三角函数典型例题剖析与规律总结

合集下载

初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)初三下学期锐角三角函数知识点总结及典型题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2.2.在直角三角形ABC中,若∠C为直角,则∠A的三角函数为:正弦函数sinA=对边a/斜边c,取值范围为[0,1]。

余弦函数cosA=邻边b/斜边c,取值范围为[0,1]。

正切函数tanA=对边a/邻边b,取值范围为R(实数集)。

3.任意锐角的正弦值等于其余角的余弦值,余弦值等于其余角的正弦值,即sinA=cosB,cosA=sinB,其中A+B=90°。

4.特殊角的三角函数值:30°:sin30°=1/2,cos30°=√3/2,tan30°=1/√3.45°:sin45°=cos45°=√2/2,tan45°=1.60°:sin60°=√3/2,cos60°=1/2,tan60°=√3.6.正弦、余弦的增减性:当0°≤A≤90°时,XXX随A的增大而增大,cosA随A的增大而减小。

7.正切的增减性:当0°<A<90°时,XXX随A的增大而增大。

8.解直角三角形的方法:已知边和角(其中必有一边)→求所有未知的边和角。

依据:①边的关系:a^2+b^2=c^2;②角的关系:A+B=90°;③三角函数的定义。

9.应用举例:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

坡度:坡面的铅直高度h和水平宽度l的比,用i=h/l表示。

方位角:从某点的指北方向按顺时针转到目标方向的水平角。

方向角:指北或指南方向线与目标方向线所成的小于90°的水平角。

例1:在直角三角形ABC中,已知∠C=90°,sinA=3/5,求XXX的值。

高中数学三角函数的诱导公式(2) 例题解析

高中数学三角函数的诱导公式(2) 例题解析

三角函数的诱导公式(2) 例题解析一、重点、难点剖析公式五的推导也体现了对称思想。

正确运用诱导公式可将任意角的三角函数化为锐角的三角函数,并能解决有关三角函数求值、化简和恒等证明问题,初步掌握从未知到已知、复杂到简单的转化过程。

二、典型例题例1、若α是第二象限角,且54)540sin(0-=+α,求)180tan()]360cos()180[sin(0200ααα+-+- 的值. 解: 34tan ,53cos ,54sin ,54)540sin(0-=-==∴-=+ααααΘ, ()100334251tan cos sin )180tan()]360cos()180[sin(20200-=-=+=+-+-∴αααααα。

说明:熟练掌握诱导公式及同角三角函数间的关系式.例2、求证ααααα3tan )360sin()540sin(1)180cos()cos(1=-︒+-︒+︒+- 证明:左边=ααααααααsin sin 1cos cos 1sin )180sin(1cos cos 1--=--︒- =αααααααα2222cos cos sin sin sin sin 1cos cos 1=--=tan 3α=右边,所以,原式成立. 说明:例2是诱导公式及同角三角函数的基本关系式在证明三角恒等式中的又一应用,具有一定的综合性.尽管问题是以证明的形式出现的,但其本质是等号左边三角式的化简.例3、已知)32tan()0()3cos(326αππαπαπ-≠=+<<,求,m m 的值. 解:因为)(332παπαπ+-=-, 所以:)]3(cos[)32cos(παπαπ+-=-=)3cos(πα+-=-m 由于,326παπ<<所以,2320παπ<-< 于是:)32(cos 1)32sin(2απαπ--=-=21m -,所以:tan()32cos()32sin()32(απαπαπ--=-=m m 21-- 说明:通过观察,获得角3πα+与角απ-32之间的关系式απ-32=π-(3πα+),为顺利利用诱导公式求cos(απ-32)的值奠定了基础,这是求解本题的关键,我们应当善于观察并充分挖掘隐含条件,努力为解决问题寻找突破口,本题求解中一个鲜明的特点是诱导公式中角的结构要由我们通过对已知式和欲求之式中角的观察分析后自己构造出来,在思维和技能上显然都有较高的要求,它对于培养我们的思维能力、创新意识,训练素质有着很好的作用.例4、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(ααπαπαπ----+-的值。

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结221sin ;261sin 1sin 11sin 10sin 211min max ===-=∴≤≤-∴⎪⎩⎪⎨⎧≤≤-≥-y x y x x x x 时当时,当(2).11)32cos(5132cos ,1)32cos(1min max =-=+==⎪⎭⎫ ⎝⎛+∴≤+≤-y x y x x 时,;当时,当πππ(3)[]222592cos 5sin 42sin 5sin 22sin ,sin 1,1,48y x x x x x x ⎛⎫=+-=-+-=--+∈- ⎪⎝⎭∴当sin 1x =-,即2(2x k k Z ππ=-+∈)时,y 有最小值9-; 当sin 1x =,即2(2x k k Z ππ=+∈),y 有最大值1。

(4)413,21cos 415y 32,21cos ,21,21cos ,32,3,31)32(cos 31cos 4cos 3min max 22-=====-=⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈--=+-=y x x x x x x x x x y 时,即当时,、即从而ππππ 小结:求值域或最大值,最小值的问题,一般的依据是:(1)sinx,cosx 的有界性;(2)tanx 的值可取一切实数;(3)连续函数在闭区间上存在最大值和最小值。

根据上面的原则,常常把给出的函数变成以下几种形式;(1)()sin x ωα+一次形式(2)sin ()x f y =或cos ()x f y =的形式,通过()1f y ≤来确定或其他变形来确定。

三:函数的周期性例 求下列函数的周期()x x f 2c o s )(1=())62s i n (2)(2π-=x x f 分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。

(1) 把x 2看成是一个新的变量u ,那么u cos 的最小正周期是π2,就是说,当π2+u u 增加到且必须增加到π2+u 时,函数ucos 的值重复出现,而),(2222πππ+=+=+x x u 所以当自变量x增加到π+x 且必须增加到π+x 时,函数值重复出现,因此,x y 2sin =的周期是π。

常见三角函数题错误剖析

常见三角函数题错误剖析
二 忽 视 三 角 函 数 的 定 义 域 导 致 错解

所 由 设 得 (+) _ , 3 < 2cos 以 题 可 予< a卢< 仃一 丌 1 2
令 =Cg , 以 Y= x 一 x一 , O0 所  ̄ 2 6 1
y : ;
m m
4 × 去 2
: A无 大且 一 u 值 I L 2 最 。 ,

以 z n 似 -i一 …i …i 一 ( ÷ 一 2 …i s 眦
西 因为 一 ≤s x l所以当s =一 时, =4 1 1 1 i ̄ , n< i 眦 1 +) 所 ( /= 3

s +Si ,N < < 0卢 i n CO 鲫 OS  ̄ = Y N0o 号,< < - !
方法。 其实, =O/ 1 < , = ( ÷) 由 C0 S得一 < 1 而Y 2 一

2s 2 寺。 c 手+s c手 。 i s n

所以当 :1 :一 , 时, 5 当 :一1 y : 。 时,一 7
[ 中 之 09 1 半 刊 2 高 生 友20. . 月 】 3 1上
学 zu责ygn1 hx gni翔3 。i编 周@6 a ox n

c。m
黄 邦活
三角函数是高 中数学 的重 要 内容 之一 , 由于 三 但
角函数 变化 灵 活 , 巧性 较强 , 具 体求 解 时稍 不 留 技 在
心, 就会造成失误 。为此 , 本文就 常见 三角函数题 错误 进行剖析 , 供学习参考 。
剖析 : 上述 解法 虽注 意到 了 s x的有界 性 , 却 i n 但
没有注意到当 s = 一1时 , 导致 s y=— >1矛 i 会 i n 4 盾, 从而产 生 了误 解 。事实上 , 深挖 题设 s x+s y= i n i n 的隐含 条 件 , 一1 iy 由 ≤s ≤1且 一1 i ≤ 1得 n ≤s 似 ≤s x l所 以应是 当 s =一 时 , = 4 i  ̄ , n< i 眦 u

三角函数例题和知识点总结

三角函数例题和知识点总结

三角函数例题和知识点总结三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。

下面我们将通过一些例题来加深对三角函数知识点的理解,并对相关知识点进行总结。

一、三角函数的基本概念1、角的概念角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

按旋转方向不同,角可分为正角、负角和零角。

2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的制度叫做弧度制。

弧度与角度的换算关系为:180°=π 弧度。

3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它到原点的距离为 r(r =√(x²+ y²)),则角α的正弦、余弦、正切分别为:sinα = y/r ,cosα = x/r ,tanα = y/x (x ≠ 0)二、三角函数的图像和性质1、正弦函数 y = sin x图像:正弦函数的图像是一个周期为2π,振幅为 1 的波浪线。

性质:定义域为 R,值域为-1, 1,是奇函数,在π/2 +2kπ, π/2 +2kπ (k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ (k∈Z)上单调递减。

2、余弦函数 y = cos x图像:余弦函数的图像是一个周期为2π,振幅为 1 的波浪线。

性质:定义域为 R,值域为-1, 1,是偶函数,在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ (k∈Z)上单调递减。

3、正切函数 y = tan x图像:正切函数的图像是由无数个周期为π的分支组成,其定义域为{ x |x ≠ π/2 +kπ, k∈Z }。

性质:值域为 R,是奇函数,在(π/2 +kπ, π/2 +kπ )(k∈Z)上单调递增。

三、三角函数的诱导公式1、同角三角函数的基本关系sin²α +cos²α = 1 ,tanα =sinα /cosα2、诱导公式sin( α )=sinα ,cos( α )=cosα ,tan( α )=tanαsin( π α )=sinα ,cos( π α )=cosα ,tan( π α )=tanαsin( π +α )=sinα ,cos( π +α )=cosα ,tan( π +α )=tanαsin( 2π α )=sinα ,cos( 2π α )=cosα ,tan( 2π α )=tanα四、三角函数的和差公式1、两角和与差的正弦公式sin(α +β) =sinαcosβ +cosαsinβsin(α β) =sinαcosβ cosαsinβ2、两角和与差的余弦公式cos(α +β) =cosαcosβ sinαsinβcos(α β) =cosαcosβ +sinαsinβ3、两角和与差的正切公式tan(α +β) =(tanα +tanβ) /(1 tanαtanβ)tan(α β) =(tanα tanβ) /(1 +tanαtanβ)五、例题解析例 1:已知sinα = 3/5,且α为第二象限角,求cosα 和tanα 的值。

高中数学三角函数解题实例及解题思路详解与举例分析和讲解

高中数学三角函数解题实例及解题思路详解与举例分析和讲解

高中数学三角函数解题实例及解题思路详解与举例分析和讲解三角函数是高中数学中一个重要的章节,也是学生们经常遇到的难点之一。

在解题过程中,掌握一些解题技巧和思路是非常重要的。

本文将通过具体的题目举例,详细解析三角函数解题的思路和方法,并给出一些解题技巧,帮助高中学生和他们的父母更好地理解和掌握三角函数的应用。

一、正弦函数的解题实例1. 题目:已知一角的正弦值为0.6,求该角的余弦值。

解析:根据正弦函数的定义sinθ = 对边/斜边,已知sinθ = 0.6,我们可以设对边为3,斜边为5。

根据勾股定理,可以求得邻边为4。

然后,根据余弦函数的定义cosθ = 邻边/斜边,代入已知的值,得到cosθ = 4/5。

2. 题目:已知一角的正弦值为0.8,求该角的余切值。

解析:根据正弦函数的定义sinθ = 对边/斜边,已知sinθ = 0.8,我们可以设对边为8,斜边为10。

根据勾股定理,可以求得邻边为6。

然后,根据余切函数的定义tanθ = 对边/邻边,代入已知的值,得到tanθ = 8/6 = 4/3。

二、余弦函数的解题实例1. 题目:已知一角的余弦值为0.5,求该角的正弦值。

解析:根据余弦函数的定义cosθ = 邻边/斜边,已知cosθ = 0.5,我们可以设邻边为1,斜边为2。

根据勾股定理,可以求得对边为√3。

然后,根据正弦函数的定义sinθ = 对边/斜边,代入已知的值,得到sinθ = √3/2。

2. 题目:已知一角的余弦值为0.6,求该角的正切值。

解析:根据余弦函数的定义cosθ = 邻边/斜边,已知cosθ = 0.6,我们可以设邻边为6,斜边为10。

根据勾股定理,可以求得对边为8。

然后,根据正切函数的定义tanθ = 对边/邻边,代入已知的值,得到tanθ = 8/6 = 4/3。

三、正切函数的解题实例1. 题目:已知一角的正切值为1.5,求该角的余弦值。

解析:根据正切函数的定义tanθ = 对边/邻边,已知tanθ = 1.5,我们可以设对边为3,邻边为2。

三角函数例题和知识点总结

三角函数例题和知识点总结

三角函数例题和知识点总结一、三角函数的基本概念在数学中,三角函数是一类重要的函数,它们描述了三角形中边与角之间的关系。

首先,我们来了解一下角度的度量。

角度可以用度(°)或弧度来表示。

一个完整的圆周对应的角度是 360°,而用弧度表示则是2π 弧度。

接下来,我们认识一下常见的三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan)。

正弦函数sinθ 表示在直角三角形中,对边与斜边的比值;余弦函数cosθ 表示邻边与斜边的比值;正切函数tanθ 则是对边与邻边的比值。

二、三角函数的基本公式1、同角三角函数的基本关系sin²θ +cos²θ = 1tanθ =sinθ /cosθ2、诱导公式例如:sin(π θ) =sinθ ,cos(π θ) =cosθ 等三、三角函数的图像和性质1、正弦函数 y = sin x 的图像是一个周期为2π 的波形,其值域为-1, 1,在 x =π/2 +2kπ (k 为整数)时取得最大值 1,在 x =3π/2 +2kπ (k 为整数)时取得最小值-1。

2、余弦函数 y = cos x 的图像也是一个周期为2π 的波形,值域同样为-1, 1,在 x =2kπ (k 为整数)时取得最大值 1,在 x =π +2kπ (k 为整数)时取得最小值-1。

3、正切函数 y = tan x 的图像其周期为π,定义域为x ≠ π/2 +kπ (k 为整数),值域为 R 。

四、三角函数的例题例 1:已知sinθ = 08,且θ 在第一象限,求cosθ 和tanθ 的值。

因为sin²θ +cos²θ = 1,所以cosθ =√(1 sin²θ) =√(1 08²) =06 。

tanθ =sinθ /cosθ = 08 / 06 = 4 / 3 。

例 2:求函数 y = 2sin(2x +π/3) 的周期和振幅。

三角函数典型例题剖析与规律总结材料

三角函数典型例题剖析与规律总结材料

三角函数典型例题剖析与规律总结一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。

分析:要求1sin 2+=y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足21sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。

解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。

(2)若函数是分式函数,则分母不能为零。

(3)若函数是偶函数,则被开方式不能为负。

(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。

(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。

二.函数值域及最大值,最小值 (1)求函数的值域 例。

求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x分析:利用1cos ≤x 与1sin ≤x 进行求解。

解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 2222cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

(2)函数的最大值与最小值。

例。

求下列函数的最大值与最小值 (1)x y sin 211-= (2)⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫ ⎝⎛+=6662sin 2πππx x y(3)4sin 5cos 22-+=x x y (4)⎥⎦⎤⎢⎣⎡∈+-=32,31cos 4cos 32ππx x x y分析:(1)(2)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数典型例题剖析与规律总结一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。

分析:要求1sin 2+=y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足21sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。

解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。

(2)若函数是分式函数,则分母不能为零。

(3)若函数是偶函数,则被开方式不能为负。

(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。

(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。

二.函数值域及最大值,最小值 (1)求函数的值域 例。

求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x分析:利用1cos ≤x 与1sin ≤x 进行求解。

解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 2222cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

(2)函数的最大值与最小值。

例。

求下列函数的最大值与最小值 (1)x y sin 211-= (2)⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫ ⎝⎛+=6662sin 2πππx x y(3)4sin 5cos 22-+=x x y (4)⎥⎦⎤⎢⎣⎡∈+-=32,31cos 4cos 32ππx x x y分析:(1)(2)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。

解:(1)221sin ;261sin 1sin 11sin 10sin 211min max ===-=∴≤≤-∴⎪⎩⎪⎨⎧≤≤-≥-y x y x x x x 时当时,当 (2).11)32cos(5132cos ,1)32cos(1min max =-=+==⎪⎭⎫ ⎝⎛+∴≤+≤-y x y x x 时,;当时,当πππ(3)[]222592cos 5sin 42sin 5sin 22sin ,sin 1,1,48y x x x x x x ⎛⎫=+-=-+-=--+∈- ⎪⎝⎭∴当sin 1x =-,即2(2x k k Z ππ=-+∈)时,y 有最小值9-; 当sin 1x =,即2(2x k k Z ππ=+∈),y 有最大值1。

(4)413,21cos 415y 32,21cos ,21,21cos ,32,3,31)32(cos 31cos 4cos 3min max 22-=====-=⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈--=+-=y x x x x x x x x x y 时,即当时,、即从而ππππ 小结:求值域或最大值,最小值的问题,一般的依据是:(1)sinx,cosx 的有界性;(2)tanx 的值可取一切实数;(3)连续函数在闭区间上存在最大值和最小值。

根据上面的原则,常常把给出的函数变成以下几种形式;(1)()sin x ωα+一次形式(2)sin ()x f y =或cos ()x f y =的形式,通过()1f y ≤来确定或其他变形来确定。

三:函数的周期性例 求下列函数的周期()x x f 2cos )(1=())62sin(2)(2π-=x x f分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。

(1) 把x 2看成是一个新的变量u ,那么u cos 的最小正周期是π2,就是说,当π2+u u 增加到且必须增加到π2+u 时,函数u cos 的值重复出现,而),(2222πππ+=+=+x x u 所以当自变量x 增加到π+x 且必须增加到π+x 时,函数值重复出现,因此,x y 2sin =的周期是π。

(2) ⎪⎭⎫ ⎝⎛-=+-62sin 2)262sin(2πππx x 即())62sin(2)()62sin(26421sin 2ππππ-=∴-=⎥⎦⎤⎢⎣⎡-+x x f x x 的周期是π4。

小结:由上面的例题我们看到函数周期的变化仅与自变量x 的系数有关。

一般地,函数)sin(ϕω+=x A y 或)cos(ϕω+=x A y (其中ϕω,,A 为常数,),0,0R x A ∈>≠ω的周期ωπ2=T 。

四.函数的奇偶性例 判断下列函数的奇偶性xxx x f x x x f sin 1cos sin 1)()2)(sin()()1(2+-+=+=π分析:可利用函数奇偶性定义予以判断。

解:(1)函数的定义域R 关于原点对称。

是偶函数。

)()(sin )sin()()(,sin )sin()(x f x f x x x x x f x x x x x f ∴=-=--=--=+=ππ(2函数应满足∴⎭⎬⎫⎩⎨⎧∈+≠∈∴≠+.,2320sin 1Z k k x R x x x ππ,且函数的定义于为函数的定义域不关于原点对称。

∴ 函数既不是奇函数又不是偶函数。

评注:判断函数奇偶性时,必须先检查定义域是否关于原点对称的区间,如果是,再验证)(x f -是否等于)(x f -或)(x f ,进而判断函数的奇偶性,如果不是,则该函数必为非奇非偶函数。

五:函数的单调性 例:下列函数,在⎥⎦⎤⎢⎣⎡ππ,2上是增函数的是( ) x y A sin .=x y B cos =x y C 2sin =x y D 2cos =分析:判断。

在各象限的单调性作出与可根据x x x x cos sin .22,2ππππ≤≤∴≤≤ 解:sin y x =与cos y x =在2ππ⎡⎤⎢⎥⎣⎦,上都是减函数,∴排除,A B ,2x ππ≤≤,22,x ππ∴≤≤知sin 2y x =在[]2,2x ππ∈内不具有单调性,∴又可排除C ,∴应选D 。

小结:求形如)0,0)(cos()sin(>≠+=+=ωϕωϕωA x A y x A y 其中或的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:式的方向相同(反)。

的单调区间对应的不等与时,所列不等式的方向)视为一个整体;(把“)(cos ),(sin )0(02)"0()1(R x x y R x x y A A x ∈=∈=<>>+ωϕω练习:1. 函数xy sin 1=的定义域为( ) {}[)(]{}0.1,00,1.,..≠-∈≠∈x x D C Z k k x R x B R A π2. 函数)6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的值域是( ) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎝⎛-1,211,2323,2121,23.DCBA 3. 函数)0)(4sin(>+=ωπωx y 的周期为32π,则ω=------------. 4. 下列函数中是偶函数的是( )1sin sin sin 2sin .+==-==x y Dxy Cx y B x y A5. 下列函数中,奇函数的个数为( )(1)x x y sin 2=(2)[]π2,0,sin ∈=x x y (3)[]ππ,,sin -∈=x x y (4)x x y cos =432.1.D C B A6. 在区间⎪⎭⎫⎝⎛2,0π上,下列函数为增函数的是( ) x y Dxy Cxy Bxy A cos sin cos 1sin 1.-=-=-==7. 函数x y 2sin =的单调减区间是( )[]()Z k k k Dk k Ck k B k k A ∈⎥⎦⎤⎢⎣⎡+-++⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++4,423,243,4223,22ππππππππππππππππ8. 如果4π≤x ,则函数x x y sin cos 2+=的最小值是——————9. 函数)2434(tan πππ≠≤=x xx y 且的值域为( ) [](][)(][)+∞-∞-+∞-∞--,11,,11,1,1DCBA答案:B B 3 C C D B221B例1已知,且,则可以表示().(A)(B)(C)(D)分析由题意求,不仅要看选择支给出的四个角中哪一个角在区间,还要看哪一个角的正弦值为依据诱导公式,有,,由此排除了B和D.又,故,因此本题应选C.点评反三角函数的记号既然表示一个特定区间上的角,就可以此为基础表示其他指定范围内的角.例2(1)若,则等于().(A)(B)(C)(D)(2)已知,那么的值是().(A)(B)(C)(D)分析(1)方法1因为(注意).(注意由有).于是原式,故选.方法2 利用,,,又,,,故选(A).(2)本题是的条件下,求两角和的值,只要求出这两个角和的正切值,并确定其取值范围即可.设,,由,有,,,故,并且,,.由此可知,故选.点评本题是利用反三角函数的概念,通过设辅助角,把反三角函数的运算转化为三角函数的问题来解决,这是常用的处理方法,同时,揭示了反三角函数和三角函数的内在联系.例3的值=.分析本题实质上是求角的大小,可以先求它的某种三角函数值,再估计其取值范围而确定.设,则,且又设,则,且,故.∴又由,可得∴,即.例4函数的定义域为,值域为.分析所求函数定义域应该由下列条件确定:解得为,故所求定义域为.又由,则,∴,即所求值域为点评求值域时既要认识给定函数是复合函数,又要注意定义域的制约作用.例5函数的单调递增区间是.分析由,得函数的定义域为由于函数由函数和复合而成,而函数在其定义域内是减函数,故只要求出函数的单调递减区间,为因此,已知函数的递增敬意是点评这里不仅要正确运用复合函数单调性的规律,而且要注意函数的单调区间定是其定义域的子区间.例6满足的的取值范围是;满足的的取值范围是.分析此类题既要用到函数的单调性,还要注意相应式有意义对的限制条件.例7若,则在上满足的的取值范围是().(A)(B)(C)(D)分析这是一道既要运用三角函数的性质,又要运用以反三角函数表示一定范围内的角的题目.如下图,满足已知条件的的取值范围是,其中满足:,故,同样,因此本题应选B.。

相关文档
最新文档