第12章习题测验及解答

合集下载

人教版八年级数学上册《第十二章全等三角形》章节检测卷及答案

人教版八年级数学上册《第十二章全等三角形》章节检测卷及答案

人教版八年级数学上册《第十二章全等三角形》章节检测卷及答案(总分:100分 时间:90分钟)一、选择题(本题包括10小题,每小题3分,共30分。

每小题只有1个选项符合题意)1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等2.(2023陕西宝鸡·期中考题)如图,已知在ABO 和DCO 中AB BO ⊥ CD CO ⊥ AO DO =若用“HL ”判定Rt Rt ABO DCO ≌△△,则需要添加的条件是( )A .AB DC =B .A D ∠=∠C .AOB DOC ∠=∠D .OB OD =3.如图,在Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E.若AB =10 cm ,AC =6 cm ,则BE 的长度为( )A .10 cmB .6 cmC .4 cmD .2 cm4.(2024浙江·中考真题)如图,正方形ABCD 由四个全等的直角三角形(,,,)ABE BCF CDG DAH △△△△和中间一个小正方形EFGH 组成,连接DE .若4,3AE BE ==,则DE =( )A .5B .26C 17D .45.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .PQ >5B .PQ ≥5C .PQ <5D .PQ ≤56.在△ABC 中,∠B =∠C ,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A .∠AB .∠BC .∠CD .∠B 或∠C7.(2023西青区·二模考题)如图,在平面直角坐标系中,ABC 的顶点(3,0)A ,(0,1)B -点C 在第四象限,且AB BC =,90ABC ∠=︒则点C 的坐标是( )A .(4,1)-B .(1,4)-C .(1,4)-D .(4,)1-8.如图,BP 平分∠ABC ,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE =DF ,若∠BED =140°,则∠BFD 的度数是( )A .40°B .50°C .60°D .70°9.(2024四川遂宁·中考真题)如图1,ABC 与111A B C △满足1A A ∠=∠ 11AC AC = 11BC B C = 1C C ∠≠∠我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB=AC ,点,D E 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A .1对B .2对C .3对D .4对10.(2023江汉区·月考考题)如图,在ABC 中,P 为BC 上一点PR AB ⊥,垂足为R ,PS AC ⊥垂足为S ,CAP APQ ∠=∠ PR PS =下面的结论:∠AS AR =;∠QP AR ∥;∠BRP CSP ∆≅∆.其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠∠二、填空题(本题包括10小题,每空3分,共30分)11.(2024青海·中考真题)如图,线段AC 、BD 交于点O ,请你添加一个条件: ,使∠AOB∠∠COD .12.如图,点O 在△ABC 内,且到三边的距离相等.若∠A =60°,则∠BOC =________.13.在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是________.14.已知等腰△ABC 的周长为18 cm ,BC =8 cm ,若△ABC ≌△A ′B ′C ′,则△A ′B ′C ′的腰长等于________. 15.(2024四川成都·中考真题)如图ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒则DCE ∠的度数为 .如图,若AC 平分∠BCD ,∠B +∠D =180°,AE ⊥BC 于点E ,BC =13cm ,CD =7cm则BE = .17.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中共有________对全等三角形.18.(2024甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为(0,1),点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .19.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是________.20.如图,已知点P 到BE ,BD ,AC 的距离恰好相等,则点P 的位置:①在∠DBC 的平分线上;②在∠DAC 的平分线上;③在∠ECA 的平分线上;④恰是∠DBC ,∠DAC ,∠ECA 的平分线的交点,上述结论中,正确的有________.(填序号)三、解答题(本题包括7小题,共60分)21.(6分)如图,已知△EFG ≌△NMH ,∠F 与∠M 是对应角.(1)写出所有相等的线段与相等的角;(2)若EF =2.1 cm ,FH =1.1 cm ,HM =3.3 cm ,求MN 和HG 的长度.22.(8分)(2024四川内江·中考真题)如图,点A 、D 、B 、E 在同一条直线上,AD=BE ,AC=DF ,BC=EF(1)求证:ABC DEF ≌△△;(2)若55A ∠=︒,45E ∠=︒求F ∠的度数.23.(7分)(2024云南·中考真题)如图,在ABC 和AED △中,AB=AE BAE CAD ∠=∠ AC AD =. 求证:ABC AED ≌△△.24.(8分)(2023陕西·中考真题)如图,在△ABC 中,∠B =90°,作CD ⊥AC ,且使CD =AC ,作DE ⊥BC ,交BC 的延长线于点E .求证:CE =AB .25.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD =DF.求证:(1)CF=EB;(2)AB=AF+2EB.26.(10分)如图,A,B两建筑物位于河的两岸,要测得它们之间的距离,可以从点B出发在河岸上画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E,C,A在同一直线上,则DE的长就是点A,B之间的距离,请你说明道理.27.(12分)如图(1),在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,连接CF.(1)如果AB =AC ,∠BAC =90°①当点D 在线段BC 上时(与点B 不重合),如图(2),线段CF ,BD 所在直线的位置关系为______,线段CF ,BD 的数量关系为________;②当点D 在线段BC 的延长线上时,如图(3),①中的结论是否仍然成立,并说明理由;(2)如果AB ≠AC ,∠BAC 是锐角,点D 在线段BC 上,当∠ACB 满足什么条件时,CF ⊥BC(点C 、F 不重合),并说明理由.参考答案及解析一、选择题(本题包括10小题,每小题3分,共30分。

新教材苏教版高中数学必修第二册第12章复数 课时练习题及章末综合测验含答案解析

新教材苏教版高中数学必修第二册第12章复数 课时练习题及章末综合测验含答案解析

第12章 复数12.1 复数的概念 .......................................................................................................... - 1 - 12.2 第1课时 复数的加减与乘法运算 ................................................................... - 5 - 12.2 第2课时 复数的乘方与除法 ........................................................................... - 9 - 12.3 复数的几何意义................................................................................................. - 13 - 12.4 复数的三角形式*............................................................................................... - 18 - 章末综合测验................................................................................................................ - 23 -12.1 复数的概念一、选择题1.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是( )A .2,1B .2,5C .±2,5D .±2,1C [令⎩⎨⎧a 2=2,-2+b =3,得a =±2,b =5.]2.如果C ,R ,I 分别表示复数集、实数集和纯虚数集,其中C 为全集,则( ) A .C =R ∪I B .R ∪I ={0} C .R =C ∩ID .R ∩I =∅D [复数包括实数与虚数,所以实数集与纯虚数集无交集.∴R ∩I =∅,故选D .]3.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A .] 4.若x i -i 2=y +2i ,x ,y ∈R ,则复数x +y i =( ) A .-2+iB .2+iC .1-2iD .1+2iB [由i 2=-1,得x i -i 2=1+x i ,则由题意得1+x i =y +2i ,根据复数相等的充要条件得x =2,y =1,故x +y i =2+i .]5.设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件B [因为a ,b ∈R ,“a =0”时“复数a +b i 不一定是纯虚数”.“复数a +b i 是纯虚数”则“a =0”一定成立.所以a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的必要不充分条件.]二、填空题6.复数3+ii 2(i 为虚数单位)的实部等于________. -3 [3+i i 2=3+i -1=-3-i ,其实部为-3.]7.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值为________. -2 [⎩⎨⎧log 2(x 2+2x +1)=0,log 2(x 2-3x -2)>1,∴x =-2.] 8.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________.-2 [复数m 2+m -2+(m 2-1)i 是纯虚数的充要条件是⎩⎨⎧m 2+m -2=0,m 2-1≠0,解得⎩⎨⎧m =1或m =-2,m ≠±1,即m =-2.故m =-2时,m 2+m -2+(m 2-1)i 是纯虚数.] 三、解答题9.已知m ∈R ,复数z =(2+i)m 2-3(1+i)m -2(1-i). (1)写出复数z 的代数形式;(2)当m 为何值时,z =0?当m 为何值时,z 是纯虚数? [解] (1)复数z =(2+i)m 2-3(1+i)m -2(1-i)=(2m 2-3m -2)+(m 2-3m +2)i ,即复数z 的代数形式为z =(2m 2-3m -2)+(m 2-3m +2)i . (2)若z =0,则⎩⎨⎧m 2-3m +2=0,2m 2-3m -2=0,解得m =2.若z 为纯虚数,则⎩⎨⎧m 2-3m +2≠0,2m 2-3m -2=0,解得⎩⎪⎨⎪⎧m ≠2且m ≠1,m =2或m =-12,即m =-12.10.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实数根,求实数k 的值. [解] 设x 0是方程的实数根,代入方程并整理得(x 20+kx 0+2)+(2x 0+k )i =0.由两个复数相等的充要条件得⎩⎨⎧x 2+kx 0+2=0,2x 0+k =0.解得⎩⎨⎧ x 0=2,k =-22,或⎩⎨⎧x 0=-2,k =2 2.∴实数k 的值为±22.11.(多选题)已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1 B .(a 2+1)i(a ∈R )是纯虚数C .若z 21+z 22=0,则z 1=z 2=0D .当m =4时,复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数BD [取x =i ,y =-i ,则x +y i =1+i ,但不满足x =y =1,故A 错误;∀a ∈R ,a 2+1>0恒成立,所以(a 2+1)i 是纯虚数,故B 正确;取z 1=i ,z 2=1,则z 21+z 22=0,但z 1=z 2=0不成立,故C 错误;复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数等价于⎩⎨⎧lg (m 2-2m -7)=0,m 2+5m +6≠0,解得m =4,故D 正确.故选BD .]12.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R )有实根n ,且z =m +n i ,则复数z =( )A .3+iB .3-iC .-3-iD .-3+iB [由题意,知n 2+(m +2i)n +2+2i =0, 即n 2+mn +2+(2n +2)i =0. 所以⎩⎨⎧n 2+mn +2=0,2n +2=0,解得⎩⎨⎧m =3,n =-1.所以z =3-i .]13.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围为________.⎣⎢⎡⎦⎥⎤-916,7 [由复数相等的充要条件可得 ⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ, 化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.]14.若复数z =⎝ ⎛⎭⎪⎫sin θ-35+⎝ ⎛⎭⎪⎫cos θ-45i 是纯虚数,则cos θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________.-45 -7 [∵复数z 是纯虚数, ∴⎩⎪⎨⎪⎧sin θ-35=0,cos θ-45≠0,∴sin θ=35且cos θ≠45,∴cos θ=-45. ∴tan θ=sin θcos θ=-34. ∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=-34-11-34=-7.]15.设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1<z 2,求实数m 的取值范围.[解] 由于z 1<z 2,m ∈R , ∴z 1∈R 且z 2∈R ,当z 1∈R 时,m 2+m -2=0,m =1或m =-2. 当z 2∈R 时,m 2-5m +4=0,m =1或m =4, ∴当m =1时,z 1=2,z 2=6,满足z 1<z 2. ∴z 1<z 2时,实数m 的取值为m =1.12.2 第1课时 复数的加减与乘法运算一、选择题1.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75 B .-115 C .-185 D .5B [(-3a +b i)-(2b +a i)=(-3a -2b )+(b -a )i =3-5i , 所以⎩⎨⎧-3a -2b =3,b -a =-5,解得a =75,b =-185, 故有a +b =-115.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4 B [z =1-(3-4i)=-2+4i ,故选B.]3.已知a ,b ∈R ,i 是虚数单位.若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4iD [由题意知a -i =2-b i ,∴a =2,b =1,∴(a +b i)2=(2+i)2=3+4i.] 4.已知复数z =2-i ,则z ·z 的值为( ) A .5 B. 5 C .3 D.3A [z ·z =(2-i)(2+i)=22-i 2=4+1=5,故选A.]5.复数z =32-a i ,a ∈R ,且z 2=12-32i ,则a 的值为( ) A .1 B .2 C.12 D.14C [由z =32-a i ,a ∈R ,得z 2=⎝ ⎛⎭⎪⎫322-2×32×a i +(a i)2=34-a 2-3a i ,因为z 2=12-32i ,所以⎩⎪⎨⎪⎧34-a 2=12,-3a =-32,解得a =12.]二、填空题6.设复数z 1=x +2i ,z 2=3-y i(x ,y ∈R ),若z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1+z 2=x +2i +(3-y i)=(x +3)+(2-y )i ,∴(x +3)+(2-y )i =5-6i(x ,y ∈R ),由复数相等定义,得x =2且y =8,∴z 1-z 2=2+2i -(3-8i)=-1+10i.]7.设复数z 1=1+i ,z 2=x +2i(x ∈R ),若z 1z 2∈R ,则x 等于________. -2 [∵z 1=1+i ,z 2=x +2i(x ∈R ), ∴z 1z 2=(1+i)(x +2i)=(x -2)+(x +2)i.∵z 1z 2∈R ,∴x +2=0,即x =-2.]8.复数z =1+i ,z 为z 的共轭复数,则z ·z -z -1=________. -i [∵z =1+i ,∴z =1-i , ∴z ·z =(1+i)(1-i)=2, ∴z ·z -z -1=2-(1+i)-1=-i.] 三、解答题9.计算:(1)(1+i)(1-i)+(-1+i); (2)⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫32+12i (1+i). [解] (1)原式=1-i 2+(-1)+i =1+i. (2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-34+34i 2+⎝ ⎛⎭⎪⎫34-14i (1+i)=⎝ ⎛⎭⎪⎫-32+12i (1+i) =-32-32i +12i -12 =-1+32+1-32i.10.已知复数z =(1-i)2+1+3i ,若z 2+az +b =1-i(a ,b ∈R ),求b +a i 的共轭复数.[解] z =(1-i)2+1+3i =-2i +1+3i =1+i , 由z 2+az +b =1-i ,得 (1+i)2+a (1+i)+b =1-i , ∴a +b +i(a +2)=1-i(a ,b ∈R ), ∴⎩⎨⎧ a +b =1,a +2=-1,解得⎩⎨⎧a =-3,b =4, 则b +a i =4-3i ,则b +a i 的共轭复数是4+3i.11.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [(1-i)-(2+i)+3i =(1-2)+(-i -i +3i)=-1+i.故选A.] 12.(多选题)若复数z =(3-2i)i ,则下列说法正确的有( ) A .z 的实部是2B .z 的共轭复数z =2-3iC .z +z =6iD .z ·z =13ABD [∵z =(3-2i)i =3i +2, ∴z =2-3i ,∴z +z =4,z ·z =13,故ABD 均正确.]13.已知-1+i 是关于x 的方程x 2+px +q =0的一个根,则复数z =p +q i(p ,q ∈R )等于________,z ·z =________.2+2i 8 [(-1+i)2+p (-1+i)+q =0,整理得(q -p )+(p -2)i =0, ∴⎩⎨⎧q -p =0,p -2=0,∴p =q =2. 故z =p +q i =2+2i. ∴z =2-2i ,∴z ·z =(2+2i)(2-2i)=8.]14.已知z 1=cos α+isin α,z 2=cos β-isin β且z 1-z 2=513+1213i ,则cos(α+β)的值为________.12[∵z 1=cos α+isin α,z 2=cos β-isin β, ∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i , ∴⎩⎪⎨⎪⎧cos α-cos β=513,①sin α+sin β=1213,②①2+②2得2-2cos(α+β)=1,。

人教版八年级数学上册 第12章 全等三角形 单元练习 含答案

人教版八年级数学上册  第12章 全等三角形 单元练习  含答案

第12章全等三角形一.选择题(共9小题)1.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°2.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°3.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B =∠C,③DB=DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个4.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙5.如图,点D在AB上,点E在AC上,AB=AC.下列条件中不能判断△ABE≌△ACD的是()A.BD=CE B.BE=CD C.AD=AE D.∠B=∠C6.下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.28.四位同学做“读语句画图”练习.甲同学读语句“直线经过A,B,C三点,且点C在点A与点B之间”,画出图形(1);乙同学读语句“两条线段AB,CD相交于点P”画出图形(2);丙同学读语句“点P在直线l上,点Q在直线l外”画出图形(3);丁同学读语句“点M在线段AB的延长线上,点N在线段AB的反向延长线上”画出图形(4).其中画的不正确的是()A.甲同学B.乙同学C.丙同学D.丁同学9.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共5小题)10.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.11.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC 与Rt△ABD全等.12.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A 点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB与△BCA全等.13.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB与E,且DE=3cm,AC=6cm,BD=5cm,则AB=cm.14.如图,两个边长均为2的正方形重叠在一起,O是正方形ABCD的中心,则阴影部分的面积是.三.解答题(共7小题)15.如图,在△ABC和△ADE中,AB=AE,∠B=∠E,∠1=∠2.求证:BC=ED.16.如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,连结CE,DE,EF,AD,若AE =AC,EF∥BC,EC平分∠DEF.求证:ED=CD,AD⊥EC.17.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD 相交于点F,连接DE(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.18.如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE =2AD.19.如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AF、CE,线段AF与CE是否相等?请说明理由.20.已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上的一点,直线AE,CD相交于点P,且∠APD=45°,求证:BD=CE.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l 上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是直线l上的两动点(D、A、E三点互不重合),点F 为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:DF=EF.参考答案一.选择题(共9小题)1.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.2.解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣∠ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.3.解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.4.解:如图:在△ABC和△DEF中,,∴△ABC≌△EFD(SAS);在△ABC和△MNK中,,∴△ABC≌△MNK(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选:B.5.解:若BD=CE,则依据AB=AC,可得AD=AE,由AB=AC,∠A=∠A,AE=AD,可得△ABE≌△ACD(SAS),故A选项能判断△ABE≌△ACD;若BE=CD,则不能得到△ABE≌△ACD,故B选项不能判断△ABE≌△ACD;若AD=AE,则可得△ABE≌△ACD(SAS),故C选项能判断△ABE≌△ACD;若∠B=∠C,则由∠B=∠C,AB=AC,∠A=∠A,可得△ABE≌△ACD(ASA),故D选项能判断△ABE≌△ACD;故选:B.6.解:A、一个锐角和斜边对应相等,正确,符合AAS,B、两条直角边对应相等,正确,符合判定SAS;C、不正确,全等三角形的判定必须有边的参与;D、斜边和一条直角边对应相等,正确,符合判定HL.故选:C.7.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.8.解:观察图形可知,图形(1)、图形(2)、图形(3);都符合要求;图形(4)点N在线段AB的延长线上,点M在线段AB的反向延长线上,不符合要求.故画的不正确的是丁同学.故选:D.9.解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选:B.二.填空题(共5小题)10.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.11.解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.12.解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:0,2,6,8.13.解:∵AD是角平分线,DE⊥AB,∠C=90°,∴DC=DE=3,∴BC=BD+CD=8,由勾股定理得,AB==10(cm),故答案为:10.14.解:如图,过O分别作CD,BC的垂线垂足分别为E、F,∵∠GOH=∠EOF=90°,∴∠EOF﹣∠GOE=∠GOH﹣∠GOE,即∠FOG=∠EOH.在△EOH和△FOG中,,∴△EOH≌△FOG(ASA),∴S四边形GOHD=S四边形OEDF=1×1=1,即两个正方形重叠部分的面积为1.故答案是:1.三.解答题(共7小题)15.证明:∵∠1=∠2,∴∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED(ASA),∴BC=ED.16.证明:∵EF∥BC,∴∠FEC=∠DCE,∵EC平分∠DEF,∴∠FEC=∠DEC,∴∠DCE=∠DEC,∴ED=CD,在△AED和△ACD中,,∴△AED≌△ACD(SSS),∴∠EDA=∠CDA,∵ED=CD,∴AD⊥EC.17.(1)证明:∵AB∥CD,∴∠ABE+∠C=180°,∵∠C=90°,∴∠ABE=90°=∠C,∵E是BC的中点,∴BC=2BE,∵BC=2CD,∴BE=CD,在△ABE和△BCD中,,∴△ABE≌△BCD(SAS);(2)解:AE=BD,AE⊥BD,理由如下:由(1)得:△ABE≌△BCD,∴AE=BD,∵∠BAE=∠CBD,∠ABF+∠CBD=90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=(1+2)×2﹣×2×1﹣×1×1=.18.证明:∵CF⊥AD于,BE⊥AD∴BE∥CF,∠EBD=∠FCD又∵AD是△ABC的中线∴BD=CD∴在△BED与△CFD中∴△△BED≌△CFD(AAS)∴ED=FD又∵AD=AF+DF①AD=AE﹣DE②由①+②得:AF+AE=2AD19.(1)证明:∵AG⊥EF,CH⊥EF,∴∠G=∠H=90°,AG∥CH,∵AD∥BC,∴∠DEF=∠BFE,∵∠AEG=∠DEF,∠CFH=∠BFE,∴∠AEG=∠CFH,在△AGE和△CHF中,,∴△AGE≌△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE≌△CHF,∴AG=CH,∵AG∥CH,∴四边形AHCG是平行四边形,∴线段GH与AC互相平分.20.解:(1)∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS);∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形.(2)如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠ABC=90°,∴∠FAD=∠DBC=90°.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠APD=45°,∴∠FCD=∠APD,∴CF∥AE.∵∠FAD=90°,∠ABC=90,∴∠FAD=∠ABC,∴AF∥BC.∴四边形AECF是平行四边形,∴AF=CE,∴CE=BD.21.解:(1)∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)成立∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)由(2)知,△ADB≌△CAE,∴BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.。

第12章 习题(带答案)

第12章 习题(带答案)

9、垄断厂商利润最大化时( A C P=MR=MC; P>MR=MC;
10、完全垄断厂商的平均收益曲线为直线时,边际收益曲线也是直线。边际收益曲线的 斜率为平均收益曲线斜率的( A )。 A 2 倍; B 1/2 倍; C 1 倍; D 4 倍。
11、若一个管理机构对一个垄断厂商的限价正好使经济利润消失,则价格要等于( C )。 A C 边际收益; 平均成本; B D D B D 边际成本; 平均可变成本。 )。 取得最大利润; 上述情况都可能发生。 D )。
dTC 2Q 40 . dQ
该厂商实行三级价格歧视时利润最大化的原则可以写为 MR1=MR2=MC. 于是: 关于第一个市场: 根据 MR1=MC,有: 120-20Q1=2Q+40 关于第二个市场: 根据 MR2=MC,有: 7Q2=10 即 22Q1+2Q2=80
1 1 ),得 116=138( 1 )解得 ed ≈6 ed ed
所以,厂商长期均衡时主观需求曲线 d 上的需求的价格点弹性 ed ≈6. (3)令该厂商的线性的主观需求 d 曲线上的需求的函数形式 P=A-BQ,其中,A 表示该线 性需求 d 曲线的纵截距,-B 表示斜率.下面,分别求 A 值和 B 值. 根据线性需求曲线的点弹性的几何意义,可以有 ed
A.如果在某一行业中存在许多厂商,则这一市场是完全竞争的 B.如果厂商所面临的需求曲线是向下倾斜的,则这一市场是不完全竞争的 C.如果行业中所有厂商生产相同的产品,且厂商的数目大于 1,则这个市场是不完全竞争的 D.如果某一行业中有不止一家厂商,他们都生产相同的产品,都有相同的价格,则这个市场 是完全竞争的 2、垄断厂商面临的需求曲线是( A 向下倾斜的; A )。 B 向上倾斜的;

完整版人教版八年级上册数学第十二章 全等三角形含答案

完整版人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,求∠BAC的度数()A.20°B.30°C.40°D.80°2、要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.SASB.ASAC.SSSD.AAS3、如图所示,在中,平分,于,,,,则长是()A.4B.5C.6D.74、如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,且AO 平分∠BAC,那么图中全等三角形共有()对.A.2B.3C.4D.55、如图,在平行四边形ABCD中,M是CD的中点,AM=BM,则平行四边形ABCD 是()A.一般平行四边形B.矩形C.菱形D.正方形6、如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A. B. C. D.7、如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASAB.SASC.SSSD.AAS8、如图,锐角△ABC中,BC>AB>AC,求作一点P,使得∠BPC与∠A互补,甲、乙两人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求.乙:作BC的垂直平分线和∠BAC的平分线,两线交于P点,则P即为所求. 对于甲、乙两人的作法,下列叙述正确的是( )A.两人皆正确B.甲正确,乙错误C.甲错误,乙正确D.两人皆错误9、下列命题是假命题的是()A.线段垂直平分线上的点到线段两端的距离相等B.三角形的一个外角等于与它不相邻的两个内角的和C.有一个外角是120°的等腰三角形是等边三角形D.有两边和一角对应相等的两个三角形全等10、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=2,AB=6,则△ABD的面积是( )A.4B.6C.8D.1211、一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,∠B=∠E,∠C=∠FB.∠A=∠E,AB=EF,∠B=∠D C.∠A=∠D,AB=DE,∠B=∠E D.AB=DE, BC=EF,∠A=∠D12、如图,已知△ABC≌△BAD,AB=6cm,BD=7cm,AD=5cm,则BC的长等于()A.4cmB.5cmC.6cmD.7cm13、如图,AB⊥AC于A,BD⊥CD于D,若AC=DB,则下列结论中不正确的是()A.∠A=∠DB.∠ABC=∠DCBC.OB=ODD.OA=OD14、在中,,平分,交于点D,,垂足为点E,若,则的长为()A.3B.C.2D.615、如图所示,有三条道路围成Rt△ABC,其中BC=1000m,一个人从B处出发沿着BC行走了800m,到达D处,AD恰为∠CAB的平分线,则此时这个人到AB 的最短距离为()A.1000mB.800mC.200mD.1800m二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点.有下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD =AD;④S△ADM=S梯形ABCD;⑤M到AD的距离等于BC的一半.其中正确的结论有________17、如图,在正方形的右侧作等边三角形,分别连接交于点,连接,则________.18、如图,△ABC中,∠A=100°,若BM、CM分别是△ABC的外角平分线,则∠M=________.19、如图,若抛物线y=x2-4x与x轴正半轴相交于点A,点P是y轴正半轴上一动点,过点P作直线l∥x轴,与抛物线相交于B、C两点(点B在点C的左侧),过点C作CD⊥x轴于点D,连接AB、DP,若OC将四边形BADP的面积分成2:1的两部分,则OC所在直线的解析式为________.20、如图,,,垂足分别为,,添加一个条件________,可得.21、如图,已知AB∥CF,E为DF的中点.若AB=13cm,CF=7cm,则BD=________cm。

初中数学人教版八年级上册 第十二章 全等三角形 单元测试(含答案)

初中数学人教版八年级上册 第十二章  全等三角形 单元测试(含答案)

第十二章全等三角形一、单选题1.下列各组图形中不是全等形的是()A.B.C.D.2.如图,AB=AC,BD=CE,要使△ABD≌△ACE,添加条件正确的是()A.∠DAE=∠BAC B.∠B=∠CC.∠D=∠E D.∠B=∠E3.如图,点B、D、E、C在一条直线上,若△ABD≌△ACE,BC=12,BD=3,则DE的长为()A.9B.6C.5D.74.下列说法中,正确的是()A.两个面积相等的图形一定是全等形B.两个等边三角形是全等形C.若两个三角形的周长相等,则它们一定是全等形D.两个全等三角形的面积一定相等5.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为( )A.3B.4C.1或3D.3或56.为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离,甲、乙两位同学分别设计了如下两种方案:甲:如图1,在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图2,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作∠ADB=∠BDC,交直线AB于点C,最后测量BC的长即可.其中可行的测量方案是()A.只有方案甲可行B.只有方案乙可行C.方案甲和乙都可行D.方案甲和乙都不可行7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC长是()A.3B.4C.5D.68.如图,CA⊥AB,垂足为点A,AB=12米,AC=6米,射线BM⊥AB,垂足为点B,动点E 从A点出发以2米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过t秒时,由点D、E、B组成的三角形与△BCA全等.请问t有几种情况?( )A.1种B.2种C.3种D.4种9.如图,D为△BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF,②CE=AB+AE;③∠BDC=∠BAC.其中正确的结论有()A.0个B.1个C.2个D.3个10.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CEF.其中正确的是( )A.①③B.②③④C.①③④D.①②③④二、填空题11.如图,若△ABE≌△ACF,AB=4,AE=2,则EC的长为.12.如图,∠ACB=∠DFE,BF=CE,要使ΔABC≌ΔDEF,则需要补充一个条件,这个条件可以是(只需填写一个).13.如图,△ABC≌△DBC,∠A=32°,∠DCB=38°,则∠ABC=.14.△OAB和△OA′B′在平面直角坐标系中的位置如图所示,其中点A,B的坐标分别为(−3,0),(0,2),点A′在x轴上,且△OA′B′≌△AOB.则点B′的坐标为.15.如图,小明用10块高度都是a的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放一个等腰直角三角尺ABC,点C在DE上,点A,B分别与木墙的顶端重合,则两堵木墙之间的距离为.(用含a的代数式表示)16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,CD=3,则△ABD的面积.17.如下图,一把直尺压住射线OB,另一把完全一样的直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠AOB的平分线.”这样说的依据是.18.如图所示,△ABC中,AB=AC,∠BAC=90°.直线l经过点A,过点B作BE⊥l于点E,过点C作CF⊥l于点F.若BE=3,CF=7,则EF=.三、解答题19.如图,在△ABC中,点D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD.(2)若△ABD的面积为6,求△ACE的面积.20.已知,如图,AC=BD,∠1=∠2.(1)求证: ΔABC≌ΔBAD;(2)若∠2=∠3=25°,则∠D= °.21.如图,已知△ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD 到F,使DF=CD,连接AF,AG.(1)补全图形;(2)AF与AG的大小关系如何?证明你的结论;(3)F,A,G三点的位置关系如何?证明你的结论.22.如图,BC平分∠ABD,AC=CD,CE⊥BD.(1)求证:∠A+∠D=180°;(2)求证:AB+BD=2BE.23.如图,在△ABC中,∠C=90∘,BC=AC,D为直线BC上一动点,连接AD.在直线AC 的右侧作AE⊥AD,且AE=AD.观察发现:(1)如图①,当点D在线段BC上时,过点E作AC的垂线,垂足为N,判断线段EN与BC之间的关系,并说明理由;探究迁移:(2)将如图①中的B,E连接,交直线AC于点M,我们很容易发现MN=MC.如图②,当点D在线段BC的延长线上时,连接BE交直线CA于点M,线段EN和线段BC之间的关系有没有变化?此时MN=MC吗?说说理由.拓展应用:(3)如图③,当点D在线段CB的延长线上时,当AC=7,CM=2时,求△ABD和△ABE的面积.参考答案:1.C2.B3.B4.D5.D6.A7.B8.D9.D10.C11.212.AC=DF(答案不唯一)13.110°14.(3,−2)15.10a16.1517.在一个角的内部,到角的两边距离相等的点在这个角的平分线上18.1019.(1)证明:∵点D是BC的中点.∴BD=DC∵AE与BC相交于点D∴∠ADB=∠EDC∵在△ABD和△ECD中{BD=DC∠ADB=∠EDCAD=DE∴△ABD≌△ECD(SAS)(2)∵D是边BC的中点∵S△ABD=S△ACD又∵△ABD≌△ECD ,△ABD 的面积为6∵S △ACE =S △ACD +S △ECD=2S △ABD=2×6=12.20.105°21.(1)补全图形,如图所示;(2)AF =AG ,理由为:在△AFD 和△BCD 中,{AD =BD ∠ADF =∠BDC FD =CD∴△AFD≌△BCD (SAS),∴AF =BC ,在△AGE 和△CBE 中,{AE =CE ∠AEG =∠CEB GE =BE∴△AGE≌△CBE (SAS),∴AG =BC ,则AF =AG ;(3)F ,A ,G 三点共线,理由为:∵△AFD≌△BCD ,△AGE≌△CBE ,∴∠FAB =∠ABC ,∠GAC =∠ACB ,∵∠BAC +∠ABC +∠ACB =180°,∴∠FAB +∠BAC +∠GAC =180°,则F ,A ,G 三点共线.22.(1)证明:过点C 作CF ⊥BA 的延长线于点F,∵∠CF ⊥BF ,CE ⊥BD ,BC 平分∠ABD ,∴CF =CE ,∠F =∠CED =90°,在Rt △CFA 和Rt △CED 中,{AC =DC CF =CE ,∴Rt △CFA≌Rt △CED (HL),∴∠CAF =∠D ,∵∠BAC +∠CAF =180°,∴∠BAC +∠D =180°,即∠A +∠D =180°;(2)证明:由(1)CF =CE ,AF =DE ,∠F =∠CEB =90°,在Rt △CFB 和Rt △CEB 中,{BC =BC CF =CE,∴Rt △CFB≌Rt △CEB (HL),∴BF =BE ,∴AB +BD =AB +BE +DE =BF +BE =2BE .23.(1) EN =BC 且EN ∥BC∵∠DAC +∠CAE =90∘∠E +∠CAE =90∘∴∠E =∠DAC在△EAN 与△ADC 中{∠C =∠ANE =90∘∠E =∠DAC AD =AE∴△EAN≌△ADC (AAS)∴EN =AC,∠ENA =∠C =90°,∴∠ENC=∠C=90°,∴EN∥BC∵BC=AC∴EN=BC(2)它们的关系没有变化,此时MN=MC,∵∠DAC+∠NAE=90∘,∠AEN+∠NAE=90∘,∴∠DAC=∠AEN,在△EAN与△ADC中{∠ACD=∠ANE=90∘∠AEN=∠DACAD=AE∴△EAN≌△ADC(AAS)∴EN=AC,∠ACD=∠ENA=90°,∴EN∥BC∵BC=AC∴EN=BC在△MEN与△MBC中{∠BMC=∠EMN∠N=∠ACB=90∘EN=BC∴△MEN≌△MBC(AAS)MN=MC(3)由(2)可得,△EAN≌△ADC和△MEN≌△MBC仍然成立∴MC=MN=2AC=BC=EN=7BD=AN−BC=11−7=4∴S△ABD=12×BD×AC=12×4×7=14S△ABE=12×AM×BC+12×AM×EN=12×9×7+12×9×7=63。

人教版数学八年级上册 第十二章达标测试卷 及解析答案

人教版数学八年级上册 第十二章达标测试卷 及解析答案

人教版数学八年级上册第十二章达标测试卷及解析答案第十二章达标测试卷一、选择题(每题3分,共30分)1.如图,XXX利用全等三角形的知识测量池塘两端M,N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是(。

)。

A。

POBB。

PQCC。

MODD。

MQ2.如图,已知AC=DB,AB=DC,你认为证明△ABC≌△DCB应该用()。

A。

“边边边”B。

“边角边”C。

“角边角”D。

“角角边”3.使两个直角三角形全等的条件是()。

A。

一锐角对应相等B。

两锐角对应相等C。

一边对应相等D。

两边对应相等4.如图,在△ABC中,D,E分别是XXX,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()。

A。

15°B。

20°C。

25°D。

30°5.如图,OA=OB,OC=OD,AD=BC,则图中全等三角形的对数有()。

A。

1对B。

2对C。

3对D。

4对6.在正方形网格中,∠AOB的位置如图所示,到∠AOB 两边距离相等的点应是()。

A。

点MB。

点NC。

点PD。

点Q7.在△ABC和△A′B′C′中,有下列条件:①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则以下各组条件中不能保证△ABC≌△A′B′C′的一组是()。

A。

①②③B。

①②⑤C。

①③⑤D。

②⑤⑥8.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()。

A。

AB=DEB。

∠B=∠ECXXX=BCD。

EF∥BC9.如图,在△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的个数是()。

①DA平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A。

1个B。

2个C。

3个D。

4个10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和25,则△EDF 的面积为()。

人教版八年级上册数学第十二章 全等三角形 含答案

人教版八年级上册数学第十二章 全等三角形 含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2B.3C.4D.52、在直线l上依次摆放着七个正方形(如右图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4B.5C.6D.143、如图,若AB=AD,BC=CD,那么判断△ABC≌△ADC的依据是()A.SASB.HLC.ASAD.SSS4、如图,在△ABC中,∠A=50°,AD为∠A的平分线,DE⊥AB,DF⊥AC,则∠DEF=()A.15°B.25°C.35°D.20°5、下列图形是全等图形的是()A. B. C. D.6、正方形、正方形如图放置,点在同一条直线上,点P 在边上,,且,连结交于,有下列结论:①;②;③;④;⑤.以上结论正确的个数有( )A.5个B.4个C.3个D.2个7、如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA交OB于点D,点I是△OCD的内心,连结OI,BI.若∠AOB=β,则∠OIB等于( )A.180°- βB.180°-βC.90°+ βD.90°+β8、如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,错误的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE9、如图,已知,添加下列条件不能判定的是()A. B. C. D.10、如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S=7,DE=2,AB=4,则AC长是()△ABCA.4B.3C.6D.511、如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4B.3C.2D.112、如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是()A. B. C.点D在的平分线上 D.点D是CF的中点13、如图,在△ABC中,∠ABC,∠ACB的平分线的交点P恰好在BC边的高AD上,则△ABC一定是( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形14、如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4B.3C.2D.115、如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.5 cmB.5 cmC.4 cmD.4 cm二、填空题(共10题,共计30分)16、如图,△AOB≌△COD,OA=OC=4,OB=OD=2,∠AOB=30°,扇形OCA的圆心角∠AOC=120°,以点O为圆心画扇形ODB,则阴影部分的面积是________.17、如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=2,P为AB上一动点,则PD的最小值为________.18、如图,正方形EFGH的顶点均在正方形ABCD的边上,若正方形EFGH的面积比正方形ABCD的面积小32,则AF×BF=________.19、如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=________.20、如图,△ABC的三边AB、BC、CA长分别是40、60、80,其三条角平分线将△ABC分为三个三角形,则S△ABO :S△BCO:S△CAO等于________.21、如图,已知D,E是ΔABC中BC边上的两点,且AD=AE,请你再添加一个条件:________,使ΔABD≌ΔACE22、在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=________.23、如图,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CEDF的周长不变;③点C到线段EF的最大距离为1.其中正确的结论有________.(填写所有正确结论的序号)24、如图,在△ABC中,∠C=90°,AD平分∠CAB,AC=3,AD=4,则点D到直线AB的距离是________.25、两个锐角分别相等的直角三角形________全等.(填“一定”或“不一定”或“一定不”)三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF,AE=CF.请写出DC与AB之间的关系,并证明你的结论.28、如图,是⊙o的内接三角形,AC=BC,D为⊙o中弧AB上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若,求证:AD+BD=CD.29、如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为 _▲_ cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.30、如图,已知点A、C、B、D在同一直线上,AM=CN,BM=DN,∠M=∠N,求证:AC=BD.参考答案一、单选题(共15题,共计45分)1、B2、A3、D4、B5、B6、C7、A8、D9、C10、B11、D12、D13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章习题及解答12.1 滚动轴承主要类型有哪几种?各有何特点?试画出它们的结构简图。

解: 请参阅教材表14.1。

12.2 说明下列型号轴承的类型、尺寸、系列、结构特点及精度等级:32210E ,52411/P5,61805,7312AC ,NU2204E 。

解 :32210E------圆锥滚子轴承、宽轻系列、内径50、加强型;52411/P5----推力球轴承、宽重系列、内径55、游隙5级; 61805--------深沟球轴承、正常超轻、内径25;7312AC-----角接触球轴承、窄中系列、内径60、接触角25︒; NU2204E----无挡边圆柱滚子轴承、窄轻系列、内径20、加强型。

12.3 选择滚动轴承应考虑哪些因素?试举出1~2个实例说明之。

解 :载荷性质、转速、价格等。

12.4 滚动轴承的主要失效形式是什么?应怎样采取相应的设计准则?解:疲劳点蚀、塑性变形;寿命、静载荷校核。

12.5 试按滚动轴承寿命计算公式分析:(1) 转速一定的7207C 轴承,其额定动载荷从C 增为2C 时,寿命是否增加一倍?解: 由公式ε⎪⎭⎫ ⎝⎛=F C n L h 60106 可知, 当额定动载荷从C 增为2C 时, 寿命增加应为()εC 2(2) 转速一定的7207C 轴承,其当量动载荷从P 增为2P 时,寿命是否由L h 下降为L h /2?解: 由公式ε⎪⎭⎫ ⎝⎛=F C n L h 60106 可知, 当其当量动载荷从P 增为2P 时, 寿命下降应为ε⎪⎭⎫ ⎝⎛21(3) 当量动载荷一定的7207C 轴承,当工作转速由n 增为2n 时,其寿命有何变化?解: 由公式ε⎪⎭⎫ ⎝⎛=F C n L h 60106可知, 当工作转速由n 增为2n 时,其寿命为原来的⎪⎭⎫ ⎝⎛21 12.6 选择下列正确答案。

滚动轴承的额定寿命是指一批相同的轴承,在相同的条件下运转,当其中 10% 的轴承发生疲劳点蚀时所达到的寿命。

(a ) 1%(b ) 5%(c ) 10%(d ) 50%12.7 一矿山机械的转轴,两端用6313深沟球轴承;每个轴承受径向载荷 R =5400 N ,轴的轴向载荷A =2650 N ,轴的转速n =1250 r/min ,运转中有轻微冲击,预期寿命L h =5000 h ,问是否适用?解: (1)由机械零件设计手册得6313深沟球轴承的C 0=56500 N , A/C 0= 2650/56500=0.0469,查表14.11 得 e=0.25(2) 而A/R= 2650/5400=0.49>e, 查表14.11 得X=0.56,Y=1.85,故径向当量动载荷为P=0.56×5400+1.85×2650=7926.5(3) 由机械零件设计手册得6313深沟球轴承的C=72200, 因t <100︒C ,由表14.8查得f T =1,因载荷有轻微冲击,由表14.9查得f F =1.1,对球轴承取ε=3。

将以上有关数据代入下式ε⎪⎪⎭⎫⎝⎛=F f C f n L P T h 60106 75705.79261.1722001250601036=⎪⎭⎫⎝⎛⨯⨯=h L >5000,故该深沟球轴承适用。

12.8 根据工作条件,某机械传动装置中轴的两端各采用一深沟球轴承,轴颈直径d =35mm ,转速n =1460r/min ,每个轴承受径向负荷R =2500N ,常温下工作,负荷平稳,预期寿命L h =8000h ,试选择轴承的型号。

解: (1)初选轴承的型号为6307, 由机械零件设计手册得6307深沟球轴承的C 0r =17800 N, C r =25800(2) 由于轴承在常温下工作,由表14.8查得f T =1,载荷负荷平稳,由表14.9查得f F =1.0,对球轴承取ε=3。

将以上有关数据代入下式ε⎪⎪⎭⎫⎝⎛=F f C f n L P T h 60106 得125462500258001460601036=⎪⎭⎫⎝⎛⨯=h L >L h =8000h故可选轴承的型号为6307。

12.9 一深沟球轴承 6304承受径向力 R =4 kN ,载荷平稳;转速n=960 r/min ,室温下工作,试求该轴承的额定寿命,并说明能达到或超过此寿命的概率。

若载荷改为R =2 kN 时,轴承的额定寿命是多少?解: (1)由于轴承在常温下工作,由表14.8查得f T =1,载荷负荷平稳,由表14.9查得f F =1.0,对球轴承取ε=3。

将以上有关数据代入下式ε⎪⎪⎭⎫⎝⎛=F f C f n L P T h 60106 得5.492400012200960601036=⎪⎭⎫⎝⎛⨯=h L h能达到或超过此寿命的概率为10%。

若载荷改为R =2 kN 时,则轴承的额定寿命为6.3940200012200960601036=⎪⎭⎫ ⎝⎛⨯=h L h12.10 图14.25所示为一对7209C 轴承,承受径向负荷R 1=8 k N ,R 2=5 k N ,试求当轴上作用的轴向负荷为F A =2 k N 时,轴承所受的轴向负荷A 1与A 2。

图 14.25图 14.26解: (1)计算轴承1、2的轴向力A A 、A B由表14.12可知70000C 型轴承的内部轴向力S A 、S B 为 S 1=0.5R 1=0.5×8 =4 k N S 2=0.5R 1=0.5×5 =2.5 k N 因为S 2+F A =2.5+2=4.5 > S 1=4所以轴承1被压紧,则二轴承所受的轴向负荷A 1与A 2为A 1 = S 2+F A =4.5 kN A 2=S 2 =2.5 kN12.11 如图14.26中一对30307圆锥滚子轴承,已知轴承1和轴承2的径向载荷分别为R 1=584N ,R 2=1776N ,轴上作用的轴向载荷F A =146N 。

轴承载荷有中等冲击,工作温度不大于100︒C ,试求轴承1和轴承2的当量动载荷P 。

解: (1)计算轴承1、2的轴向力A A 、A B由机械零件设计手册得30307圆锥滚子轴承的C r =71200 N, C 0r =50200 N , Y = 1.9, e=0.31表14.12可知圆锥滚子轴承轴承的内部轴向力S A 、S B 为 S 1= R 1/2Y=584/(2×1.9)=153.6 N S 2= R 2/2Y=1776/(2×1.9)=467.4 N 因为S 2+F A =467.4+146=613.4 > S 1=153.6所以轴承1被压紧,则二轴承所受的轴向负荷A 1与A 2为A 1 = S 2+F A =613.4 N A 2=S 2=467.4 N (2) 计算轴承1、2的当量动载荷31.026.017764.46731.005.15844.6132211<==>==R A R A查表18-11可得X 1=0.40、Y 1=1.9;X 2=1、Y 2=0。

故当量动载荷为N1776N 13994.6139.158440.021==⨯+⨯=P P12.12 一双向推力球轴承52310,受轴向负荷A =4800N ,轴的转速n =1450r/min ,负荷有中等冲击,试计算其额定寿命。

解:(1)查机械零件设计手册得52310的C r =74.5 kN (2)P =A =4800 N(3)取f T =1.0,f F =1.4,则轴承的额定寿命为1566148004.1745001450601036=⎪⎭⎫⎝⎛⨯⨯=h L h12.13 某机械的转轴,两端各用一个径向轴承支持。

已知轴颈d =40 mm ,转速n =1000 r/min ,每个轴承的径向载荷R =5880 N ,载荷平稳,工作温度t=125︒C ,预期寿命L h =5000 h ,试分别按深沟球轴承和圆柱滚子轴承选择型号。

并比较之。

解:(1)初选深沟球轴承和圆柱滚子轴承型号为6208(C r =22800, C 0r =15800)和N2208(C r =36500, C 0r =24000)(2) 由表14.8查得f T =0.95,载荷负荷平稳,由表14.9查得f F =1.0,对球轴承取ε=3, 对滚子轴承ε=10/3。

将以上有关数据代入下式ε⎪⎪⎭⎫⎝⎛=F f C f n L P T h 60106 对球轴承1.83358802280095.010*******6=⎪⎭⎫⎝⎛⨯⨯=h L h, 不满足要求,再选6408 (C r =50200, C 0r =37800),得8.889158805020095.010*******6=⎪⎭⎫ ⎝⎛⨯⨯=h L h对圆柱滚子轴承1564358803650095.010*******/106=⎪⎭⎫ ⎝⎛⨯⨯=h L h可看出圆柱滚子轴承比球轴承的承载能力大得多。

12.14 根据工作要求选用内径d =50 mm 的圆柱滚子轴承。

轴承的径向载荷R =39.2 k N ,轴的转速n =85 r/min ,运转条件正常,预期寿命L h =1250 h ,试选择轴承型号。

解:(1)初选圆柱滚子轴承型号为N410(C r =11500) (2)P =R =39200 N(3)取f T =1.0,f F =1.0, 代入下式, 得495039200115008560103/106=⎪⎭⎫ ⎝⎛⨯=h L h所选轴承型号为N410合适。

12.15 一齿轮轴由一对 30206轴承支承,支点间的跨距为 200 mm ,齿轮位于两支点的中央。

已知齿轮模数m n =2.5 mm ,齿数z 1=17,螺旋角β=16.5︒,传递功率P =2.6 kW ,齿轮轴的转速n =384r/min 。

试求轴承的额定寿命。

解: (1) 计算齿轮的作用力4.646613846.21055.91055.966=⨯=⨯=n P T N·mm 5.2917326.448.129322211===d T F t N5.1107=Fr N2.864=Fa N (2) 计算轴向力R 2V =457.98 R 1V =649.5 R 1H = R 2H =1458.75 ()8.15962/1111==+V H R R R ()95.15282/1222==+VH R R R4992.38.1596211===Y s R8.4772.395.1528222===Y s R轴承采用面对面布置, 因S 2+ F A =477.8+864.2=1342> S 1, 故轴承1被压紧, 轴承2被放松。

则A 1=1342 N ,A 2=477.8 N(3)计算轴承的寿命查手册得30206的C r =41.2 kN, C 0r =29.5 kN, e=0.37, Y=1.6 37.084.08.1596134211>==R A37.031.096.15288.47722<==R AP 1=0.4R 1+1.6A 1 =0.4×1596.8+1.6×1342=2785.92 N 。

相关文档
最新文档