山东大学操作系统实验报告4进程同步实验

合集下载

进程(线程)同步和互斥实验报告

进程(线程)同步和互斥实验报告

进程(线程)同步和互斥实验报告操作系统实验报告课程名称操作系统实验名称进程(线程)的同步与互斥成绩学生姓名作业君专业软件工程班级、学号同组者姓名无实验日期2021一、实验题目: : 进程(线程)的同步与互斥二、实验目的:自行编制模拟程序,通过形象化的状态显示,加深理解进程的概念、进程之间的状态转换及其所带来的 PCB 内容、组织的变化,理解进程与其 PCB 间的一一对应关系。

1.掌握基本的同步与互斥算法,理解生产者消费者模型。

2.学习使用 Windows 中基本的同步对象,掌握相关 API 的使用方法。

3.了解 Windows 中多线程的并发执行机制,实现进程的同步与互斥三、实验内容与要求:1.实验内容以生产者/消费者模型为依据,在 Windows 环境下创建一个控制台进程,在该进程中创建 n 个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。

2.实验要求学习并理解生产者/消费者模型及其同步/互斥规则;学习了解 Windows 同步对象及其特性;熟悉实验环境,掌握相关 API 的使用方法;设计程序,实现生产者/消费者进程(线程)的同步与互斥;四、算法描述(含数据结构定义)或流程图#include <Windows.h> #include <iostream> #include<stdio.h> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std;#define MA__THREAD_NUM 64//最大线程数 #define INTE_PER_SEC 1000//延迟时间的毫秒值 const int SIZE_OF_BUFFER = 10;//缓冲区长度 int ProductID = 0;//产品号 int ConsumeID = 0;//将被消耗的产品号 int in = 0;//产品进缓冲区时的缓冲区下标 int out = 0;//产品出缓冲区时的缓冲区下标 bool running = true;//判断程序能否继续执行的逻辑值 intg_buffer[SIZE_OF_BUFFER];//缓冲区是个循环队列 HANDLE g_hMute_;//公有信号量,用于线程间的互斥 HANDLEg_hFullSemaphore;//生产者的私有信号量,当缓冲区满时迫使生产者等待HANDLE g_hEmptySemaphore;//消费者的私有信号量,当缓冲区空时迫使消费者等待//定义一个结构体用于存储线程的信息 struct ThreadInfo {int serial;//线程号char entity;//线程类别(生产者或消费者)double delay;//等待时间double persist; //操作时间 };//生产者 void Producer(void_p) {//定义变量用于存储当前线程的信息DWORD m_delay;DWORD m_persist;int m_serial;//从参数中获得信息m_serial = ((ThreadInfo_)(p))->serial;m_delay = (DWORD)(((ThreadInfo_)(p))->delay _INTE_PER_SEC);m_persist = (DWORD)(((ThreadInfo_)(p))->persist _INTE_PER_SEC);while (running){//P 操作cout << “生产者线程” << m_serial << “ 请求生产.” << endl;WaitForSingleObject(g_hEmptySemaphore, INFINITE);cout << “生产者线程” << m_serial << “ 请求独占缓冲区.” << endl;WaitForSingleObject(g_hMute_, INFINITE);Sleep(m_delay);//延迟等待//生产一个产品cout << “生产者线程”<< m_serial << “ 生产” << ++ProductID << “ 号产品成功.” << endl;cout << “生产者线程” << m_serial << “ 请求将产品” << ProductID << “ 投入缓冲区.” << endl;//把新生产的产品放入缓冲区g_buffer[in] = ProductID;in = (in +1)%SIZE_OF_BUFFER;Sleep(m_persist);//操作等待cout << “生产者线程” << m_serial << “ 将产品” << ProductID << “ 投入缓冲区中成功.” << endl;//输出缓冲区当前的状态cout << “____________________________” << endl<< “\n 当前缓冲区情况如图(■代表已有产品,□代表没有产品):” << endl;for (int i = 0;i < SIZE_OF_BUFFER;++i){if (g_buffer[i] != 0)cout << “■”;elsecout << “□”;}cout << “\n\n____________________________\n” << endl;//V 操作ReleaseMute_(g_hMute_);ReleaseSemaphore(g_hFullSemaphore, 1, NULL);} }//消费者 void Consumer(void_p) {DWORD m_delay;DWORD m_persist;int m_serial;//从参数中获得信息m_serial = ((ThreadInfo_)(p))->serial;m_delay = (DWORD)(((ThreadInfo_)(p))->delay _INTE_PER_SEC);m_persist = (DWORD)(((ThreadInfo_)(p))->persist _INTE_PER_SEC);while (running){//P 操作cout << “消费者线程” << m_serial << “ 请求消费.” << endl;WaitForSingleObject(g_hFullSemaphore, INFINITE);cout << “消费者线程” << m_serial << “ 请求独占缓冲区.” << endl;WaitForSingleObject(g_hMute_,INFINITE);Sleep(m_delay); //延迟等待//从缓冲区中取出一个产品cout << “消费者线程” << m_serial << “ 请求取出一个产品.” << endl;ConsumeID = g_buffer[out];g_buffer[out] = 0;out = (out + 1) % SIZE_OF_BUFFER;cout << “消费者线程” << m_serial << “ 取出产品” << ConsumeID << “ 成功.” << endl;//消耗一个产品cout << “消费者线程” << m_serial << “ 开始消费消费产品” << ConsumeID << “.” << endl;Sleep(m_persist);cout << “消费者线程” << m_serial << “ 消费产品” << ConsumeID << “ 成功.” << endl;//输出缓冲区当前的状态cout << “____________________________” << endl<< “\n 当前缓冲区情况如图:” << endl;for (int i = 0;i < SIZE_OF_BUFFER;++i){if (g_buffer[i] != 0)cout << “■”;elsecout << “□”;}cout << “\n\n____________________________\n” << endl;//V 操作ReleaseMute_(g_hMute_);ReleaseSemaphore(g_hEmptySemaphore, 1, NULL);} }void prod_cons {//创建互斥信号量g_hMute_ = CreateMute_(NULL, FALSE, NULL);//创建同步信号量g_hEmptySemaphore = CreateSemaphore(NULL,SIZE_OF_BUFFER, SIZE_OF_BUFFER, NULL);g_hFullSemaphore = CreateSemaphore(NULL, 0,SIZE_OF_BUFFER, NULL);srand((unsigned)time(NULL));//以时间函数为种子const unsigned short THREADS_COUNT = rand % 5 + 5; //总的线程数(随机生成)//线程对象的数组HANDLE hThreads[MA__THREAD_NUM];ThreadInfo thread_info[MA__THREAD_NUM];DWORD thread_ID; //线程 IDint num = 0;//临时变量,用于循环语句cout << “系统开始模拟,并自动生成模拟数据...” << endl;system(“pause”); //暂停确认开始执行cout << “线程总数:” << THREADS_COUNT << endl;//循环随机生成各个线程的信息while (num != THREADS_COUNT){thread_info[num].serial = num + 1;if (rand % 2 == 1)thread_info[num].entity = "P";elsethread_info[num].entity = "C";thread_info[num].delay = rand % 5 + 1;thread_info[num].persist = rand % 6 + 2;num++;}cout << “\n 系统生成数据结束,模拟数据如下:” << endl<< “线程号线程类别延迟时间操作时间” << endl;for (int _ = 0;_ < THREADS_COUNT;_++)cout << “” << thread_info[_].serial << “\t”<< “” << thread_info[_].entity << “\t”<< “” << thread_info[_].delay << “\t\t”<< “” << thread_info[_].persist << endl;cout << “\n\n==================生产者-消费者开始==================\n” << endl;//创建线程for (int i = 0;i < THREADS_COUNT;i++){//创建生产者线程if (thread_info[i].entity == "P")hThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(Producer), ;thread_info[i], 0, ;thread_ID);//创建消费者线程elsehThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(Consumer), ;thread_info[i], 0, ;thread_ID);}while (running){if (getchar){//按回车后终止程序运行running = false;}}cout << “系统模拟结束...” << endl; } int main {cout << “\n==================生产者-消费者模拟==================\n” << endl;prod_cons; }五、实验过程1、记录生产者和消费者的同步执行过程。

进程的同步与互斥实验报告

进程的同步与互斥实验报告

进程的同步与互斥实验报告1.实验目的进程(线程)的同步与互斥是操作系统中非常重要的概念,本实验旨在通过实际操作,加深对这些概念的理解和掌握。

通过编写多个进程(线程),并在其间进行同步与互斥操作,验证同步与互斥的实际效果。

2.实验环境本实验在Linux系统下进行,使用C/C++语言编程。

3.实验内容3.1同步在实验中,我们编写了两个进程A和B,这两个进程需要按照特定的顺序执行。

为了实现同步,我们使用信号量机制来确保进程A和B按照正确的顺序执行。

3.2互斥在实验中,我们编写了多个进程C和D,这些进程需要同时对一个共享资源进行访问。

为了实现互斥,我们使用互斥锁机制来确保同一时刻只有一个进程访问共享资源。

4.实验过程4.1同步实验编写进程A和进程B的代码,使用信号量机制实现同步。

进程A先运行,然后通过信号量唤醒进程B,进程B再开始执行。

通过观察进程的运行顺序,验证同步机制是否起作用。

4.2互斥实验编写进程C和进程D的代码,使用互斥锁机制实现互斥。

进程C和进程D同时对一个共享资源进行访问,通过互斥锁来确保同一时刻只有一个进程访问共享资源。

观察进程的输出结果,验证互斥机制是否起作用。

5.实验结果5.1同步实验结果进程A开始执行进程A执行完毕进程B开始执行进程B执行完毕5.2互斥实验结果进程C开始执行进程C访问共享资源进程C执行完毕进程D开始执行进程D访问共享资源进程D执行完毕6.实验分析通过上述结果可以看出,同步实验中进程A和进程B按照正确的顺序执行,证明了同步机制的有效性。

互斥实验中进程C和进程D能够正确地交替访问共享资源,证明了互斥机制的有效性。

7.实验总结通过本次实验,我深刻理解了进程(线程)的同步与互斥,并通过实际操作加深了对这些概念的理解。

同步和互斥是操作系统中非常重要的概念,对于应对资源竞争和提高程序性能具有重要意义。

在实际开发中,我们应该合理使用同步和互斥机制,以确保程序的正确性和并发执行的效率。

进程同步:实验报告

进程同步:实验报告

进程同步:实验报告1.实验内容(进程的同步)(1) 阅读理解⽰例程序。

(2) 说明⽰例程序是否能适合解决 N 个⽣产者和 1 个消费者问题,并设计实验验证(3) 参照教材修改为 N 个⽣产者和 1 个消费者问题(4) 思考 N 个⽣产者和 M 个消费者问题的解决⽅案(不要求)(5) 利⽤信号量解决同步问题。

2.实验⽬的通过程序模拟及验证⽣产者消费者问题等经典问题,深⼊理解并发中的同步和互斥的概念3.实验原理(1)进程概念:(1.定义:程序的⼀次执⾏过程( 2.三种基本状态 :就绪状态,执⾏状态,阻塞状态(2)进程同步:(1.定义:并发进程在执⾏次序上的协调,以达到有效的资源共享和相互合作,使程序执⾏有可再现性。

( 2.两种形式的制约关系: (⼀:资源共享关系:进程间接制约,需互斥地访问临界资源。

)、(⼆:相互合作关系:进程直接制约)(3.临界资源:⼀次仅允许⼀个进程访问的资源,引起不可再现性是因为临界资源没有互斥访问。

(3)信号量:定义⼀个⽤于表⽰资源数⽬的整型量S,它与⼀般的整型量不同,除初始化外,仅能通过两个标准的原⼦操作 wait(S)和 signal(S)来访问,俗称 P,V操作。

通俗来讲就是⽤P 来访问资源后减去⼀个单位资源,⽤ V 操作来释放⼀个单位资源就是现有资源上加⼀个单位资源。

4.实验内容⼀:说明⽰例程序是否能适合解决 N 个⽣产者和 1 个消费者问题,并设计实验验证答:⽰例程序不能解决多个⽣产者和消费者的问题,它是解决单个消费者和⽣产者的。

如果可以就要修改代码,如“⼆”所说。

⼆:多个消费者和⽣产者的问题⽣产者 1 如上图所⽰:如果要解决多个⽣产者和消费者的问题:第⼀步:分析上图得出了两种关系,分别是异步和同步的关系第⼆步:异步关系的是⽣产者和⽣产者之间的,因为同⼀时刻只能有⼀个⽣产者访问缓冲区,所以我们就可以设置临界资源 .获得临界资源的⽣产者才能把产品放到缓冲区⾥第三步:同步关系有两个,⾸先是⽣产者和缓冲区之间,再是缓冲区和消费者之间。

操作系统实验四 进程的同步

操作系统实验四 进程的同步

操作系统实验报告哈尔滨工程大学软件学院第六讲进程的同步一、实验概述1. 实验名称实验系统的启动2. 实验目的1).使用EOS 的信号量编程解决生产者—消费者问题,理解进程同步的意义。

2).调试跟踪EOS 的信号量的工作过程,理解进程同步的原理。

3).修改EOS 的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。

3. 实验类型(验证、设计)验证4. 实验内容1).准备实验2).使用EOS的信号量解决生产者-消费者问题3).调试EOS信号量的工作过程①创建信号量②等待释放信号量③等待信号量(不阻塞)④释放信号量(不唤醒)⑤等待信号量(阻塞)⑥释放信号量(唤醒)4).修改EOS的信号量算法在目前EOS Kernel项目的ps/semaphore.c文件中,PsWaitForSemaphore 函数的Milliseconds参数只能是INFINITE,PsReleaseSemaphore 函数的ReleaseCount 参数只能是1。

现在要求同时修改PsWaitForSemaphore函数和PsReleaseSemaphore函数中的代码,使这两个参数能够真正起到作用,使信号量对象支持等待超时唤醒功能和批量释放功能。

二、实验环境操作系统:windows xp编译环境:OS Lab三、实验过程1. 设计思路和流程图图3-1.整体试验流程图图3-2.Main 函数流程图、生产者消费、消费者流程图2. 需要解决的问题及解答(1).思考在ps/semaphore.c文件内的PsWaitForSemaphore和PsReleaseSemaphore函数中,为什么要使用原子操作?答:在执行等待信号量和释放信号量的时候,是不允许cpu响应外部中断的,如果此时cpu响应了外部中断,会产生不可预料的结果,无法正常完成原子操作。

(2). 绘制ps/semaphore.c文件内PsWaitForSemaphore和PsReleaseSemaphore 函数的流程图。

进程同步实验报告

进程同步实验报告

一、实验目的1. 理解进程同步的概念和原理;2. 掌握进程同步的基本方法和机制;3. 学会使用信号量实现进程同步;4. 通过实验验证进程同步机制的有效性。

二、实验原理1. 进程同步:在多道程序设计中,进程的执行是并发的,但某些情况下需要保证多个进程按照一定的顺序执行,以避免出现数据不一致、死锁等问题。

进程同步是指通过某种机制,协调多个进程的执行顺序,保证它们能够正确、有效地共享资源。

2. 信号量:信号量是一种特殊的变量,用于实现进程同步。

信号量具有两个原子操作:P操作(wait)和V操作(signal)。

P操作用于申请资源,V操作用于释放资源。

3. 互斥锁:互斥锁是一种常见的进程同步机制,用于保证临界资源的互斥访问。

当一个进程进入临界区时,它会尝试获取互斥锁,如果锁已被其他进程获取,则该进程进入等待状态;当进程退出临界区时,它会释放互斥锁。

三、实验内容1. 实验环境:Linux操作系统,C语言编程环境。

2. 实验工具:gcc编译器、gdb调试器。

3. 实验步骤:(1)创建一个互斥锁,用于保护临界资源。

(2)编写两个进程,分别模拟对临界资源的访问。

(3)在进程访问临界资源前,使用P操作尝试获取互斥锁。

(4)在进程访问临界资源后,使用V操作释放互斥锁。

(5)编译并运行程序,观察进程执行情况。

四、实验结果与分析1. 实验结果:(1)在互斥锁的保护下,两个进程能够按照预期顺序访问临界资源。

(2)当其中一个进程正在访问临界资源时,另一个进程会进入等待状态。

(3)当进程访问临界资源完成后,它会释放互斥锁,允许其他进程访问。

2. 实验分析:(1)互斥锁能够有效地保护临界资源,避免数据不一致问题。

(2)信号量P操作和V操作保证了进程的同步,避免了死锁现象。

(3)通过实验验证了进程同步机制的有效性。

五、实验总结本次实验通过使用信号量和互斥锁,实现了进程同步。

实验结果表明,信号量和互斥锁能够有效地保证进程按照预期顺序执行,避免数据不一致和死锁等问题。

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验计算机科学与技术学院实验报告实验题目:实验四、进程同步实验学号:日期:20120409 班级:计基地12 姓名:实验目的加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案了 Linux 系统 IPC进程同步工具的用法,练习并发协作进程的同步与互斥操作的编与调试技术实验内容抽烟者问题假设一个系统中有三个抽烟者进程每个抽烟者不断地卷烟并抽烟抽烟者卷起并抽掉一颗烟需要有三种材料烟草纸和胶水一个抽烟者有烟草一个有纸,另一个有胶水。

系统中还有两个供应者进程,它们无限地供应所有种材料但每次仅轮流提供三种材料中的两种。

得到缺失的两种材料的抽烟者卷起并抽掉一颗烟后会发信号通知供应者让它继续提供另外的两种材料。

这过程重复进行请用以上介绍 IPC同步机制编程实现该问题要求的功能硬件环境@CPUi3-2350MIntel?Cor42.30GHz MobileIntel?Sandybridgex86/MMX/SSE24G内存3操作系统:20.1 GB磁盘:软件环境:ubuntu13.04实验步骤:(1)新建定义了producer和consumer 共用的文件。

ipc.h函数原型和变量的IPC.(2)新建ipc.c文件,编写producer和consumer共用的IPC的具体相应函数。

(3)新建Producer文件,首先定义producer的一些行为,利用系统调用建立共享内存区域,设定其长度并获取共享内存的首地址。

然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。

当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。

(4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。

操作系统实验报告——进程同步与互斥

操作系统实验报告——进程同步与互斥

操作系统实验报告——进程同步与互斥一、实验内容本实验主要内容是通过编写程序来实现进程的同步与互斥。

具体来说,是通过使用信号量来实现不同进程之间的同步和互斥。

我们将编写两个进程,一个进程负责打印奇数,另一个进程负责打印偶数,两个进程交替打印,要求打印的数字从1开始,直到100结束。

二、实验原理进程的同步是指多个进程之间按照一定的顺序执行,进程之间互相等待的关系。

而进程的互斥是指多个进程竞争同一个资源,需要通过其中一种方式来避免同时访问共享资源,以免造成数据错乱。

在本实验中,我们使用信号量来实现进程的同步与互斥。

信号量是一个计数器,用于表示一些共享资源的可用数量。

进程在访问共享资源时,需要先对信号量进行操作,当信号量大于0时,表示资源可用,进程可以访问;当信号量等于0时,表示资源不可用,进程需要等待。

进程同步的实现可以通过信号量的P操作与V操作来完成。

P操作用于申请资源,当资源可用时,将计数器减一,并进入临界区;V操作用于释放资源,当资源使用完毕时,将计数器加一,使等待资源的进程能够申请。

进程互斥的实现可以通过信号量的P操作与V操作结合临界区来完成。

当多个进程需要访问共享资源时,需要先进行P操作,进入临界区,访问完毕后进行V操作,离开临界区。

三、实验步骤1.首先,我们需要创建两个进程,一个进程负责打印奇数,另一个进程负责打印偶数。

2. 然后,我们创建一个共享变量count,用来记录打印的数字。

3. 接着,我们创建两个信号量odd和even,用来控制进程的同步与互斥。

odd信号量初始值为1,表示打印奇数的进程可以访问;even信号量初始值为0,表示打印偶数的进程需要等待。

4.编写奇数打印进程的代码,首先进行P操作,判断奇数信号量是否大于0,如果大于0,表示可以打印奇数。

5. 如果可以打印奇数,将count加一,并输出当前的奇数,然后进行V操作,释放偶数打印进程的等待。

6.同样的,编写偶数打印进程的代码,首先进行P操作,判断偶数信号量是否大于0,如果大于0,表示可以打印偶数。

进程的同步实验报告

进程的同步实验报告

进程的同步实验报告进程的同步实验报告引言:进程同步是操作系统中一个重要的概念,它涉及到多个进程之间的协调和合作。

在本次实验中,我们将通过一个简单的实例来探讨进程同步的概念和实现方式。

实验目的:通过实验,我们的目标是理解进程同步的概念,学习常见的同步机制,并通过编程实现一个简单的同步问题。

实验环境:本次实验使用了C语言作为编程语言,并在Linux操作系统上进行。

实验过程:我们的实验场景是一个餐厅,有一个厨师和多个服务员。

厨师负责烹饪菜品,服务员负责上菜给客人。

我们需要实现的是,服务员只有在厨师烹饪好一道菜之后才能上菜,否则需要等待。

首先,我们使用互斥锁来实现进程间的同步。

互斥锁是一种常见的同步机制,它可以确保在同一时间只有一个进程可以访问共享资源。

在我们的实验中,厨师和服务员都需要访问菜品资源,因此我们为菜品资源添加了一个互斥锁。

接下来,我们使用条件变量来实现进程间的等待和唤醒操作。

条件变量是一种同步机制,它可以让进程在某个条件满足时等待,直到被唤醒。

在我们的实验中,服务员需要等待厨师烹饪好菜品之后才能上菜,因此我们创建了一个条件变量,并在服务员的代码中使用了等待和唤醒操作。

实验结果:经过实验,我们成功地实现了进程间的同步。

在我们的实验场景中,厨师会不断地烹饪菜品,并在烹饪完成后通知服务员上菜。

服务员会等待厨师的通知,然后上菜给客人。

通过互斥锁和条件变量的使用,我们保证了服务员只会在厨师烹饪完成后才会上菜,避免了资源竞争和错误的上菜行为。

讨论与总结:通过本次实验,我们深入理解了进程同步的概念和实现方式。

互斥锁和条件变量是常见的同步机制,它们可以有效地解决进程间的竞争和协调问题。

在实际的操作系统中,进程同步是一个非常重要的概念,它保证了多个进程之间的正确执行和合作。

然而,进程同步也可能引发一些问题。

例如,如果互斥锁的使用不当,可能会导致死锁的发生。

死锁是一种进程无法继续执行的状态,它会导致系统的停滞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机科学与技术学院实验报告
int msq_id;
if((msq_id = get_ipc_id("/proc/sysvipc/msg",msq_h)) < 0 ) { if((msq_id = msgget(msq_h,msq_flg)) < 0){
perror("messageQueue set error");
exit(EXIT_FAILURE);
}
}
return msq_id;
}
实验结果:
分析:
多进程的系统中避免不了进程间的相互关系。

进程互斥是进程之间发生的一种间接性作用,一般是程序不希望的。

通常的情况是两个或两个以上的进程需要同时访问某个共享变量。

我们一般将发生能够问共享变量的程序段称为临界区。

两个进程不能同时进入临界区,否则就会导致数据的不一致,产生与时间有关的错误。

解决互斥问题应该满足互斥和公平两个原则,即任意时刻只能允许一个进程处于同一共享变量的临界区,而且不能让任一进程无限期地等待。

进程同步是进程之间直接的相互作用,是合作进程间有意识的行为,典型的例子是公共汽车上司机与售票员的合作。

只有当售票员关门之后司机才能启动车辆,只有司机停车之后售票员才能开车门。

司机和售票员的行动需要一定的协调。

同样地,两个进程之间有时也有这样的依赖关系,因此我们也要有一定的同步机制保证它们的执行次序。

信号量机制就是其中的一种。

信号灯机制即利用pv操作来对信号量进行处理。

PV操作由P操作原语和V 操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下: P(S):①将信号量S的值减1,即S=S-1;
②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。

V(S):①将信号量S的值加1,即S=S+1;
②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。

PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。

信号量的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。

信号量的值与相应资源的使用情况有关。

当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。

信号量的值仅能由PV操作来改变。

一般来说,信号量S30时,S表示可用资源的数。

相关文档
最新文档