数控机床进给传动系统
数控机床进给传动系统

数控机床进给模块之机械部件装配一.进给传动系统图纵向和横向进给传动系统图二.系统图的主要构造和功用电动机:1. 步进电动机步进电动机是一种将电脉冲信号转换成机械角位移的驱动元件。
步进电动机是一种特殊的电动机,一般电动机通电后都是连续转动的,而步进电动机则有定位与运转两种状态。
当有一个电脉冲输入时,步进电动机就回转一个固定的角度,这角度称为步距角,一个步距角就是一步,所以这种电动机称为步进电动机。
又由于它输入的是脉冲电流,也称作脉冲电动机。
当电脉冲连续不断地输入,步进电动机便跟随脉冲一步一步地转动,步进电动机的角位移量和输入的脉冲个数严格成正比例,在时间上与输入脉冲同步。
因此,只需控制输入脉冲的数量、频率及电动机绕组的通电顺序,便可获得所需转角、转速和方向。
在无脉冲输入时,步进电动机的转子保持原有位置,处于定位状态。
步进电动机的调速范围广、惯量小、灵敏度高、输出转角能够控制,而且有一定的精度,常用作开环进给伺服系统的驱动元件。
与闭坏系统相比,它没有位置速度反馈回路,控制系统简单,成本大大降低,与机床配接容易,使用方便,因而在对精度、速度要求不十分高的中小型数控机床上得到了广泛地应用。
2. 直流伺服电动机由于数控机床对进给伺服驱动装置的要求较高,而直流电动机具有良好的调速特性,因此在半闭坏、闭坏伺服控制系统中,得到较广泛地使用。
直流进给伺服电动机就其工作原理来说,虽然与普通直流电动机相同。
然而,由于机械加工的特殊要求,一般的直流电动机是不能满足需要的。
首先,一般直流电动机转子的转动惯量过大,而其输出转矩则相对较小。
这样,它的动态特性就比较差,尤其在低速运转条件下,这个缺点就更突出。
在进给伺服机构中使用的是经过改进结构,提高其特性的大功率直流伺服电动机,主要有以下两种类型:(1)小惯量直流电动机。
主要结构特点是其转子的转动惯量尽可能小,因此在结构上与普通电动机的最大不同是转子做成细长形且光滑无槽。
以此表现为转子的转动惯量小,仅为普通直流电动机的1/10左右。
数控机床的进给传动系统

数控机床的进给传动系统摘要:本文主要阐述了数控机床对进给传动系统的基本要求,数控机床进给传动系统的主要形式。
关键词:数控机床;传动系统;进给系统1 数控机床对进给传动系统的基本要求数控机床对机械传动系统的要求主要有以下几点。
1.1 提高传动部件的刚性数控机床的直线运动定位精度和分辨率必须达到微米级,回转运动的定位精度和分辨率必须达到角秒级,伺服电动机的驱动转矩,尤其是起动、制动时的转矩也很大。
假设传动部件的刚度不强,一定会使传动部件发生弹性变形,影响系统的定位精度、动态稳定性和响应快速性。
而加大滚珠丝杠的直径,对滚珠丝杠螺母副、支承部件进行预紧,进行预拉伸等,均为提高传动系统刚度的有效办法。
1.2 减小传动部件的惯量驱动电动机,传动部件的惯量直接决定进给系统的加速度,这是影响进给系统快速性的主要原因。
尤其是高速加工的数控机床,因为对进给系统的加速度要求比较高,所以,在满足系统强度和刚度的条件下,要减小零部件的质量、直径,以降低惯量,提高快速性。
1.3 减小传动部件的间隙在开环、半闭环进给系统中,传动部件的间隙直接影响进给系统的定位精度;在闭环系统中,它是系统的主要非线性环节,影响系统的稳定性,所以,要采取有效措施消除传动系统的间隙。
消除传动部件间隙的措施是对齿轮副、丝杠螺母副、联轴器、蜗轮蜗杆副以及支承部件进行预紧或消除间隙。
而采取措施后将可能增加摩擦阻力,降低机械部件的寿命,因此,必须统筹各种因素,使间隙减小到允许范围。
1.4 减小系统的摩擦阻力进给系统的摩擦阻力会降低传动效率,产生发热;同时,它还直接影响系统的决速性;因为摩擦力的存在,动、静摩擦系数的变化,会导致传动部件的弹性变形,产生非线性的摩擦死区,影响系统的定位精度和闭环系统的动态稳定性。
采用滚珠丝杠螺母副、静压丝杠螺母副、直线滚动导轨、静压导轨和塑料导轨等高效执行部件,能减少系统的摩擦阻力,提高运动精度,避免低速爬行。
2 数控机床进给传动系统的主要形式2.1 滚珠丝杠螺母副它的特点是:摩擦损失小,传动效率高;丝杠螺母之间预紧后,可消除间隙,提高传动刚度;摩擦阻力小,它与运动速度无关,动、静摩擦力的变化会很小,也不可能产生低速爬行现象;工作磨损小,使用寿命长,精度保持性好。
数控机床进给传动系统课件

高速、高精度、高可靠性发展趋势
高速化
随着制造业的飞速发展,对加工效率的要求也越来越高。为了满足这一需求,数控机床进 给传动系统正朝着高速化的方向发展。通过优化结构设计、提高驱动元件性能、降低传动 链的摩擦和惯量等方法,可以实现更高的进给速度,从而提高加工效率。
各种传动装置的特点和适用场景。
传动精度保障
阐述如何通过制造工艺和装配技 术,确保传动装置的高精度和稳 定性,以满足机床的加工精度要
求。
高效传动设计
分析如何提高传动装置的运动效 率,降低能耗,提高机床的整体
性能。
数控技术及其在进给传动系统中的应用
数控技术概述
01
简要介绍数控技术的发展历程、基本原理和核心技术。
控制系统升级
引入高精度磨削控制算法,优 化磨削过程中的进给速度和切 削深度。
传动改造
更换磨损严重的滚珠丝杠副、 导轨等传动元件,选用高精度 轴承和联轴器。
效果验证
采用标准试件进行磨削试验, 利用表面粗糙度仪、三坐标测 量机等设备对磨削效果进行评估。
案例三
维护内容
定期对传动元件进行检查、清洁、润滑和紧固,更换磨损 严重的零部件。
轨滑块上移动。
3. 通过控制系统调节伺服电 机的旋转速度,实现工作台的
匀速、变速等运动模式。
数控机床进给传动系统的分类和特点
分类 开环进给传动系统:结构简单,成本低,但精度较低。
闭环进给传动系统:精度高,稳定性好,但成本较高。
数控机床进给传动系统的分类和特点
特点 高精度:数控机床进给传动系统具有较高的定位精度和重复定位精度。 高刚度:系统具备较高的刚度,能够承受切削力,保证加工精度。
数控机床的进给传动系统概述

进给传动系统
• 4.4 齿轮齿条副与双导程蜗杆副传动
• 4)双导程蜗杆副的蜗杆支承直接安置在支座上,只需保 证支承中心线与蜗轮中截面重合,中心距公差可略微放宽 ,装配时,用调整环来获得合适的啮合侧隙,这是普通蜗 杆副无法办到的。 • 5)双导程螺杆副不足之处是制造困难。
图4-14 滚珠丝杠副的结构原理
进给传动系统
• 4.3 数控机床用丝杠传动副
• 2.特点 • 1)摩擦损失小,传动效率高,可达90%~96%,功率消 耗只相当于常规丝杠螺母副的1/4~1/3。 • 2)采用双螺母预紧后,可消除丝杠和螺母的螺纹间隙, 提高了传动刚度。 • 3)摩擦阻力小,动、静摩擦力之差极小,能保证运动平 稳,不易产生低速爬行现象。 • 4)不能自锁,有可逆性,既能将旋转运动转换为直线运 动,又能将直线运动转换为旋转运动。 • 5)运动速度受到一定限制,传动速度过高时,滚珠在其 回路管道内易产生卡珠现象。 • 6)制造工艺复杂。
进给传动系统
• 4.1 概述
• 3.弹性联轴器
无键联接;
依靠弹性钢片 组对角联接传 递转矩。
图4-4 直接联接电动机轴和丝杠的弹性联• 4.安全联轴器 防止过载造成整个运动传动机构零件损坏。
图4-5 安全联轴器工作原理
进给传动系统
• 4.1 概述
• TND360型数控车床的安全联轴器
图4-6 TND360型数控车床的纵向滑板的传动系统图 1—旋转变压器和测速发电机 10—滚珠丝杠 2—直流伺服电动机 3—锥环 11—垫圈 12、13、14—滚针轴承
4、6—半联轴器
5—滑环 7—钢片 8—碟形弹簧 9—套
15—堵头
16—压紧螺钉 17—压紧外环 18—压紧内环 19—压紧套
第三章 数控机床的进给传动系统

A
10
3.2 数控机床进给传动系统的基本形式
滚珠丝杠副的消除间隙调整和预加载荷
滚珠丝杠副的传动不允许有间隙,不仅因为它会 造成反向冲击,更重要的是产生定位误差,影响机 床的精度稳定性,为了提高进给系统的刚度,使滚 珠丝杠在过盈条件下工作更为有利,即进行预加载 荷或称为预紧。 双螺母法消除间隙和预加载荷。
了体积。
(2) 不存在中间传动机构的惯量和阻力的影响,直线电动机直接传动反应速
度快,灵敏度高,随动性好,准确度高。
(3) 直线电动机容易密封,不怕污染,适应性强。由于电机本身结构简单,
又可做到无接触运行,因此容易密封,可在有毒气体、核辐射和液态物质
中使用。
(4) 直线电机散热条件好,温升低,因此线负荷和电流密度可以取得较高,
钢带缠卷式丝杠防护装置
A
16
3.2 数控机床进给传动系统的基本形式 3.2 静压丝杠副
静压蜗杆蜗条副和齿轮齿条副
❖ 丝杠传动的局限性:长丝杠制造困难,且容易弯曲下垂,轴 向刚度和扭转刚度较差。
静压蜗杆蜗条副
❖ 工作原理:同静压丝杠螺母副。其中,蜗杆相当于丝杠,蜗 条相当于螺母。
❖ 配油问题:由于蜗杆是旋转的且与蜗条的接触区只有120° 左右,必须解决压力油从蜗杆进入静压油腔的问题。
A
31
3.4 数控机床进给传动系统实例
MJ-50车床外形图
A
32
MJ-50数控车床传动链示意图
A
33
横向进给传动装置 ❖ AC伺服电动机15经同步带轮14和10以及同步带12
带动滚珠丝杠6回转,其上螺母7带动刀架21(如图 5-12b)沿滑板1的导轨移动,实现X轴的进给运动 。 ❖ A-A剖面图表示滚珠丝杠前支承的轴承座4用螺钉 20固定在滑板上。滑板导轨如B-B剖视图所示为矩 形导轨,镶条17、18、19用来调整刀架与滑板导轨 的间隙。 ❖ 图中22为导轨护板,26、27为机床参考点的限位开 关和撞块。镶条23、24、25用于调整滑板与床身导 轨的间隙。
数控机床的进给传动系统

详细描述
刚度是指数控机床在受到外力作用时,进给 传动系统抵抗变形的能力。高刚度的数控机 床能够减小受力变形对加工精度的影响,提 高加工质量。
速度与加速度
总结词
速度与加速度是衡量数控机床进给传动系统 动态性能的指标。
详细描述
速度与加速度是指数控机床在加工过程中, 进给传动系统能够达到的最大移动速度和加 速度。高速度和高加速度的数控机床能够缩
更换磨损件
对磨损严重的部件进行更 换,保证进给传动系统的 正常运行。
调整参数
根据实际运行情况,对进 给传动系统的参数进行调 整,优化其性能。
常见故ቤተ መጻሕፍቲ ባይዱ诊断与排除
噪音异常
温度过高
检查进给传动系统是否有异常噪音, 判断是否需要更换轴承或齿轮。
检测进给传动系统的温度,如温度过 高,需检查润滑系统是否正常工作。
03
数控机床进给传动系统的分 类
滚珠丝杠螺母副传动
总结词
滚珠丝杠螺母副传动是数控机床中最常用的进给传动方式之一,具有高精度、 高刚度、高可靠性的特点。
详细描述
滚珠丝杠螺母副传动通过将旋转运动转换为直线运动,实现工作台的进给运动。 其优点在于传动效率高、传动精度稳定、使用寿命长,且具有较高的刚度,能 够满足大多数数控机床的进给传动需求。
运行抖动
观察进给传动系统的运行情况,如有 抖动现象,需检查传动轴是否松动或 损坏。
06
数控机床进给传动系统的未 来发展
高精度化
总结词
随着制造业对产品精度要求的不断提高,数控机床的进给传动系统需要实现更高程度的 精度控制。
详细描述
高精度化是数控机床进给传动系统未来的重要发展方向。通过采用先进的控制系统、高 性能的传动元件和精密加工技术,可以提高数控机床的定位精度、重复定位精度和加工
数控机床的进给传动系统

图5-30 直线电动机进给驱动系统 1-位置检测器 2-转子 3-定子 4-床身 5、8-辅助导轨 7、14-冷却板
流电,次级就在电磁 力的作用下沿初级作
6、13-次级 9、10-测量系统 11-拖链 12、17-导轨 15-工作台 16-防护 直线运动。
尽管直线电动机有很多优点,但在选用时应注意以下不足之处: 1)与同容量旋转电动机相比,直线电动机的效率和功率因数要低, 特别在低速时更明显。 2)直线电动机,特别是直线感应电动机的起动推力受电源电压的影 响较大,故对驱动器的要求较高,应采取措施保证或改变电动机的有 关特性来减少或消除这种影响。 3)在金属加工机床上,由于电动机直接和导轨、工作台做成一体, 必须采取措施以防止磁力和热变形对加工的影响。
5) 滚珠丝杠螺母副制造工艺复杂,滚珠丝杠和螺母的材料,热处理 和加工要求相当于滚动轴承。螺旋滚道必须磨削,制造成本高。
2. 静压丝杠螺母副 静压丝杠螺母副是通过油压在丝杠和螺母的接触面之间,产生一
层保持一定厚度,且具有一定刚度的压力油膜,使丝杠和螺母之间由 边界摩擦变为液体摩擦。当丝杠转动时通过油膜推动螺母直线移动, 反之,螺母转动也可使丝杠直线移动。静压丝杠螺母的特点是:
2. 减少各运动零件的惯量
传动件的惯量对进给系统的启动和制动特性都有影响,尤其是高速运转的零件,其惯量的 影响更大。在满足传动强度和刚度的前提下,尽可能减小执行部件的质量,减小旋转零件的 直径和质量,以减少运动部件的惯量。
3. 减少运动件的摩擦阻力
机械传动结构的摩擦阻力,主要来自丝杠螺母副和导轨。在数控机床进给系统中,为了减 小摩擦阻力,消除低速进给爬行现象,提高整个伺服进给系统稳定性,广泛采用滚珠丝杠和 滚动导轨以及塑料导轨和静压导轨等。
数控机床技术(第六章数控机床的进给传动系统)

第六章 数控机床的进给传动系统
(2)滚珠丝杠副的特点 1)传动效率高。滚珠丝杠副的传动效率高达92 %-96%,是普通梯形丝杠的3-4倍,功率消耗减少 2/3-3/4。 2)灵敏度高、传动平稳。 3)定位精度高、传动刚度高。 4)不能自锁、有可逆性。 5)制造成本高。
第六章 数控机床的进给传动系统
第六章 数控机床的进给传动系统
下图所示是静压丝杠副的结构图。
第六章 数控机床的进给传动系统
螺纹面上油腔的连 接形式与节流控制方 式有两种,如图所示。 图 a 中每扣螺纹每侧 中径上开 3-4 个油腔, 每个油腔用一个节流 器控制,称为分散阻 尼节流。图 b 是将分 布于同侧、同方位上 的 3-4 个油腔用一个 节流器控制,称为集 中 阻 尼 节 流 。
第六章 数控机床的进给传动系统
一、滚珠丝杠副
中小型数控机床中,滚珠丝杠副是减少运动部件摩擦 阻力和动静摩擦力之差最普遍采用的结构。
1.滚珠丝杠副工作原理及特点 (1)滚珠丝杠副的工 作原理
滚珠丝杠副是回转 运动与直线运动相互转 换的新型传动装置,是 在丝杠和螺母之间以滚 珠为滚动体的螺旋传动 元件。
在开环、半闭环进给系统中,传动部件的间隙直接影 响进给系统的定位精度,在闭环系统中,它是系统的主要 非线性环节,影响系统的稳定性。常用的消除传动部件间 隙的措施是对齿轮副、丝杠副、联轴器、蜗轮蜗杆副以及 支承部件进行预紧或消除间隙。但是,值得注意的是,采 取这些措施后可能会增加摩擦阻力及降低机械部件的使用 寿命,因此必须综合考虑各种因统
四、双齿轮—齿条副 在大型数控机床(如大型数控龙门铣床)的直 线进给运动中,可采用的另一种传动方式是齿轮— 齿条结构,它的效率高,结构简单,从动件易于获 得高的移动速度和长行程,适合在工作台行程长的 大型机床上用作直线运动机构。但机构的位移精度 和运动平稳性较差。 当负载小时,可采用双片薄齿轮错齿调整法, 分别与齿条齿槽左、右两侧贴紧,从而消除齿侧间 隙。当负载大时,采用顶加负载双齿轮—齿条无间 隙传动机构能较好地解决这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床进给传动系统一.进给传动体系图纵向和横向进给传动体系图二.体系图的重要构造和功用电念头:1. 步进电念头步进电念头是一种将电脉冲旌旗灯号转换成机械角位移的驱动元件。
步进电念头是一种特别的电念头,一般电念头通电后都是持续迁移转变的,而步进电念头则有定位与运转两种状况。
当有一个电脉冲输入时,步进电念头就反转展转一个固定的角度,这角度称为步距角,一个步距角就是一步,所以这种电念头称为步进电念头。
又因为它输入的是脉冲电流,也称作脉冲电念头。
当电脉冲持续赓续地输入,步进电念头便跟随脉冲一步一步地迁移转变,步进电念头的角位移量和输入的脉冲个数严格成正比例,在时光上与输入脉冲同步。
是以,只需控制输入脉冲的数量、频率及电念头绕组的通电次序,便可获得所需转角、转速和偏向。
在无脉冲输入时,步进电念头的转子保持原有地位,处于定位状况。
步进电念头的调速范围广、惯量小、灵敏度高、输出转角可以或许控制,并且有必定的精度,常用作开环进给伺服体系的驱动元件。
与闭坏体系比拟,它没有地位速度反馈回路,控制体系简单,成本大年夜大年夜降低,与机床配接轻易,应用便利,因而在对精度、速度请求不十分高的中小型数控机床上获得了广泛地应用。
2. 直流伺服电念头因为数控机床对进给伺服驱动装配的请求较高,而直流电念头具有优胜的调速特点,是以在半闭坏、闭坏伺服控制体系中,获得较广泛地应用。
直流进给伺服电念头就其工作道理来说,固然与通俗直流电念头雷同。
然而,因为机械加工的特别请求,一般的直流电念头是不克不及知足须要的。
起首,一般直流电念头转子的迁移转变惯量过大年夜,而其输出转矩则相对较小。
如许,它的动态特点就比较差,尤其在低速运转前提下,这个缺点就更凸起。
在进给伺服机构中应用的是经由改进构造,进步其特点的大年夜功率直流伺服电念头,重要有以下两种类型:(1)小惯量直流电念头。
重要构造特点是其转子的迁移转变惯量尽可能小,是以在构造上与通俗电念头的最大年夜不合是转子做成细长形且滑腻无槽。
以此表示为转子的迁移转变惯量小,仅为通俗直流电念头的1/10阁下。
是以,响应特别快,机电时光常数可以小于10 ms,与通俗直流电念头比拟,转矩与惯量之比要大年夜出40~50倍。
且调速范围大年夜,运转安稳,实用于频繁起动与制动,请求有快速响应(如数控钻床、冲床等点定位)的场合。
但因为其过载才能低,并且电念头的自身惯量比机床响应活动部件的惯量小,是以应用时都要经由一对中心齿轮副,才能与丝杠相连接,在某些场合也限制了它广泛地应用。
(2)大年夜惯量直流电念头。
又称宽调速直流电念头,是在小惯量电念头的基本上成长起来的。
在构造上和惯例的直流电念头类似,其工作道理雷同。
当电枢线圈经由过程直流电流时,就会在定子磁场的感化下,产生带动负载扭转的电转矩。
小惯量电念头是从减小电念头迁移转变转量来进步电念头的快速性,而大年夜惯量电念头则是在保持一般直流电念头迁移转变惯量的前提下,尽量进步转矩的办法来改良其动态特点。
它既具有一般直流电念头便于调速、机械特点较好的长处,又具有小惯量直流电念头的快速响应机能。
是以,可归纳为以下特点: 1)转子惯量大年夜。
这种电念头的转子具有较大年夜的惯量,轻易与机床匹配。
可以和机床的进给丝杠直接连接,省掉落了减速机构,故可使机床构造简单,即避免了齿轮等传念头构产生的噪声和振动,又进步了加工精度。
2)低速机能好。
这种电念头低速时输出转矩大年夜,能知够数控机床经常在低速进给时进给量大年夜、转矩输出大年夜的特点,如能在1 r/min甚至0.1 r/min下安稳运转。
3)过载才能强、动态响应好。
因为大年夜惯量直流电念头的转子有槽,热容量大年夜,同时采取了冷却办法后,进步了散热才能。
是以可以过载运行30分钟。
别的,电念头的定子采取矫顽力很高的铁氧体永磁材料,可使电念头过载10倍而不会去磁,这就明显地进步了电念头的刹时加快力矩,改良了动态响应,加减速特点好。
4)调速范围宽。
这种电念头机械特点和调速特点的线性度好,所以调速范围宽而运转安稳。
一般调速范围可达1∶10000以上。
大年夜惯量直流电念头尽管有上述长处,但仍有不如其它驱动元件的处所,如运行调剂不如步进电念头简便;快速响应机能不如小惯量电念头。
这种驱动体系可直接接有高精度检测元件,如一些测量转速和转角等检测元件,实现半闭坏、闭环伺服体系的准肯定位。
3. 交换伺服电念头尽管直流伺服电念头具有优良的调速机能,但直流电念头存在着弗成避免的缺点:它的电刷和换向器易磨损,需经常保护;别的换向时易产生火花,使电机的最高转速受到限制,也使应用情况受到限制。
并且,直流电念头构造复杂,制造成本高。
跟着大年夜范围集成电路、计算机控制技巧及现代控制理论的成长与应用,80年代交换伺服驱动技巧取得了冲破性地进展,使得交换伺服电念头具备了调速范围宽、稳速、精度高、动态响应快以及其它优胜的技巧机能。
交换电念头转子惯量较直流电念头小,动态响应更好,在一般同样体积下,交换电念头的输出功率可比直流电念头进步10%~70%,是以交换电念头可选得大年夜一些,以达到更高的电压与转速。
交换伺服电念头采取了全封闭无刷构造,不须要按期检查与维修定子,省去了锻造件壳体,比直流电念头在外形尺寸上削减了50%,重量减轻近60%,转子惯量减至20%。
定子铁芯较一般电念头开槽多且深,绝缘靠得住,磁场平均。
还可对定子铁芯直接冷却,散热后果好。
因而传给机械部分的热量少,进步了全部体系的靠得住性。
转子采取具有周详磁极外形的永远磁铁,可获得高的转矩/惯量比。
是以交换伺服电念头可获得比直流伺服电念头更硬的机械机能和宽的调速范围,交换伺服以其高的机能、大年夜容量获得了广泛地应用。
交换伺服电念头进步机能的关键在于解决对交换电念头的调速控制与驱动。
对交换伺服电念头的调速,今朝用得较多的是计算机对交换电念头磁场作矢量变换控制,其基来源基本理是把交换电念优等效为直流电念头,从而使交换电念头像直流电念头一样进行有效地控制。
数控进给传动构造:在数控机床进给驱动体系中常用的机械传动装配重要有:滚珠丝杠螺母副、静压蜗杆-蜗母条、预加载荷双齿轮-齿条及双导程蜗杆等。
1. 滚珠丝杠螺母副传动为了进步数控机床进给体系的快速响应机能和活动精度,必须削减活动件的摩擦阻力和动静摩擦力之差。
为此,在中小型数控机床中,滚珠丝杠螺母副是采取最广泛的构造。
(1)滚珠丝杠副的工作道理。
滚珠丝杠副是反转展转活动与直线活动互相转换的新型传动装配,是在丝杠和螺母之间以滚珠为滚动体的螺旋传动元件。
其构造道理示意如图,图中丝杠和螺母上都加工有弧形螺旋槽,将它们套装在一路时,这两个圆弧形的螺旋槽对合起来就形成了螺旋滚道,并在滚道内装满滚珠。
当丝杠相对于螺母扭转时,滚珠则既自转又沿着滚道流动。
为了防止滚珠从螺母中滚出来,在螺母的滚道两端用返回装配(又称回珠器)连接起来,使滚珠滚动数圈后分开滚道,经由过程返回装配返回其进口持续参加工作,如斯来去轮回滚动。
(2)滚珠丝杠副的特点。
由以上滚珠丝杠螺母副传动的工作过程,可以明显看出滚动丝杠副的丝杠与螺母之间是经由过程滚珠来传递活动的,使之成为滚动摩擦,这是滚珠丝杠差别于通俗滑动丝杠的关键地点,其特点重要有以下几点:1)传动效力高。
滚珠丝杠副的传动效力高达95%~98%,是通俗梯形丝杠的3~4倍,功率消费削减2/3~3/4.2)灵敏度高、传动安稳。
因为是滚动摩擦,动静摩擦系数相差极小。
是以低速不易爬行,高速传动安稳。
3)定位精度高、传动刚度高。
用多种办法可以清除丝杠螺母的轴向间隙,使反向无空行程,定位精度高,恰当预紧后,还可以进步轴向刚度。
4)不克不及自锁、有可逆性。
即能将扭转活动转换成直线活动,也能将直线活动转换成扭转活动。
是以丝杠在垂直状况应用时,应增长制动装配或均衡块。
5)制造成本高。
滚珠丝杠和螺母等元件的加工精度及外面粗拙度等请求高,制造工艺较复杂,成本高。
(3)滚珠丝杠副的轮回方法。
常用的轮回方法有两种:滚珠在轮回反向过程中,与丝杠滚道离开接触的称为外轮回;而在全部轮回过程中,滚珠始终与丝杠各外面保持接触的称为内轮回。
外轮回回流方法内轮回回流方法1)、外轮回外轮回是滚珠在轮回过程停止后经由过程螺母外表的螺旋槽或插管返回丝杠螺母间从新进入轮回。
如图3-7所示,外轮回滚珠丝杠螺母副按滚珠轮回时的返回方法重要有端盖式、插管埋入式、插管凸起式和螺旋槽式。
如图3-7(a)所示为端盖式。
在螺母末尾加工出以纵向孔,作为滚珠的回程管道,螺母两端的盖板上开有滚珠的回程口,滚珠由此进入回程管,形成轮回。
如图3-7(b)所示为插管式。
它用弯管作为返回管道,在螺母外圆上装有螺旋形的插管口,其两端接入滚珠螺母工作始末两端孔中,以引导滚珠经由过程插管,形成滚珠的多圈轮回链。
这种情势构造简单,工艺性好,承载才能较高,但径向尺寸较大年夜。
今朝应用最为广泛,也可用于重载传动体系中。
如图3-7(c)所示为螺旋槽式。
它在螺母的外圆上铣出螺旋槽,槽的两端钻出通孔并与螺纹管道相切,形成返回通道,这种构造径向尺寸较小,但制造较复杂。
2)、内轮回如图3-8所示为内轮回滚珠丝杠。
内轮回均采取反向器实现滚珠轮回,它靠螺母上安装的反向器接通相邻两滚道,形成一个闭合的轮回回路,使滚珠成单圈轮回。
反向器2的数量与滚珠圈数相等,一般有2—4个,且沿圆周等疏分布。
这种类型的构造紧凑,刚度好,滚珠流畅性好,摩擦损掉小效力高;实用于高灵敏、高精度的进给体系,不宜用于重载传动,且制造较艰苦。
反向器有两种类型:圆柱凸键反向器和扁圆镶块反向器。
如图3-8(a)所示为圆柱凸键反向器,他的圆柱部分嵌入螺母内,端部开有反向槽。
反向槽靠圆柱外圆面及其上端的圆键定位,以包管对准螺纹滚道偏向。
如图3-8(b)所示为扁圆镶块反向器,反向器为一般圆头平键形镶块,镶块嵌入螺母的切槽中,其端部开有反向槽,用镶块的外轮廓定位。
两种反向器比较,后者尺寸较小,从而减小了螺母的径向尺寸及缩短了轴向尺寸。
但这种反向器的外轮廓和螺母上的切槽尺寸精度请求较高。
滚珠丝杠的螺旋滚道型面螺旋滚道型面(即滚道法向截形)的外形有多种,常见的截形有单圆弧型面和双圆弧型面两种。
如图3-9所示为螺旋滚道型面的简图,图中钢球与滚道外面在接触点处的公法线与螺纹轴线的垂线间的夹角称为接触角α,幻想接触角α=45°。
•(4)滚珠丝杠副轴向间隙调剂和预紧办法滚珠丝杠副的轴向间隙,是指负载时滚珠与滚道型面接触的弹性变形所引起的螺母位移量和螺母原有间隙的总和,它直接影响其传动刚度和精度。
(5)滚珠丝杠副的应用防护。
滚珠丝杠副和其它滚动摩擦的传动元件一样,如有硬质的尘土或切屑等脏物落进滚道,就会妨碍滚珠的运转并加快磨损,是以有效地防护密封和保持润滑油的干净就显得十分须要。