聚酰亚胺基础知识

合集下载

聚酰亚胺分类

聚酰亚胺分类

聚酰亚胺分类聚酰亚胺是一类重要的高性能聚合物材料,具有良好的热稳定性、机械性能和化学稳定性,在各个领域有着广泛的应用。

本文将从聚酰亚胺的合成方法、性质及应用等方面进行分类介绍。

一、聚酰亚胺的合成方法1. 酰亚胺化合物的聚合法:通过酰亚胺化合物的聚合反应制备聚酰亚胺。

该方法的优点是合成工艺简单,适用于大规模生产。

常见的酰亚胺化合物有苯酰亚胺、四氯苯酰亚胺等。

2. 聚酰胺酰亚胺化法:通过聚酰胺和酰亚胺化合物的反应合成聚酰亚胺。

该方法的优点是可以通过调整聚酰胺和酰亚胺化合物的配比来控制聚酰亚胺的性能。

3. 高温缩聚法:通过高温下将酰亚胺化合物进行缩聚反应制备聚酰亚胺。

该方法的优点是反应时间短,适用于制备高分子量的聚酰亚胺。

二、聚酰亚胺的性质1. 热稳定性:聚酰亚胺具有良好的热稳定性,可在高温下长时间使用。

其热分解温度通常在300℃以上,有些甚至可以达到500℃以上。

2. 机械性能:聚酰亚胺具有出色的机械性能,具有较高的强度和刚度。

其拉伸强度可达到100MPa以上,弹性模量可达到3-4GPa。

3. 化学稳定性:聚酰亚胺对酸、碱、溶剂等具有较好的化学稳定性。

在一定条件下,可以在酸性、碱性或有机溶剂中长时间使用而不发生明显的变化。

三、聚酰亚胺的应用1. 化工领域:聚酰亚胺具有良好的耐酸碱性和抗腐蚀性,可用于制造化工设备、管道、阀门等,承受酸碱介质的腐蚀。

2. 电子领域:聚酰亚胺具有良好的电绝缘性能和高温稳定性,可用于制造印刷电路板、绝缘材料、电子元件封装等。

3. 航空航天领域:聚酰亚胺具有较低的烟气生成量和毒性,被广泛应用于航空航天领域的烟雾抑制剂、阻燃剂和热隔热材料等。

4. 材料领域:聚酰亚胺具有良好的耐热性和机械性能,可用于制造高温结构材料、复合材料和纤维增强材料等。

聚酰亚胺是一类具有优异性能的高性能聚合物材料,其合成方法多样,性质稳定且应用广泛。

随着科技的不断进步,聚酰亚胺在各个领域的应用也将不断拓展和深入研究。

PI聚酰亚胺简介

PI聚酰亚胺简介

PI (聚酰亚胺)简介GCPI(聚酰亚胺)简介热塑性聚酰亚胺树脂(Polyimide),简称PI树脂)是热塑性工程塑料。

它属耐高温热塑性塑料,具有较高的玻璃化转变温度(243°C)和熔点(334°C),负载热变型温度高达260°C(30%玻璃纤维或碳纤维增强牌号),可在250°C下长期使用,与其他耐高温塑料如PEEK、PPS、 PTFE、PPO等相比,使用温度上限高出近50°C;PI树脂不仅耐热性比其他耐高温塑料优异,而且具有高强度、高模量、高断裂韧性以及优良的尺寸稳定性;PI树脂在高温下能保持较高的强度,它在200°C时的弯曲强度达24MPa左右,在250°C 下弯曲强度和压缩强度仍有12〜13MPa; PI树脂的刚性较大,尺寸稳定性较好,线胀系数较小,非常接近于金属铝材料;具有优异的耐化学药品性,在通常的化学药品中,只有浓硫酸能溶解或者破坏它,它的耐腐蚀性与银钢相近,同时其自身具有阻燃性, 在火焰条件下释放烟和有毒气体少,抗辐射能力强;PI树脂的韧性好,对交变应力的优良耐疲劳性是所有塑料中最出众的,可与合金材料媲美;PI树脂具有突出的摩擦学特性,耐滑动磨损和微动磨损性能优异,尤其是能在250°C下保持高的耐磨性和低的摩擦系数;PI树脂易于挤出和注射成型,加工性能优异,成型效率较高。

此外,PI还具有自润滑性好、易加工、绝缘性稳定、耐水解等优异性能,使得其在航空航天、汽车制造、电子电气、医疗和食品加工等领域具有广泛的应用,开发利用前景十分广阔。

PI (聚酰亚胺)主要特性GCPI(聚酰亚胺)主要特性热塑性聚酰亚胺树脂(PI)的综合性能,非常优秀,它具有抗腐蚀、抗疲劳、耐高温、耐磨损、耐冲击、密度小、噪音低、使用寿命長等特点,优良的高低温性能(长期-269°C—280°C不变形);在极广温度范围内保持长期的耐蠕变和耐疲劳性;在280“ C(512° F)下有足够高的抗拉强度和弯曲模量;改进的耐压强度;对化学品、溶剂,润滑油和燃料的超常抗力,密封性好;固有的阻燃性、无烟尘排放性;噪音低,自润滑性能好,可无油自润滑;热膨胀系数低;密度小,硬度高;吸水率低;良好的电气性;极好的抗水解性能;有粉末状或颗粒状两种类型供选,另外还有例如板材,棒材和管材等半成品。

聚酰亚胺基础知识-1(横田力男)

聚酰亚胺基础知识-1(横田力男)

第一编基础编第1章聚酰亚胺合成法1.前言正象主链含酰胺结构的聚合物被称为聚酰胺那样,主链含亚胺结构的聚合物统称为聚酰亚胺。

1)其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。

相反具有环状结构的聚酰亚胺,特别是五元环状聚酰亚胺已知的品种很多,实用性很强。

因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。

环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。

示1聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。

其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。

本书也是以这种缩聚型聚酰亚胺为主。

而后者为加聚型聚酰亚胺实际属耐热性热固型树脂的热固型聚酰亚胺(参考应用编第2章)。

具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。

也就是大家所熟悉的称为[Kapton]聚酰亚胺,经过40多年后至今仍然在高耐热性塑料中保持领先地位的一种优异的材料。

关于这种聚酰亚胺开发的经过Sroog (Dupont公司)有过详细的介绍。

2)图示2 这种聚酰亚胺由于具有刚直的主链且不溶于有机溶剂,而且还不熔融,所以是用特殊的两步合成法合成制造的。

即是用均苯四甲酸酐PMDA和二苯醚二胺ODA为原料,合成可溶性聚酰胺酸,在这个聚酰胺酸阶段进行成型加工后,通过加热(当然发生化学反应)脱水环化(亚胺化)得到Kapton薄膜等一系列聚酰亚胺制品(反应式1)。

3,4)(1)从这种聚酰亚胺开始,一系列芳香族聚酰亚胺作为高耐热性塑料虽然在广泛产业界起到了重要的作用,但由于大多数芳香族聚酰亚胺都是不溶不熔的,所以都通过(1)式所示的两步法来合成和制备。

由芳香族四甲酸酐和芳香族二胺为原料通过两步法合成聚酰亚胺的一般反应式如(2)式所示。

2)这种通过聚酰胺酸的两步合成法是从60年代开始采用的一种古典且具代表性的合成方法。

聚酰亚胺

聚酰亚胺



n
n
(SO3H)x
(O
O C
O
ClSO3H
(O
O C
O
y(HO3S)
When x is less than 1,y=0. When x=1,y=0 ~0.5.
O
O O C SO3Na F + n F O C
m+n N N O O N NH
+ m
F NaO3S
F
H
DMSO O O
K2CO3 O H+ O
Journal of Membrane Science 298 (2007) 48–55
Materials Science and Engineering B 157 (2009) 1–5
O F C M1 F
CH3
CH3 OH
+ HO
C CH3 M2
+
HO
C CH3 M3
OH
DMAc, Toluene, K2CO3 140 o C, 3h 165 o C, 10h O C O CH3 C CH3 O
甲酚中,形成速度大于苯酰亚胺。
4)使用两种二酐或二胺的共聚反应

目的:破坏聚酰亚胺的分子结构对称性和重复 规整度,降低链间作用力和结晶度
聚酰亚胺合成研究新进展

1)苯边四酸型聚酰亚胺-含弯曲单元
2)氨基酐化合物--AB型聚酰亚胺
手性二酐和二胺
Journal of Polymer Science: Part A: Polymer Chemistry 2007:3748
O O O O O O
O O O O O O

3,3’,4,4’-联苯四酸酐 2,2’,3,3’ 联苯四酸酐

聚酰亚胺

聚酰亚胺

FF
F
OF
F
F
O
F3C CF3
O
N
N
O
O
CF3 F3C
6FDA/TFDB
进口产品与国产材料价格对比
每公斤
聚酰亚胺材料
聚酰亚胺光刻胶与普通光刻胶的比较
准分子激光制作的聚酰亚胺薄膜表面光栅
(11) 液晶显示用的取向排列剂:聚酰 亚胺在TN-LCD、STN-LCD、TFT-LCD及 未来的铁电液晶显示器的取向剂材料 方面都占有十分重要的地位。 (12) 电-光材料:用作无源或有源波导 材料、光学开关材料等,含氟的聚酰 亚胺在通讯波长范围内为透明;以聚 酰亚胺作为发色团的基体可提高材料 的稳定性。
美国HSCT计划
1. 速度:2. 4 马赫(2575km/ hr) , 从旧金山到上海由 现在的 12 小时缩短到 5 小时。 2. 飞机表面温度:177℃。 3. 作为机翼和机身结构部件的聚酰亚胺复合材料 30 吨/ 架。 4. 要求材料在 177℃下的使用寿命为 60000小时( 6. 9 年) ,飞机寿命:30 年。 5. 飞行高度:19000 米。 6. 计划制造 500 架。 7. 载客 300 名。 8. 粘合剂:聚酰亚胺类。
3.0
PBO
1.5
340
3.4
聚酰亚胺 1.3-1.4 250-300
5.2
碳纤维 1.77-1.96
822
5.3
聚酰亚胺纤维与Kevlar纤维的比较
性能
PI纤维
Kevlar
模量
1400g/d
<1000g/d
热氧化稳定性 300℃空气中强 300℃空气中强
度保持90%
度保持60%
吸水性

聚酰亚胺+定义

聚酰亚胺+定义

聚酰亚胺+定义摘要:I.聚酰亚胺简介- 聚酰亚胺的定义- 聚酰亚胺的特点- 聚酰亚胺的分类II.聚酰亚胺的应用领域- 电子行业- 航空航天领域- 汽车工业- 医疗领域III.聚酰亚胺的发展趋势- 聚酰亚胺研究的进展- 聚酰亚胺市场前景- 聚酰亚胺的可持续发展IV.聚酰亚胺的制备方法- 聚酰亚胺的合成方法- 聚酰亚胺的生产工艺- 聚酰亚胺的改性方法V.聚酰亚胺的性能测试- 聚酰亚胺的物理性能测试- 聚酰亚胺的化学性能测试- 聚酰亚胺的力学性能测试正文:聚酰亚胺(Polyimide,简称PI)是一种具有优异性能的有机高分子材料,其主链上含有酰亚胺基团(-CO-N-CO-)的一类聚合物。

聚酰亚胺具有高强度、高模量、耐高温、耐低温、耐腐蚀、耐辐射、低介电常数、低吸水性、高抗氧化性等优异性能,被广泛应用于各个领域。

一、聚酰亚胺简介1.定义聚酰亚胺是一类具有特殊结构的高分子材料,其主链上含有酰亚胺基团(-CO-N-CO-),是通过酰亚胺化反应合成的。

2.特点聚酰亚胺具有以下特点:高强度、高模量、耐高温、耐低温、耐腐蚀、耐辐射、低介电常数、低吸水性、高抗氧化性等。

3.分类聚酰亚胺可以根据其分子结构、原料类型和应用领域进行分类。

根据分子结构,聚酰亚胺可分为脂肪族聚酰亚胺、芳香族聚酰亚胺和杂环聚酰亚胺等;根据原料类型,聚酰亚胺可分为二元酐型聚酰亚胺、二元酸型聚酰亚胺和混合型聚酰亚胺等;根据应用领域,聚酰亚胺可分为电子聚酰亚胺、航空航天聚酰亚胺、汽车工业聚酰亚胺和医疗聚酰亚胺等。

二、聚酰亚胺的应用领域1.电子行业聚酰亚胺在电子行业中具有广泛的应用,如用于制造柔性电路板、柔性显示器、绝缘材料、封装材料等。

2.航空航天领域聚酰亚胺在航空航天领域中具有重要的应用,如用于制造飞机、火箭、卫星等部件,以及航空发动机、导弹等。

3.汽车工业聚酰亚胺在汽车工业中具有广泛的应用,如用于制造汽车发动机、制动系统、传动系统等部件。

4.医疗领域聚酰亚胺在医疗领域中具有重要的应用,如用于制造医疗器械、人工器官等。

聚酰亚胺

聚酰亚胺

聚酰亚胺( PI)聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数,介电损耗仅~,属F至H级绝缘材料。

聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。

性能:1.外观淡黄色粉末2.弯曲强度(20℃) ≥170MPa3.密度~cm34.冲击强度(无缺口) ≥28kJ/m25.拉伸强度≥100 MPa6.维卡软化点 >270℃7.吸水性(25℃,24h)8.伸长率 >120%钛酸钡分子式:BaTiO3 分子量:性状白色粉末熔点1625℃相对密度溶解性:溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水和碱。

熔点:1625℃钛酸钡是一致性熔融化合物,其熔点为1618℃。

在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的6/mmm。

此时,六方晶系是稳定的。

在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。

在此结构中Ti4+(钛)居于O2-(氧离子)构成的氧中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。

此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无,也无。

随着温度下降,晶体的对称性下降。

当温度下降到130℃时,钛酸钡发生顺电-铁电相变。

在130~5℃的温区内,钛酸钡为四方晶系4mm,具有显着地铁电性,其沿c轴方向,即[001]方向。

钛酸钡从转变为四方晶系时,结构变化较小。

从来看,只是沿原的一轴(c 轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,转变成mm2点群,此时晶体仍具有,其自发极化强度沿原立方的面对角线[011]方向。

为了方便起见,通常采用的参数来描述的。

这样处理的好处是使我们很容易地从中看出的情况。

钛酸钡从转变为正交晶系,其结构变化也不大。

从来看,相当于原的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。

聚酰亚胺资料

聚酰亚胺资料

一、聚酰亚胺材料及其应用(一)、聚酰亚胺材料概述聚酰亚胺是指分子主链中含有酰亚胺环的一类聚合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,使他具有了很好的耐热性及优异的力学、电学等性能,且耐辐照、耐溶剂。

在高温下具备的卓越性能够与某些金属相媲美。

此外,它还具有优良的化学稳定性、坚韧性、耐磨性、阻燃性、电绝缘性以及其他机械性能。

(二、)聚酰亚胺材料的重要性聚酰亚胺(简称PI)是综合性能最佳的有机高分子材料之一,已被广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

今年来,各国都将聚酰亚胺列为21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在合成和性能方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到了充分的认可,并认为没有聚酰亚胺就不会有今天的微电子技术。

(三)、聚酰亚胺材料的性能简介(1)、对于全芳聚酰亚胺,其分解温度一般都在500℃左右。

由联苯二酐和对笨二胺合成的聚酰亚胺,其热分解度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

(2)、聚酰亚胺可耐极低温,如在—269℃液态氮中仍不会脆裂。

(3)、聚酰亚胺还具有很好的机械性能,抗张度均在100MPa以上,均苯型聚酰亚胺薄膜的抗张力强度为170MPa,而联苯型聚酰亚胺薄膜的抗张力度达到400MPa。

作为工程塑料,其弹性模量通常为3~4GMPa,而纤维的可达200GMPa。

(4)、一些聚酰亚胺品种不溶于有机溶剂,对烯酸稳定,一般的品种也不大耐水解,但可以利用碱性水解回收原料二酐和二胺。

(5)、聚酰亚胺的热膨胀系数非常高。

(6)、聚酰亚胺具有很高的耐辐照性能。

(7)、聚酰亚胺具有很好的介电性能。

(8)、聚酰亚胺为自熄性聚合物,发烟率低。

(9)、聚酰亚胺无毒。

一些聚酰亚胺还具有很好的生物相容性。

二、聚酰亚胺纤维芳香族聚酰亚胺(PI)纤维主要指由聚酰胺酸(PAA)或PI溶液纺制而成的高性能纤维。

PI纤维与PPTA纤维相比有更高的热稳定性、更高的弹性模量、低的吸水性、耐低温性能和辐射性能等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不过(2)式的开环加成反应是个平衡反应((3)式)。例如(1)式的均苯四甲酸二酐PMDA与二苯醚二胺ODA反应的情况,在40℃的DMAc溶液这种极性酰胺类溶剂中,其平衡常数K为105L/mol以上,非常大,在(3)式所示的反应体系中与反应物(左侧)相比之下,很大程度上偏向生成物(右侧),这使平衡聚合度P达到300以上(P大约等于K的平方根),分子量大约在10万左右,表明很容易形成高分子量的聚酰胺酸23)。
聚酰亚胺基础知识-1(总103页)
第一编基础编
第1章聚酰亚胺合成法
1.前言
正象主链含酰胺结构的聚合物被称为聚酰胺那样,主链含亚胺结构的聚合物统称为聚酰亚胺。1)其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。相反具有环状结构的聚酰亚胺,特别是五元环状聚酰亚胺已知的品种很多,实用性很强。因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。
图示1
聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。本书也是以这种缩聚型聚酰亚胺为主。而后者为加聚型聚酰亚胺实际属耐热性热固型树脂的热固型聚酰亚胺(参考应用编第2章)。
也就是两种反应物当场立即反应生成部分高分子量的聚酰胺酸。不过严格来讲溶液粘度与重均分子量MW相对应,而对数均分子量Mn并不敏感,因此,当场是聚酰胺酸的重均分子量急激增大24)。当然就局部而论,两种反应物的化学当量失调的地方也存在,这时就会生成低分子量(重均分子量小)的聚酰胺酸,这样一来生成了分子量分布宽的聚酰胺酸(MW/Mn>2),这个反应体系不是均一的溶液反应,与开环加成反应速度相比,反而是固体芳香族四酸二酐的溶解速度要慢。它具有固体溶解扩散速度起决定作用的固-液界面非均一反应的特征25)。这样一来刚反应生成的聚酰胺酸溶液的粘度会随时间的延长而下降,这一点很早大家都承认21),22),26),关于这一现象(聚酰胺酸的不稳定性)将在下面的项讨论。
关于聚酰胺酸的合成方法,向芳香族二胺溶液中直接加入芳香族四酸二酐固体(粉末)进行开环加成反应的做法,不仅实验采用,生产现场也广泛采用。实际上,对这个反应混合物溶液进行搅拌时,固体芳香族四酸二酐并不是一下全溶,而是在固体酸酐表面溶解的同时就与接触它的芳香族二胺之间进行反应,这一现象可以观察到。既可看到在固体四酸二酐的附近,溶解下来的芳香族四酸二酐与芳香族二胺呈当场浓缩状态,呈现红黄色(形成电荷转移络合物)并随反应的进行,这种颜色变淡,同时反应体系溶液粘度增大4,21)。这是所有四酸二酐溶解消耗了,从反应体系整体看两反应成份在化学当量上达到均衡反应已经完成以前的情况,
在前面提到的理想的反应条件下,也就是用高纯度的芳香族四酸二酐PMDA和芳香族二胺ODA加入高纯度酰胺类溶剂(NMP,用真空蒸馏精制后马上用
)中,在确保体系中无微量水和氧的条件下反应,则芳香族四酸二酐和芳香族二胺的浓度和它们的加料顺序,即不论是向二胺溶液中加入四酸二酐,还是相反向四酸二酐溶液中加入二胺,对生成的聚酰胺酸的分子量并无影响,这一点最近已被实验所证实25)。不过一般的实验室或生产现场,要使反应器内或反应体系中严格除水很难,因此作为聚酰胺酸的合成方法向芳香族二胺溶液中把芳香族四酸二酐固体(粉末状)直接加入(或者把粉末状芳香族四酸二酐分散在酰胺类以外的溶剂中)进行反应的方法,也是现在被采用的主要方法。
(8)
现在把(3)式的形成酰胺酸的反应再详述一下。酸酐在羧酸衍生物中反应活性是仅次于酰氯的17),18),环状酸酐1和二胺2在适当的溶剂中,在室温下会很快发生放热反应,得到开环的酰胺酸4(3式)。这个反应是属于二胺与环状酸酐的开环加成反应,从反应机理来讲是二胺2的氮与酸酐的羧基碳之间的亲核加成,形成环状四面体的中间体3(不稳定),接着是从四面体中间体进行羧酸分子内异构形成酰胺酸结构的开环加成物4,即由亲核加成-异构两步形成的亲核酰基置换反应。18,19)
这里希望大家记得,聚酰胺酸的分子量对最终得到的聚酰亚胺薄膜的拉伸特性(拉伸强度、断裂伸长、拉伸模量)有很大影响。也就是说从聚酰胺酸溶液得到的聚酰亚胺薄膜的拉伸特性(特别是断裂伸长),对聚酰胺酸的重均分子量有很大依赖性,希望其重均分子量在20000以上,而与数均分子量没有太大关系27)。这样如果要得到具有尽量高的拉伸特性的聚酰亚胺薄膜,最好使用重均分子量大的,换句话讲最好使用刚合成的重均分子量大的聚酰胺酸溶液来制备聚酰亚胺膜,这是实验室所推荐的方法。
之所以要非常重视反应体系中的水分,是因为反应体中具有高反应性的芳香族四酸二酐会与水发生分解反应生成如(9)式所示的邻苯二甲酸,由于它的反应活性低,在室温附近不能与芳香族二胺反应,将使部分芳香族四酸二酐失去反应活性,从而丧失了形成高分子量聚酰胺酸的必要条件,即不能保持芳香族四酸二酐和芳香族二胺1:1的化学当量。
从这种聚酰亚胺开始,一系列芳香族聚酰亚胺作为高耐热性塑料虽然在广泛产业界起到了重要的作用,但由于大多数芳香族聚酰亚胺都是不溶不熔的,所以都通过(1)式所示的两步法来合成和制备。由芳香族四甲酸酐和芳香族二胺为原料通过两步法合成聚酰亚胺的一般反应式如(2)式所示。
(2)
这种通过聚酰胺酸的两步合成法是从60年代开始采用的一种古典且具代表性的合成方法。这种方法虽然存在聚酰亚胺的前驱体聚酰胺酸在溶液状态的贮存稳定性不好等问题,但其重要性至今仍保持不变。在本章中作为聚酰亚胺合成方法,首先叙述这种通过聚酰胺酸的两步合成,之后再对不经过聚酰胺酸这种复杂过程的合成方法进行介绍。也就是把一步法合成聚酰亚胺和经过聚酰胺酸衍生物的合成方法作叙述。作为参考列出了聚酰亚胺合成的有关文献。5)~16)
2.经由聚酰胺酸的两步合成法
聚酰亚胺的形成过程
在介绍聚酰胺酸和聚酰亚胺合成、制备之前,先看一下由芳香族四羧酸二酐和芳香族二胺通过两步法合成聚酰亚胺的过程。聚酰亚胺的形成过程可分成由(3)式到(7)式的五个基本反应。
(5)
(6)
(7)
其中,(3)式的由环状酸酐和胺的开环反应形成酰胺酸和(4)式的由酰胺酸脱水形成环状酰亚胺是主反应。(5)式到(7)式是经过环状酰亚胺互变异构化的环状异构酰亚胺(环状酰亚胺的异构体)的形成和由它的异构化形成环状酰亚胺的过程。另外(3)式的酰胺酸的形成反应是一个平衡反应,为便于参考把这个逆反应也考虑在内,则如(8)式所示:
具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。也就是大家所熟悉的称为[Kapton]聚酰亚胺,经过40多年后至今仍然在高耐热性塑料中保持领先地位的一种优异的材料。关于这种聚酰亚胺开发的经过Sroog(Dupont公司)有过详细的介绍。2)
图示2
这种聚酰亚胺由于具有刚直的主链且不溶于有机溶剂,而且还不熔融,所以是用特殊的两步合成法合成制造的。即是用均苯四甲酸酐PMDA和二苯醚二胺ODA为原料,合成可溶性聚酰胺酸,在这个聚酰胺酸阶段进行成型加工后,通过加热(当然发生化学反应)脱水环化(亚胺化)得到Kapton薄膜等一系列聚酰亚胺制品(反应式1)。3,4)
生成高分子量的聚酰胺酸的关键是反应所用的芳香族四酸二酐和芳香族二胺必须保证高纯度,聚合溶剂也要高纯度,同时不仅反应容器就是装两种反应物和溶剂的容器都要完全干燥(无水状态)且无氧氛围(芳香族二胺很易氧化)。芳香族四酸二酐和芳香族二胺的精制(高纯化)与其用重结晶方法,不如用升华方法更有效。关于聚合溶剂,例如DMAc或NMP这类极性酰胺溶剂可用加入P2O5后真空蒸馏来得到无水溶ቤተ መጻሕፍቲ ባይዱ,同时也可除去溶剂中存在的胺等不纯物。
另一方面芳香族二胺的反应活性(亲核性)是(3)式的胺2的氮电子密度愈高反应活性愈高。即芳香环上带给电子的取代基胺反应活性高,相反有吸电子取代基则反应活性低。比较具有连结基X的芳香族二胺H2N-(P-C6H4)-X-(P-C6H4)-NH2的反应活性时,是按X为-O->-CH2->->-(C=O)->-SO2-的顺序反应活性降低。不过在实际合成聚酰胺酸的时候,与芳香族四酸二酐相比是芳香族二胺的种类不同对酰胺酸生成的难易影响更大。
接着通过(4)式,酰胺酸结构的开环加成物4(环状酰亚胺的前驱体)的酰胺基的氮对分子内的羧酸的羰基碳进行亲核进攻形成环状四面体中间体5,接着从5经脱水反应形成环状酰亚胺6。这个脱水环化(环状亚胺化)反应也是由亲核加成-异构两步机理的亲核酰基置换反应18,19)。
下面的(5)式,是酰胺酸的羰-醇互变异构。酰胺酸在一般情况取热力学稳定的酮型4,但有时也会取醇型7(不稳定),如(5)式所示。
这里由(5)式的互变异构酰胺酸的醇形7的羟基的氧,对分子内的羧酸的羰基碳进行亲核攻击后,按(6)式形成环状四面体中间体8(不稳定),接着由8脱水后形成环状异构酰亚胺9。
一般情况下酰亚胺是热力学稳定的生成物,与其相比相当于它的异构体的异构酰亚胺则是动力学的生成物,在热力学上是不稳定的结构。因此,异构酰亚胺通过加热很容易发生异构化(chapman型分子内旋转)形成热力学稳定的酰亚胺。实际上环状异构酰亚胺9(不稳定结构)也会因加热按7式很容易异构化为环状酰亚胺6。
聚酰胺酸生成的难易取决于芳香族四酸二酐和芳香族二胺的反应活性。这两类成分的反应活性从反应论角度可从(3)式进行预测。
芳香族四酸二酐的反应活性(亲电子性),从(3)式看酸酐1的羧基碳的电子密度愈低活性愈高。即芳香环上带有吸电子取代基芳香族四酸二酐反应活性就高,具有给电子取代基的反应活性就低。具体是均苯四甲酸酐>砜二酞酸酐>酮二酞酸酐>六氟异丙叉二酞酸酐>联苯四羧酸二酐>二苯醚二酸酐,按顺序反应性降低。(这些化学式参照实用材料篇第一章。)
前面形成酰胺酸结构的开环加成体4的(3)式反应是个平衡反应,为更准确把逆反应也考虑进去,则如(8)式所示。这个(8)式中酰胺酸4的羧酸基在分子内是具有亲核-亲电子催化作用的双官能团催化剂的功能20),会由它使环状酸酐1与二胺2生成更容易。这个反应过程与前面同样,酰胺酸4的酰胺羰基与分子内的羧酸羟基的氧通过亲核加成(经过环状四面体10),此后形成环状酸酐和二胺2的脱离。也就是说,(3)式正反应四面体中间体3与逆反应(8)式的四面体10实质上是同一种物质。
相关文档
最新文档