半导体名词解释
半导体是什么

半导体的本质和应用
半导体是一种介于导体和绝缘体之间的材料。
它具有在特定条件下可以有选择
性地导电的特性。
半导体的本质在于其电子结构中存在一些未被填满的能级,使得在外加电场或热激发的作用下,电子可以很容易地在材料中移动。
半导体的基本特性
半导体材料中的导带和价带之间存在称为“禁带宽度”的能隙。
在原子折叠之后,半导体材料通过共价键连接,因此其电子虽然处于原子间,但在整个材料中可以自由移动。
当外界条件施加以后,这些电子会在导带和价带之间跃迁,从而实现电导。
半导体的应用
半导体材料在现代科技中有着广泛的应用。
其中最重要的当属半导体器件,如
二极管和晶体管。
这些器件可以用来控制电流的流动,从而实现逻辑电路、放大器和其他电子设备。
此外,半导体还广泛应用于光电子领域,如太阳能电池和发光二极管。
通过半
导体材料的光电转换性质,可以将光能转化为电能或者发光,实现各种照明和能源转换的功能。
总的来说,半导体作为一种特殊的材料,在现代社会的科技发展中起着至关重
要的作用。
其独特的导电性能和光电性能广泛应用于电子器件、光电子器件以及能源技术等领域,推动了科技的不断进步和创新。
半导体ar名词解释

半导体ar名词解释半导体(Semiconductor)是一种起关键作用的物质,常用于电子器件的制造过程中。
它具有介于导体和绝缘体之间的导电性能,可以根据外部电场和电流进行调控。
半导体材料由于其独特的电性能和可控性,被广泛应用于各种电子设备和技术中。
半导体的电子特性来源于其晶体结构。
在半导体内部,原子被安排成特定的晶格结构,其中原子之间形成了共价键。
共价键是由原子的价电子(最外层的电子)共享而形成的,它们对电流的流动具有阻碍作用。
然而,当半导体获得能量,如温度升高或受到外部电场的作用时,一部分共价键中的电子会被激发到导带上,形成自由电子。
此时,半导体就具有了导电性。
半导体的导电性质也可以通过杂质(施主和受主)来调控。
杂质是在半导体晶体中插入的少量杂原子。
施主杂质通常是具有比半导体原子价电子数更多的元素,如磷(P)或砷(As),它们会在半导体晶格中替代原子的位置。
由于这些施主杂原子可以提供更多的自由电子,所以它们被称为N型材料,即负性半导体。
相反,受主杂质通常是具有比半导体原子价电子数更少的元素,如硼(B)或铝(Al),它们会在半导体晶格中替代原子的位置。
这些受主杂原子可以吸引和俘获自由电子,因此被称为P型材料,即正性半导体。
半导体材料的独特性质使其成为现代电子器件的核心组成部分。
例如,大多数计算机芯片和集成电路板都是基于半导体材料制造的。
在这些设备中,半导体器件(如晶体管)被用于控制和放大电流,实现逻辑运算、存储和通信等功能。
半导体还用于制造太阳能电池、光电二极管、激光器、发光二极管和传感器等各种光电子器件。
此外,半导体在通信、汽车、医疗器械和航空航天等领域中也扮演着重要角色,促进了现代社会和科技的发展与进步。
在半导体技术的发展过程中,人们不断研究和探索着新的半导体材料和制造方法。
例如,砷化镓(GaAs)、氮化硅(Si3N4)、氮化镓(GaN)等宽禁带半导体材料的应用正在逐渐增加。
同时,纳米技术和量子技术的发展也为半导体技术的进一步突破提供了新的可能性。
什么是半导体

什么是半导体半导体是一种介于导体和绝缘体之间的材料,其特点是在一定条件下能够有选择地导电。
半导体材料中的电子能带结构使得其在导电性质上与金属和绝缘体存在显著差异。
半导体材料通常由硅、锗、砷化镓等元素构成,这些元素的原子在晶体中按照一定的排列方式组成晶格结构。
在晶体结构中,半导体原子间的共价键结构使得电子在晶体中能够形成价带和导带。
在半导体的价带中,填满电子的能级称为价带,其中的电子处于稳定状态,无法向导电产生贡献。
而导带则位于更高的能级,电子在导带中处于激发状态,能够参与导电。
半导体材料在绝对零度时处于基态,其电子主要集中在价带中,不产生导电现象。
当半导体材料受到外界激发时,如加热或添加杂质,其中的电子会得到额外的能量,从而跃迁到导带中,形成可流动的自由电子或空穴。
自由电子和空穴是半导体中的导电载流子,它们的流动使得半导体具有了导电特性。
在半导体中,掺杂是一种常见的方法,通过向半导体中引入少量杂质元素,可以有效地调控其导电性质。
掺入五价元素(如砷、磷)的半导体成为N型半导体,其中引入了额外的自由电子。
而掺入三价元素(如硼、铝)的半导体成为P型半导体,其中引入了额外的空穴。
N型和P型半导体可以通过接触形成PN结。
在PN结的电子流动过程中,N型区的自由电子和P型区的空穴发生复合,形成电荷中性的空间区域,称为耗尽层。
由于PN结上的电荷分布及耗尽层的形成,形成了势垒,使得PN结具有整流特性,可以用于制造二极管、三极管等各种电子器件。
除了PN结,半导体材料还可以利用场效应调控电流。
场效应晶体管(FET)是一种基于半导体材料的电子器件,通过调节栅极电场控制源漏电流的开关特性。
FET在数字电路和模拟电路中被广泛应用。
半导体的特殊性质也使得它在光电子器件中发挥重要作用。
半导体材料经过合适的加工工艺可以实现光的发射和接收,例如发光二极管(LED)和光电二极管(光电二极管)等。
此外,基于半导体材料的光伏效应使得太阳能电池成为可再生能源的重要组成部分。
半导体技术名词解释题

半导体技术名词解释题1、半导体:半导体指常温下导电性能介于导体与绝缘体之间的材料。
2、本征半导体:本征半导体是完全不含杂质且无晶格缺陷的纯净半导体。
3、直接带隙半导体:直接带隙半导体是导带底和价带顶在k空间中处于同一位置的半导体。
4、间接带隙半导体:间接带隙半导体材料导带底和价带顶在k空间中处于不同位置。
5、极性半导体:在共价键化合物半导体中,含有离子键成分的半导体为极性半导体。
6、能带、允带、禁带:当N个原子相互靠近结合成晶体后,每个电子都要受到周围原子势场的作用,其结果是每个N度简并的能级都分裂成N个彼此相距很近的能级,这N个能级组成一个能带。
此时电子不再属于某个原子而是在晶体中做共有化运动,分裂的每个能带都称为允带,允带包含价带和导带两种。
允带间因为没有能级称为禁带。
7、半导体的导带:半导体的导带是由自由电子形成的能量空间。
即固体结构内自由运动的电子所具有的能量范围。
8、半导体的价带:价带是指半导体或绝缘体中,在0K时能被电子占满的最高能带。
9、禁带宽度:禁带宽度是指导带的最低能级和价带的最高能级之间的能。
10、带隙:带隙是导带的最低点和价带的最高点的能量之差。
11、宽禁带半导体材料:一般把禁带宽度E g≥ 2.3 eV的半导体材料归类为宽禁带半导体材料。
12、绝缘体的能带结构:绝缘体中导带和价带之间的禁带宽度比较大,价带电子难以激发并跃迁到导带上去,导带成为电子空带,而价带成为电子满带,电子在导带和价带中都不能迁移。
13、杂质能级:杂质能级是指半导体材料中的杂质使严格的周期性势场受到破坏,从而有可能产生能量在带隙中的局域化电子态,称为杂质能级。
14、替位式杂质:杂质原子进入半导体硅以后,杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。
15、间隙式杂质:杂质原子进入半导体以后,杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。
16、施主杂质比晶格主体原子多一个价电子的替位式杂质,它们在适当的温度下能够释放多余的价电子,从而在半导体中产生非本征自由电子并使自身电离。
半导体是什么意思

半导体是什么意思
半导体是什么意思:半导体指常温下导电性能介于导体与绝缘体之间的材料。
在室温下,其电阻系数介乎良导体与绝缘体之间的物质。
这些物质在接近绝对零度时,若结构完整,没有杂质,则性质类似绝缘体。
半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。
常见的半导体材料有硅、锗、砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。
半导体的简介:物质有的导电性差,如煤、人工晶体、琥珀、陶瓷等称为绝缘体;有的导电性强,如金、银、铜、铁、锡、铝等称为导体。
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,半导体是指一种导电性可控,范围从绝缘体到导体之间的材料。
半导体行业术语

半导体行业术语半导体行业术语是专门用于描述和解释半导体技术和相关概念的专业词汇。
在描述半导体行业的相关术语时,需要确保清晰度和准确性。
以下是一些常见的半导体行业术语及其解释:1.半导体:半导体是一种电子材料,具有介于导体和绝缘体之间的电导特性。
半导体材料通常可以控制电流的流动,是构成电子器件和集成电路的基本元件。
2.集成电路(IC):集成电路是一种由多个电子元件(如晶体管、电容、电阻等)以及连接器件(如导线、金属线等)组成的电路系统。
集成电路可用于执行各种计算、存储和处理任务。
3.晶体管:晶体管是一种半导体器件,可以放大和控制电流。
晶体管由三层材料组成,其中包括一个控制区域、一个输入区域和一个输出区域。
晶体管被广泛用于电子设备和电路中。
4.功耗:功耗是指半导体器件在正常运行时消耗的电能。
功耗通常以瓦特(W)为单位进行衡量,是半导体行业中一个重要的考虑因素。
5.时钟频率:时钟频率是计量半导体器件工作速度的指标,通常以赫兹(Hz)为单位。
时钟频率越高,半导体器件的数据处理和运行速度越快。
6.互连:互连是指将不同的半导体器件或电子组件连接在一起的过程。
互连通常使用导线、金属线、连接器等来完成。
7.工艺技术:工艺技术是指用于制造半导体器件和集成电路的特定技术过程。
包括一系列的步骤,如沉积、蚀刻、掩膜制备等,用于制造和构建电子器件。
8.掩膜:掩膜是一种用于制造半导体器件的模板。
掩膜通常是由光刻工艺制备的,可以在半导体材料上形成特定的图案和结构,用于制造电子器件的特定组件。
9.封装:封装是将半导体芯片和连接线封装在外壳中的过程。
封装有助于保护芯片和电路,并提供适当的物理连接和支持。
10.微纳加工技术:微纳加工技术是一种用于制造微小尺度结构和器件的技术。
在半导体行业中,微纳加工技术被广泛应用于制造芯片和集成电路,以及其他微小尺度的器件。
以上是一些常见的半导体行业术语及其解释。
了解和熟悉这些术语对于了解半导体技术和行业发展趋势非常重要。
第三节 半导体

第三节半导体
半导体是当今电子行业最基础的材料之一,其作用和意义不容小觑。
在此我们将深入探讨半导体的相关知识。
一、什么是半导体?
半导体是指在室温下,其导电性介于导体和绝缘体之间的材料。
有
时也被称为半导体晶体。
二、半导体的种类
从其晶体结构来看,半导体可分为单晶硅、多晶硅、非晶硅、蓝宝石、碳化硅、氮化硅等。
三、半导体的应用
1、集成电路 - 由于半导体表现出了半导体-绝缘体-金属场效应,能
够强制控制流经半导体器件的电流强度和方向,因此可用于制作各种
逻辑、振荡器等集成电路。
2、光电器件 - 利用半导体光电特性制作出的器件,如太阳能电池、发光二极管、激光器等。
3、功率器件 - 利用半导体导电性能和电特性,制作出高变换效率、低损耗、高可靠性的功率电子元器件,如IGBT器件等。
4、传感器 - 利用半导体的光电、温度、湿度、压力等特性制作出的传感器器件。
四、半导体技术的发展趋势
1、晶体管微型化和集成化 - 在实际应用中,需要更高的速度、更小的面积和功耗,因此晶体管制作微型化和集成化是半导体技术的重要趋势。
2、功率器件的高效率和大功率 - 随着人们生活水平的提高,需要更高效、更可靠、更节能的电子设备,因此功率器件的高效率和大功率是半导体技术的趋势。
3、新型材料的开发 - 蓝宝石、碳化硅等新型材料在一定应用领域已得到广泛的应用,半导体技术发展也将趋于多样化。
总而言之,半导体技术因其广泛的应用领域和重要的作用被越来越广泛地关注着,也将成为电子行业长期的研究方向之一。
半导体器件名词解释汇总

半导体器件名词解释汇总
半导体器件是一种基于半导体材料制造的电子元件,用于控制电流和电压。
以下是一些常见的半导体器件名词解释:
1. 二极管(Diode):由P型半导体和N型半导体组成,用于
限制电流的流动方向。
2. 整流器(Rectifier):将交流电转换为直流电的装置,常由
二极管组成。
3. 可变电阻(Varistor):一种电阻值可变的器件,用于保护
其他元件免受电压过高的损坏。
4. 三极管(Transistor):由三个区域组成的半导体器件,用
于放大和控制电流。
5. 场效应晶体管(Field-Effect Transistor,FET):一种三极管,其电流控制通过操控电场。
6. 绝缘栅双极型场效应晶体管(Insulated-Gate Bipolar Transistor,IGBT):一种在功率控制电路中广泛应用的高压、大功率半导体器件。
7. 集成电路(Integrated Circuit,IC):在一块半导体芯片上
集成了多个电子元件,如晶体管、电容和电阻。
8. 电容(Capacitor):用于存储电荷的器件,由两个导体之间
的绝缘层组成。
9. 电阻(Resistor):用于控制电流流过的器件,阻碍电流流动。
10. 电感(Inductor):通过电磁感应产生电动势的元件,能够抵抗电流变化。
这些是一些常见的半导体器件名词解释,实际上还有许多其他类型的半导体器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 何谓PIE? PIE的主要工作是什幺?答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。
2. 200mm,300mm Wafer 代表何意义?答:8吋硅片(wafer)直径为 200mm , 直径为 300mm硅片即12吋.3. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm的wafer工艺?答:当前1~3厂为200mm(8英寸)的wafer, 工艺水平已达0.13um工艺。
未来北京厂工艺wafer将使用300mm(12英寸)。
4. 我们为何需要300mm?答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5倍5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6. 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。
7. 一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓 N, P-type wafer?答:N-type wafer 是指掺杂 negative元素(5价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂 positive 元素(3价电荷元素, 例如:B、In)的硅片。
8. 工厂中硅片(wafer)的制造过程可分哪几个工艺过程(module)?答:主要有四个部分:DIFF(扩散)、TF(薄膜)、PHOTO(光刻)、ETCH(刻蚀)。
其中DIFF又包括FURNACE(炉管)、WET(湿刻)、IMP(离子注入)、RTP(快速热处理)。
TF包括PVD(物理气相淀积)、CVD(化学气相淀积) 、CMP(化学机械研磨)。
硅片的制造就是依据客户的要求,不断的在不同工艺过程(module)间重复进行的生产过程,最后再利用电性的测试,确保产品良好。
9. 一般硅片的制造常以几P几M 及光罩层数(mask layer)来代表硅片工艺的时间长短,请问几P几M及光罩层数(mask layer)代表什幺意义?答:几P几M代表硅片的制造有几层的Poly(多晶硅)和几层的metal(金属导线).一般0.15um 的逻辑产品为1P6M( 1层的Poly和6层的metal)。
而光罩层数(mask layer)代表硅片的制造必需经过几次的PHOTO(光刻).10. Wafer下线的第一道步骤是形成start oxide 和zero layer? 其中start oxide 的目的是为何?答:①不希望有机成分的光刻胶直接碰触Si 表面。
②在laser刻号过程中,亦可避免被产生的粉尘污染。
11. 为何需要zero layer?答:芯片的工艺由许多不同层次堆栈而成的, 各层次之间以zero layer当做对准的基准。
12. Laser mark是什幺用途? Wafer ID 又代表什幺意义?答:Laser mark 是用来刻wafer ID, Wafer ID 就如同硅片的身份证一样,一个ID代表一片硅片的身份。
13. 一般硅片的制造(wafer process)过程包含哪些主要部分?答:①前段(frontend)-元器件(device)的制造过程。
②后段(backend)-金属导线的连接及护层(passivation)14. 前段(frontend)的工艺大致可区分为那些部份?答:①STI的形成(定义AA区域及器件间的隔离)②阱区离子注入(well implant)用以调整电性③栅极(poly gate)的形成④源/漏极(source/drain)的形成⑤硅化物(salicide)的形成15. STI 是什幺的缩写? 为何需要STI?答:STI: Shallow Trench Isolation(浅沟道隔离),STI可以当做两个组件(device)间的阻隔, 避免两个组件间的短路.16. AA 是哪两个字的缩写? 简单说明 AA 的用途?答:Active Area, 即有源区,是用来建立晶体管主体的位置所在,在其上形成源、漏和栅极。
两个AA区之间便是以STI来做隔离的。
17. 在STI的刻蚀工艺过程中,要注意哪些工艺参数?答:①STI etch(刻蚀)的角度;②STI etch 的深度;③STI etch 后的CD尺寸大小控制。
(CD control, CD=critical dimension)18. 在STI 的形成步骤中有一道liner oxide(线形氧化层), liner oxide 的特性功能为何?答:Liner oxide 为1100C, 120 min 高温炉管形成的氧化层,其功能为:①修补进STI etch 造成的基材损伤;②将STI etch 造成的etch 尖角给于圆化( corner rounding)。
19. 一般的阱区离子注入调整电性可分为那三道步骤? 功能为何?答:阱区离子注入调整是利用离子注入的方法在硅片上形成所需要的组件电子特性,一般包含下面几道步骤:①Well Implant :形成N,P 阱区;②Channel Implant:防止源/漏极间的漏电;③Vt Implant:调整Vt(阈值电压)。
20. 一般的离子注入层次(Implant layer)工艺制造可分为那几道步骤?答:一般包含下面几道步骤:①光刻(Photo)及图形的形成;②离子注入调整;③离子注入完后的ash (plasma(等离子体)清洗)④光刻胶去除(PR strip)21. Poly(多晶硅)栅极形成的步骤大致可分为那些?答:①Gate oxide(栅极氧化层)的沉积;②Poly film的沉积及SiON(在光刻中作为抗反射层的物质)的沉积);③Poly 图形的形成(Photo);④Poly及SiON的Etch;⑤Etch完后的ash( plasma(等离子体)清洗)及光刻胶去除(PR strip);⑥Poly的Re-oxidation(二次氧化)。
22. Poly(多晶硅)栅极的刻蚀(etch)要注意哪些地方?答:①Poly 的CD(尺寸大小控制;②避免Gate oxie 被蚀刻掉,造成基材(substrate)受损.23. 何谓 Gate oxide (栅极氧化层)?答:用来当器件的介电层,利用不同厚度的 gate oxide ,可调节栅极电压对不同器件进行开关24. 源/漏极(source/drain)的形成步骤可分为那些?答:①LDD的离子注入(Implant);②Spacer的形成;③N+/P+IMP高浓度源/漏极(S/D)注入及快速热处理(RTA:Rapid Thermal Anneal)。
25. LDD是什幺的缩写? 用途为何?答:LDD: Lightly Doped Drain. LDD是使用较低浓度的源/漏极, 以防止组件产生热载子效应的一项工艺。
26. 何谓 Hot carrier effect (热载流子效应)?答:在线寛小于0.5um以下时, 因为源/漏极间的高浓度所产生的高电场,导致载流子在移动时被加速产生热载子效应, 此热载子效应会对gate oxide造成破坏, 造成组件损伤。
27. 何谓Spacer? Spacer蚀刻时要注意哪些地方?答:在栅极(Poly)的两旁用dielectric(介电质)形成的侧壁,主要由Ox/SiN/Ox组成。
蚀刻spacer 时要注意其CD大小,profile(剖面轮廓),及remain oxide(残留氧化层的厚度)28. Spacer的主要功能?答:①使高浓度的源/漏极与栅极间产生一段LDD区域;②作为Contact Etch时栅极的保护层。
29. 为何在离子注入后, 需要热处理( Thermal Anneal)的工艺?答:①为恢复经离子注入后造成的芯片表面损伤;②使注入离子扩散至适当的深度;③使注入离子移动到适当的晶格位置。
30. SAB是什幺的缩写? 目的为何?答:SAB:Salicide block, 用于保护硅片表面,在RPO (Resist Protect Oxide) 的保护下硅片不与其它Ti, Co形成硅化物(salicide)31. 简单说明SAB工艺的流层中要注意哪些?答:①SAB 光刻后(photo),刻蚀后(etch)的图案(特别是小块区域)。
要确定有完整的包覆(block)住必需被包覆(block)的地方。
②remain oxide (残留氧化层的厚度)。
32. 何谓硅化物( salicide)?答:Si 与 Ti 或 Co 形成 TiSix 或 CoSix, 一般来说是用来降低接触电阻值(Rs, Rc)。
33. 硅化物(salicide)的形成步骤主要可分为哪些?答:①Co(或Ti)+TiN的沉积;②第一次RTA(快速热处理)来形成Salicide。
③将未反应的Co(Ti)以化学酸去除。
④第二次RTA (用来形成Ti的晶相转化, 降低其阻值)。
34. MOS器件的主要特性是什幺?答:它主要是通过栅极电压(Vg)来控制源,漏极(S/D)之间电流,实现其开关特性。
35. 我们一般用哪些参数来评价device的特性?答:主要有Idsat、Ioff、Vt、Vbk(breakdown)、Rs、Rc;一般要求Idsat、Vbk (breakdown)值尽量大, Ioff、Rc尽量小,Vt、Rs尽量接近设计值.36. 什幺是Idsat?Idsat 代表什幺意义?答:饱和电流。
也就是在栅压(Vg)一定时,源/漏(Source/Drain)之间流动的最大电流.37. 在工艺制作过程中哪些工艺可以影响到Idsat?答:Poly CD(多晶硅尺寸)、Gate oxide Thk(栅氧化层厚度)、AA(有源区)宽度、Vt imp.条件、LDD imp.条件、N+/P+ imp. 条件。
38. 什幺是Vt? Vt 代表什幺意义?答:阈值电压(Threshold Voltage),就是产生强反转所需的最小电压。