高中数学解析几何|求轨迹方程方法最全总结

合集下载

《轨迹方程的求法》课件

《轨迹方程的求法》课件
结合现代科技手段,如人工智能、大数据等,对 轨迹方程进行数据分析和挖掘,揭示隐藏的运动 规律和模式。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义

通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是解析几何中的一个重要内容,它是描述一个物体在运动过程中的路径的数学方法。

在数学中,求轨迹方程的过程通常需要经过一系列的思路和方法,且会涉及到不同类型的题目。

本文将介绍求轨迹方程的思路、方法以及对应的题型,希望对读者有所帮助。

一、思路在求解轨迹方程时,我们首先需要明确物体的运动规律和路径,然后通过数学方法来描述它的运动状态。

通常来说,我们可以采用以下思路来求解轨迹方程:1. 分析运动规律:首先我们需要分析物体的运动规律,包括其运动方向、速度和加速度等。

了解物体的运动规律有助于我们更好地建立数学模型。

2. 建立数学模型:根据物体的运动规律,我们可以建立数学模型,一般是通过对其位置、速度和加速度等数据进行分析得到。

建立好数学模型后,我们就可以利用数学方法来求解轨迹方程。

3. 求解轨迹方程:根据建立的数学模型,我们可以利用数学方法如微积分、几何等来求解轨迹方程。

最终得到的轨迹方程可以描述物体在运动过程中的路径。

4. 验证结果:最后我们还需要验证求解得到的轨迹方程是否准确,通常可以通过数学推导和实际运动情况进行验证。

三、对应的题型在求解轨迹方程的过程中,我们会遇到不同类型的题目,包括但不限于以下几种:1. 直线运动问题:给定物体在直线运动过程中的速度和加速度,求解其轨迹方程。

2. 圆周运动问题:给定物体在圆周运动过程中的角速度和半径,求解其轨迹方程。

3. 曲线运动问题:给定物体在曲线运动过程中的运动规律,求解其轨迹方程。

4. 三维空间运动问题:给定物体在三维空间中的运动规律,求解其轨迹方程。

第二篇示例:求轨迹方程是数学中一个常见的问题,涉及到函数、几何和代数等多个方面的知识。

在解决这类问题时,我们需要掌握一定的思路和方法,同时要能灵活应用这些知识来解决具体的题目。

本文将介绍求轨迹方程的思路、方法以及几种常见的题型,并给出相应的解题思路和步骤。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

人教版高中数学选修2-1《轨迹方程的求法》

人教版高中数学选修2-1《轨迹方程的求法》

∵PM、PN 是圆 O1、圆 O2 的切线, ∴△PO1M 和△PO2N 是直角三角形. ∵|PM|= |PN|,∴|PM|2=2|PN|2. ∵由两圆的半径均为 1, ∴|PO1|2-1=2(|PO2|2-1). 设 P(x,y).
关键: 找等量关系
∴(x+2)2+y2-1=2[(x-2)2+y2-1],整理,得(x-6)2+y2=33. 故点 P 的轨迹方程为(x-6)2+y2=33.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件. 如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
易漏掉x≠-2的情 形!

x2 2 y 1 【2017 课标 II, 理】 设 O 为坐标原点, 动点 M 在椭圆 C:2
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP 2 NM 。 (1) 求点 P 的轨迹方程;

参数法 ——若动点P (x,y)的横、纵坐标之间 的关系不易找到,则可借助中间变量(参数) 来表示x,y,然后消去参数就得到动点P (x,y) 的轨迹方程
参数法
高考要求
求曲线的轨迹方程是解析几何的基本问题 之一 求符合某种条件的动点的轨迹方程,其 实质就是利用题设中的几何条件,用“坐标化” 将其转化为寻求变量间的关系 。 这类问题除 了考查考生对圆锥曲线的定义,性质等基础知 识的掌握,还充分考查了各种数学思想方法及 一定的推理能力和运算能力,因此这类问题成 为高考命题的热点!

高中数学—18—轨迹方程

1.已知AB 是圆2522=+y x 的动弦,若6=AB ,则线段AB 的中点的轨迹方程为 .2.已知5=PQ ,P 到平面内一直线l 的距离为2且Q 到直线l 的距离为4,则满足条件的直线l 有 条.3.ABC ∆的三边长分别为||,||,||BC a BA c A C b ===,且a b c >>成等差数列,(1,0),(1,0)A C -,则顶点B 的轨迹方程为 .4.已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,由动点P 向圆O 和圆O '所引的切线长相等,则动点P 的轨迹方程为 .5.()24,P 是圆C :036282422=---+y x y x 内的一个定点,圆上的动点A 、B 满足ο90=∠APB ,则弦AB 的中点Q 的轨迹方程为 .轨迹方程热身练习知识梳理求轨迹是解析几何一个很重要的题型,方法较多,难度较大。

在此两讲中,我们将学习最为常见的几种求轨迹的方法(直接法、转移代入法、几何定义法、综合法、点差法、消参法、交轨法等).1、直接法直接法,又称“直译法”,是求轨迹最基本的方法,圆锥曲线的标准方程都是通过直接法得到的.解题步骤就是“建设现代化镇”(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.2、转移代入法转移代入法,也称“相关点法”.当动点是随着相关的点有规律的运动而运动时,可用此法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。

求轨迹方程的常见方法

求轨迹方程的常见方法由运动轨迹求方程是解析几何的一类重要问题,下面谈谈求轨迹方程的几种常用方法。

一、直接法建立适当的座标系后,设动点为,根据几何条件寻求之间的关係式。

例1 已知动点m到椭圆的右焦点的距离与到直线x=6的距离相等,求点m的轨迹方程。

变式:已知点m与椭圆的左焦点和右焦点的距离之比为,求点m的轨迹方程。

变式2:在三角形abc中,b(-6,0), c(-6,0),直线ab,ac斜率乘积为,求顶点a的轨迹。

说明:求轨迹需要说明是什幺曲线并指出曲线的位置与大小,求轨迹方程怎不必说明。

二、定义法由题设所给动点满足的几何条件,经过化简变形,可以看出动点满足圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程。

例2 已知圆的圆心为m1,圆的圆心为m2,一动圆与这两个圆外切,求动圆圆心p的轨迹方程。

解:设动圆的半径为r,由两圆外切的条件可得:,。

∴动圆圆心p的轨迹是以m1、m2为焦点的双曲线的右支,c=4,a=2,b2=12。

故所求轨迹方程为。

三、待定係数法由题意可知曲线型别,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定係数,进而求得轨迹方程。

例3 已知双曲线中心在原点且一个焦点为f(,0),直线y=x-1与其相交于m、n两点,mn中点的横座标为,求此双曲线方程。

解:设双曲线方程为。

将y=x-1代入方程整理得。

由韦达定理得。

又有,联立方程组,解得。

∴此双曲线的方程为。

四、引数法选取适当的引数,分别用参数列示动点座标,得到动点轨迹的引数方程,再消去引数,从而得到动点轨迹的普通方程。

例4 过原点作直线l和抛物线交于a、b两点,求线段ab的中点m的轨迹方程。

解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。

把它代入抛物线方程,得。

因为直线和抛物线相交,所以△>0,解得。

设a(),b(),m(x,y),由韦达定理得。

由消去k得。

又,所以。

解析几何题型方法归纳(配例题)

解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。

高中数学曲线轨迹方程的求法

题目高中数学复习专题讲座曲线的轨迹方程的求法 高考要求求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 典型题例示范讲解例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系 错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则|P A |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为 3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+- 故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆学生巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________ 5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-答案 )4(1316162222ax a y a x >=-4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x mx y --②①×②得 y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解析几何|求轨迹方程方法最全总结
一、直接法
若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.
二、定义法
若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、
双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.
三、代入法
若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.
四、参数法
若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.
点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法
若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.
点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法
认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.
七、点差法
涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.
点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。

相关文档
最新文档