频率。

滤波器用于滤除不需要的频率成分,只保留希望传输的频率分量。

2.相位锁定环路(PLL)相位锁定环路是2FSK调制电路的核心。

它由一个相频比较器(Phase-Frequency Detector, PFD)、一个环路滤波器(Loop Filter)、一个VCO和一个除频器(Divider)组成。

相频比较器用于比较参考信号和VCO输出信号的相位差,产生一个频率和相位误差的输出。

这个输出信号经过环路滤波器后,将调整VCO的输出频率,使其与参考信号的相位差最小化。

除频器将VCO输出的频率除以一个预设的常数,得到一个比输入信号低的频率,在输入信号的两种频率之间切换。

二、2FSK解调电路2FSK解调电路主要由一个鉴频器和一个比较器组成。

1.鉴频器鉴频器用于提取输入信号中的频率信息,并将其转换为与输入信号频率相同的模拟信号。

鉴频器通常由一个窄带滤波器和一个包络检波器组成。

窄带滤波器用于滤除不需要的频率成分,只保留输入信号中的目标频率分量。

包络检波器将滤波后的信号变为其包络信号,将其转换为模拟信号。

2.比较器比较器用于将模拟信号转换为数字信号,实现2FSK信号的解调。

比较器通常由一个阈值电路和一个数字信号输出端口组成。

实验指导书第4节2FSK调制与解调实验

实验指导书第4节2FSK调制与解调实验2FSK调制与解调实验一、实验目的:1、了解二进制移频键控2FSK信号的产生过程及电路的实现方法。

2、了解非相干解调器过零检测的工作原理及电路的实现方法。

3、了解相干解调器锁相解调法的工作原理及电路的实现方法。

二、实验内容:1、了解相位不连续2FSK信号的频谱特性。

2、了解2FSK调制,非相干、相干解调电路的组成及工作原理。

3、观察2FSK调制,非相干、相干解调各点波形。

三、实验原理:数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。

数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。

2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。

从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。

模拟调频法是利用一个矩形脉冲序列对一个载波进行调频,是频移键控通信方式早期采用的实现方法。

2FSK键控法则是利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。

键控法的特点是转换速度快、波形好、稳定度高且易于实现,故应用广泛。

2FSK信号的产生方法及波形示例如图所示。

图中s(t)为代表信息的二进制矩形脉冲序列,即是2FSK信号。

二进制频率调制是数据通信中使用较早的一种通信方式。

由于这种调制解调方式容易实现、抗噪声和抗衰落性能较强,因此在中低速通过数据传输系统中得到了较为广泛的应用。

本实验2FSK信号的产生是采用键控法原理,利用数字基带信号控制电子开关电路对两个不同的频率源进行选通,所产生的信号相位不连续。

见调制器框图。

2FSK调制器框图本实验2FSK信号的解调是采用过零检测法和锁相解调法,通过两种解调方式的比较,可以了解各自的优缺点。

1、 2FSK调制器2FSK调制器是由晶体振荡器、分频电路、码产生电路、带通滤波器、模拟开关电路所组成。

(1)晶体振荡器和分频器:晶体振荡器是一个用晶体和与非门构成的自激多谐振荡器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生学号实验课成绩学生实验报告书实验课程名称开课学院指导教师姓名学生姓名学生专业班级200 -- 200 学年第学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。

为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。

1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。

2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。

3、实验报告应由实验预习、实验过程、结果分析三大部分组成。

每部分均在实验成绩中占一定比例。

各部分成绩的观测点、考核目标、所占比例可参考附表执行。

各专业也可以根据具体情况,调整考核内容和评分标准。

4、学生必须在完成实验预习内容的前提下进行实验。

教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。

5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。

在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。

6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。

实验课程名称:__通信原理_____________图3-1数字键控法实现2FSK 信号的原理图图中两个振荡器的载波输出受输入的二进制基带信号s(t)控制。

由图3-1 可知,s(t)为“1”时,正脉冲使门电路1接通,门2断开,输出频率为f1;数字信号为“0”时,门1断开,门2接通,输出频率为f2。

在一个码元Tb 期间输出ω1或ω2两个载波之一。

由于两个频率的振荡器是独立的,故输出的2FSK 信号:在码元“0”“1”转换时刻,相邻码元的相位有可能是不连续的。

这种方法的特点是转换速率快,波形好,频率稳定度高,电路简单,得到广泛应用。

对应图3-1(a )和(b) ,2FSK 调制器各点的时间波形如图3-2所示,图中波形g 可以看成是两个不同频率载波的2ASK 信号波形e 和波形f 的叠加。

可见,2FSK 信号由两个2ASK 信号相加构成。

其信号的时域表达式:()()()()()∑∑+-++-=kb k kb k FSK t kT t g a t kT t gat S 2211cos cos ϕωϕω图3-2 2FSK 调制器各点的时间波形本次综合设计实验调制部分正是采用此方法设计的。

整个调制系统包括:载波振荡器、反相器、调制器与加法器等单元电路组成。

1.2 解调设计方案数字频率键控( 2FSK ) 信号常用解调方法有很多种,在设计中利用过零检测法。

过零检测法是利用信号波形在单位时间内与零电平轴交叉的次数来测定信号频率。

解调系统组成原理框图如图3-3所示电路:gfedcba位定时抽样判决LPF脉冲展宽整流微分限幅图3-3 2FSK 过零检测解调电路原理框图输入的FSK 信号经限幅放大后成为矩形脉冲波,再经过微分电路得到双向尖脉冲,然后整流得到单向尖脉冲,每个尖脉冲表示一个过零点,尖脉冲的重复频率就是信号频率的两倍。

将尖脉冲去触发一单稳电路, 产生一定宽度的矩形脉冲序列,该序列的平均分量与脉冲重复频率成正比,即与输入信号成正比。

所以经过低通滤波器输出的平均分量的变化反映了输入信号频率的变化,这样把码元“ 1”与“ 0”在幅度上区分开来,恢复出数字基带信号。

其原理框图及各点波形如图3-4 所示。

图3-4 过零检测电路信号波形四、系统中各种单元电路设计以及仿真①主载波振荡器电路设计与工作原理载波振荡器的功用是提供2FSK调制系统所需的载波和信码定时信号,它可用门电路或集成电路(555)构成多谐振荡器。

本实验系统要求产生的主载波振荡频率为16KHZ载波,要求输出频率可调。

为简化实验电路,本次实验系统选用门电路构成多谐振荡器。

已知该门电路的估算振荡周期是: T 2.2R C。

经计算其实际电路如图4-1所示:图4-1 主载波振荡器电原理图由图4-1电路可知,在三个与非门之间加入了一个R(R1)C(C1)延时网络,由于RC较大,可忽略tpd。

接通电源时,C 的充放电使“A”点电压发生变化。

每当”A”点到达阈值电压V T=1.4V 时,电路就会翻转,电路不停的自动翻转,就会在Vo 端输出一系列的矩形脉冲,即电路产生了振荡。

并且调整R1可以改变RC值,使振荡频率改变。

RS(R2)起隔离作用,把电容C的输出与U3c的输入隔离开。

电路振荡波形如图4-2 所示:图4-2 主载波信号波形图②分频器电路设计与工作原理将主载波按设计技术指标要求,一般用D触发器构成适当的分频电路,获得载频f1、f2和M序列所需的时钟信号。

本实验系统,将主载波16KHZ进行二分频得8KHZ信号作f1;将8KHZ 载波进行二分频得4KHZ信号作f2;再将4KHZ四分频得1KHZ信号作为fs,为M序列发生器提供编码时钟信号。

分频器的实际电路如图4-3 所示:图4-3 分频器电原理图分频电路输出信号波形如图4-4 所示:图4-4 分频器仿真波形③m序列发生器电路设计与工作原理m序列也称作伪随机序列,它的显著特点是:(a)随机特性;(b)预先可确定性;(c)可重复实现。

本次综合设计要求用D触发器构成四级移位寄存器,形成长度为24-1=15位码长的伪随机码序列,码率约为1000bit/s。

图4-7 是实验系统中4 级伪随机序列码发生器电原理图。

图4-7 M序列发生器电原理图从图中可知,这是由4 级D 触发器和异或门组成的4 级反馈移位寄存器。

本电路是利用带有两个反馈抽头的4 级反馈移位寄存器,状态转移图见表1,该电路输出的信码序列为:1000。

信号波形如图4-8 所示:四级伪随机码Q3 Q2 Q1 Q0 1 1 1 1 0 1 1 1 0 0 1 10 0 0 11 0 0 0 0 1 0 00 0 1 01 0 0 1 1 1 0 00 1 1 01 0 1 10 1 0 11 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1图4-8 基带信号波形图④调制器电路设计与工作原理2FSK信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。

由于频率选择法0→产生的2FSK信号为两个彼此独立的载波振荡器输出信号之和,在二进制码元状态转换(1 1→)时刻,2FSK信号的相位通常是不连续的,这会不利于已调信号功率谱旁瓣分量的收或0敛。

载波调频法是在一个直接调频器中产生2FSK信号,这时的已调信号出自同一个振荡器,信号相位在载频变化时始终是连续的,这将有利于已调信号功率谱旁瓣分量的收敛,使信号功率更集中于信号带宽内。

在这里,我们采用的是载波调频法,其调制器电路原理图如图4- 9 :图4-9 门电路与电子开关构成的调制器电原理图由图可知,若用门电路构成调制器,其工作过程是:从“信码\IN”输入的基带信号分成两路,1路经(74LS00)反相后接至OOK2(74LS00)的控制端,另1路直接接至OOK1的控制端。

从“载波f1”和“载波f2”输入的载波信号分别接至OOK1和OOK2的输入端。

当基带信号为“1”时,们电路OOK1 打开,OOK2关闭,输出第一路载波;当基带信号为“0”时,OOK1关闭,OOK2打开,此时输出第二路载波,再通过相加器就可以得到2FSK调制信号。

波形如图4-10 所示。

图4-10 2FSK信号波形⑤过零检测2 FSK 信号解调电路设计与工作原理从前面原理的介绍中,我们知道2FSK调制信号的解调若用非相干过零检测法,由图可见,必须有七个单元模块来完成。

考虑到2FSK信号的产生和解调集于同一仿真电路中,已调信号未经信道传输,没有畸变、没有信道的干扰,因而采用数字电路完成限幅、微分、整流和脉冲形成四大功能是较简单的,其参考电路如图4-11 所示。

电路输出信号波形如图4-12 所示。

图4-11 限幅、微分、整流、展宽电路原理图由图可见,该脉冲形成电路用双J-K触发器74LS107、二极管、阻容等元件组成。

该电路具有单稳态特性,它的稳定状态是:=1 或Q=0。

当CP端有输入信号触发时,输入信号的下降沿使电路状态发生改变:Q=1,=0。

这时J-K触发器清零端的电压VRD将缓慢降低,当降至1.4V左右时,触发器清零,电路又回到稳定状态,此时,二极管导通,电容C 经二极管正向电阻rD 反向充电,因为反向充电的时常数τ充= rD C 较小,因而触发器清零端的电压会很快上升至高电位上,保证Q端维持低电平。

显然,输入信号的下降沿作用后,清零端电平下降到1.4V 左右的时间长度与脉冲宽度有关,脉冲宽度τ放= W1C ,调节W1可以改变形成脉冲的宽度。

调节W1使脉冲形成电路上下两支脉冲的宽度分别小于T1/2(T1=1/f1),保证两路脉冲叠加后不混叠,但也不能使脉宽过窄,因为形成脉冲的宽度将影响低通滤波器输出幅度的幅度。

图4-12 限幅、微分、整流、展宽电路输出信号波形 ⑥ 低通滤波器电路设计与工作原理为了获得良好的幅频特性,脉冲展宽电路输出端所接的低通滤波器的带外衰减应很快,达40dB /十倍频程。

实验中要求采用巴特沃斯低通滤波器,其电路如图4-13所示。

输出信号波形如图4-14所示。

图中所示的低通滤波器为二阶有源低通滤波器。

能提供40dB/十倍频程衰减量,由截止频率公式:图4-13 低通滤波器输出信号波形图121221R R C C ω=图4-14 低通滤波器电原理图⑦电压比较器电路组成与工作原理电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,所谓电压比较器就是将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。

比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域在本实验系统,电压比较器的主要任务是将低通滤波器输出的数字基带信号进行零电平判决与实现波形的变换,使之成为规则的矩形波。

其基本电路构成如图4-13所示:输出信号波形如图4-14所示。

它由通用电压比较器芯片LM311构成,其反相输入端接分压电位器的中心抽头,以取得参考电压Vb;当输入信号电压Vi≥Vb 输出为1 当输入信号电压Vi≤Vb 输出为0图4-15 电压比较器电路原理图图4-16 电压比较器电路输出信号波形图⑧抽样判决器电路组成与工作原理抽样判决器的功用是:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。

相关文档
最新文档