力学建模论文模板

合集下载

力学受力模型报告模板

力学受力模型报告模板

力学受力模型报告模板在物理学中,力学是一门研究物体运动和力的关系的学科。

力学的一个重要分支是受力模型,它用来描述物体受到的各种力以及这些力对物体运动的影响。

在本文中,我们将介绍一个力学受力模型的报告模板,用于展示和分析不同受力模型的情况。

受力模型的基本概念在力学受力模型中,我们通常要考虑以下几个方面:•物体的运动状态:物体可能在静止状态、匀速直线运动或做曲线运动。

•受到的力:物体可能受到多个力的作用,这些力可能是接触力、重力、弹性力、摩擦力等。

•受力原理:力学受力模型的基本原理是牛顿第一定律和牛顿第二定律,它们用来描述物体运动状态和受力情况。

报告模板的结构为了更好地展示一个受力模型的情况,我们可以按照以下结构来撰写力学受力模型报告:实验目的在这一部分,我们将介绍实验的目的和研究问题的背景。

例如,我们可能要研究特定条件下物体的运动状态和受力情况,并探究它们的关系。

实验装置和方法在这一部分,我们将介绍实验所使用的装置和实验方法。

例如,我们可能要使用一些测力计、摆锤等仪器来测量物体的受力和运动状态,并通过各种方法来分析和解释实验结果。

实验结果在这一部分,我们将陈述实验的结果和数据。

我们可以使用各种图表和表格来展示实验结果,例如受力分析图、受力与运动状态的关系图等。

实验分析在这一部分,我们将对实验结果进行分析和解释。

我们可以探究不同受力模型的特点,分析它们对物体运动和受力的影响,并推断出可能的物理规律和关系。

结论在这一部分,我们将总结实验的主要结论和研究成果,指出其在实践中的意义和应用。

我们还可以探讨可能存在的不确定性和误差,并提出可能的改进方法。

结论力学受力模型报告模板可以帮助我们更好地展示和分析不同受力模型的情况。

通过遵循上述结构,我们可以以清晰、简明的方式向读者传达实验的过程、结果和分析。

同时,我们还可以在实践中应用这个模板,探索不同实验条件下的物理规律和关系,以推动科学研究的进一步发展。

高中物理力学模型及分析范文

高中物理力学模型及分析范文

高中物理力学模型及分析范文Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】╰α高中物理力学模型及分析1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度,杆的拉力若小球带电呢假设单B下摆,最低点的速度VB=R2g⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> VB=R2g所以AB杆对B做正功,AB杆对A做负功若 V<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力mL·m2m1FBAF1F2B A FF m换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少 4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系最高点时杆对球的作用力;最低点时的速度,杆的拉力 若小球带电呢假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221B mv 整体下摆2mgR=mg 2R +'2B'2A mv 21mv 21+ 'A'BV 2V = ⇒ 'AV =gR 53;'A 'B V 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

工程力学论文

工程力学论文

石家庄铁道学院毕业论文单斜塔斜拉桥主塔提升受力分析Analysis of Main Tower of Cable-stayedBridge with Single Skew Tower during itsHoisting Process届系工程力学专业工程力学摘要本文以天津市泰达天桥——单斜塔斜拉桥为背景,研究单斜塔斜拉桥主塔提升的受力情况。

整个课题的研究过程采用了有限元的分析方法,利用工程分析软件ANSYS 进行建模求解。

首先根据设计图纸建立该桥完整的初始空间有限元模型,并根据设计内容的要求施加自重和相应的风荷载,然后求解并对提升系统在提升到不同角度时的反力、位移和应力等进行理论分析以确保主塔提升过程的安全可靠。

根据受力情况塔架采用了Link8和Beam4两种单元,主塔采用了Shell63单元,索采用了Link10单元。

计算结果表明单元的选取都是合理的;应力的最值出现在提升索和主塔的连接处,存在应力集中的现象,在排除了局部应力集中的情况下,整个提升过程安全可靠,因此,在施工过程中对局部应力集中处采取有效的加固措施显得至关重要;结果分析显示提升索力的变化是非线性的,提升起始阶段的索力较大,随后索力不断减小,接近提升终止时,提升索力又变大。

提升索的最大索力为2150kN,出现在提升的终止阶段;变形最大的点一般出现在吊梁的中点附近,但并未超出允许值。

关键词:单斜塔斜拉桥有限元分析提升过程AbstractTianjin Taida flyover, a single skew tower cable-stayed bridge is used as the background in this paper. The stress of the main tower of cable-stayed bridge with single skew tower during its hoisting process is researched here. The whole design process uses the finite element method and uses ANSYS, an engineering analysis software, to mode and solve.The initial space finite element model of the bridge is established firstly, according to its drawings. At the same time, the dead weight of the bridge and the corresponding wind loads are also imposed on the bridge according to the design requirements. Then reaction force, displacement and stress are analyzed when the system is enhanced to different angles in order to ensure the safety and reliability of the main tower during its whole hoisting process. The tower frame uses two elements, Link8 and Beam4, according to the force conditions. The main tower uses the Shell63 element and the cables use the Link10 element. The results prove that the selections of these elements are reasonable. The biggest value of the stress is at the connection of the main tower and the lifting-cable, where exists the phenomenon of stress concentration. The hoisting process is safe and reliable when the local stress concentration is eliminated. So it is very important to strengthen the positions of the local stress concentration during the construction process. The change of the lifting-cable tension is nonlinear showed by the results. The value is larger at the beginning of the lifting process and it decreases during the process. The value of the lifting-cable tension turns larger again when the whole process is close to the end. The biggest value is 2150 kN and it happens at the end of the process. The point which happens the greatest deformation is always at the midpoint of the hanging beam and it does not exceed the allowable value.Key words: Single Skew Tower Cable-Stayed Bridge Finite Element Analysis Hoisting Process目录第1章绪论 (1)1.1 课题研究的目的意义 (1)1.2 国内外研究现状 (1)1.2.1 斜拉桥的发展现状 (1)1.2.2 转体施工的研究现状 (2)1.3 论文研究内容简介 (2)1.4 论文主要研究内容和研究方法 (3)1.5 论文研究方法及创新点 (3)第2章提升塔架的力学研究 (5)2.1 提升塔架结构计算书 (5)2.1.1 提升塔架结构简介 (5)2.1.2 提升塔架基础结构受力分析 (5)2.1.3 提升塔架基础强度计算 (5)2.2 管撑的构造力学计算 (6)2.3 分配梁L1、L2的力学构造计算 (7)2.4 吊梁的结构力学计算 (7)第3章有限元模型的建立 (9)3.1 有限元分析过程简介 (9)3.1.1 有限元系统基本构成 (9)3.1.2 ANSYS有限元分析过程 (9)3.2 实体建模的建立 (10)3.2.1 前言 (10)3.2.2 建立实体模型 (11)3.3 材料设置与网格划分 (13)3.3.1 前言 (13)3.3.2 Element Type确定单元类型 (13)3.3.3 几何模型网格划分 (15)3.4 总结 (17)第4章加载与求解 (18)4.1 简介 (18)4.1.1 荷载定义及分类 (18)4.1.2 实体模型载荷与有限元模型载荷的优缺点 (19)4.1.3 可能出现的问题 (20)4.2 提升塔架的风荷载计算规范 (20)4.2.1 风荷载 (20)4.2.2 风荷载的计算 (20)4.2.3 计算风压q (21)4.2.4 风压高度变化系数K h (21)4.2.5 风力系数C (22)4.2.6 迎风面积A (22)4.3 起重塔架的风荷载计算过程 (24)4.3.1 1-20m的风荷载计算 (24)4.3.2 20-40m的风荷载计算 (25)4.4 单斜塔的风荷载计算规范 (25)4.4.1 风荷载标准值及基本风压 (25)4.4.2 风压高度变化系数 (26)4.4.3 风荷载体型系数 (26)4.4.4 风振系数 (27)4.5 单斜塔风荷载的计算过程 (27)4.6 附录 (29)4.7 总结 (29)第5章结果数据的分析 (30)5.1 后处理器简介 (30)5.2 结果的图形和列表显示 (30)5.2.1 提升角度为9° (30)5.2.2 提升角度为20° (36)5.2.3 提升角度为30° (42)5.2.4 提升角度为40° (46)5.2.5 提升角度为46° (51)5.3 结果分析 (55)5.4 结论 (56)第6章结果数据的列表显示 (57)6.1 反力列表 (57)6.2 最大位移列表 (57)6.3 提升索和平衡索的轴力和轴向应力列表 (58)6.4 最大应力列表 (58)6.5 结论 (58)第7章结论与展望 (60)7.1 结论 (60)7.2 展望 (61)参考文献 (62)致谢 (63)附录 (64)第1章绪论1.1 课题研究的目的意义课题以天津市泰达天桥为研究对象,在了解斜拉桥基本知识和熟悉桥规、钢结构规范、起重机规范的基础上,进行提升塔架的构造设计,并采用有限元软件进行主塔钢结构提升塔架模型建立与计算,验算起重塔架的强度、刚度和稳定性;对提升整体系统及主塔进行强度与刚度校核,在对提升塔架进行受力分析时考虑自重(恒载)和风荷载,确保主塔提升过程安全可靠,并提出解决工程实际的建议,对即将来临的工作有积极的指导意义。

工程力学本科论文模板-2014版

工程力学本科论文模板-2014版

摘要低地球轨道上的航天器易受到微流星体及空间碎片的超高速撞击,这些撞击损伤航天器飞行的关键系统,进而导致航天器发生灾难性失效。

为了保证航天员的安全及航天器的正常运行,微流星体及空间碎片防护结构设计是航天器设计的一个重要问题。

采用AUTODYN软件对球形弹丸超高速撞击防护屏所产生碎片云特性进行了数值模拟研究,通过与现有的实验结果比较验证数值模拟方法的有效性。

然后利用建立的数值模型研究防护屏厚度、撞击速度、弹丸直径等对碎片云特性的影响。

关键词微流星体超高速撞击碎片云数值模拟光滑质点动力学摘要要求:1、中文摘要一般为300字左右,外文摘要应与中文摘要内容相同。

摘要页勿需写出论文题目;2、中、外文摘要应各占一页,编排上中文在前,外文在后;3、摘要标题与文字部分不空行,关键词和摘要的文字部分要隔行书写;4、关键词是供检索使用的,是从论文中选出的用以表示全文主题内容的单词或术语,关键词一般为3~5个;AbstractAll spacecraft in low orbit are subjected to hypervelocity impacts by meteoroids and space debris. These impacts can damage spacecraft flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. In order to ensure the astronauts safety and spacecraft normal operation, the design of meteoroids and space debris protection configuration become an important problem of spacecraft design, The numerical simulation of debris cloud produced by projectile hypervelocity impact on bumper at normal have been carried out using the SPH(smooted particle hydrodynamics)technique of AUTODYN hydrocodes in this paper, the simulation results are compared with experimental results, and draw the conclusion that the numerical simulation is right. Then the effect of bumper thickness, impact velocity, projectile diameter on debris cloud has been investigated.Key words Meteoroid Hypervelocity Debris cloud Numerical simulation Smoothed particle hydrodynamics关键词要求:1、关键词新罗马小四,加粗,空两格;2、具体关键词新罗马小四,相邻空两格,首写字母大写;第二行对齐)目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景及意义 (1)1.2 超高速撞击的国内外发展情况 (1)1.2.1 国外发展 (1)1.2.2 国内发展 (1)1.3 本文主要的研究内容 (2)第2章超高速撞击的数值模拟方法 (3)2.1 AUTODYN软件简介 (3)2.2 空间离散方法 (3)2.2.1 网格法 (3)2.2.2 无网格法 (4)2.3 材料模型 (4)2.3.1 状态方程 (5)2.3.2 强度模型 (5)2.3.3 失效模型 (5)2.4 碎片云及其主要特性 (5)2.5 本章小结 (6)第3章计算模型的建立及其验证 (7)3.1 计算模型的建立 (7)3.1.1 几何模型 (7)3.1.2 数值模拟方法的选取 (7)3.2 材料模型的选取 (8)3.3 计算模型的验证 (8)3.4 本章小结 (9)第4章碎片云特性的数值模拟分析 (10)4.1 碎片云形成及扩展过程分析 (11)4.2 弹丸直径对碎片云特性的影响 (11)4.3 弹丸撞击速度对碎片云特性的影响 (11)4.4 防护屏厚度对碎片云特性的影响 (11)4.5 本章小结 (11)结论 (12)致谢 (13)参考文献 (14)附录 (17)中文目录要求:1、一级标题黑体小四,加粗,英文新罗马,加粗;两个字的一级标题中间空两格;2、摘要、结论与具体章节目录之间空一行;3、标题编号与标题名称之间空一格;4、标题与页码之间的圆点必须使用本模板提供的格式;5、按本模板编写论文,刷新当前目录即可生成新目录。

桥梁力学模型设计毕业设计范文

桥梁力学模型设计毕业设计范文

桥梁力学模型设计毕业设计范文# 桥梁力学模型设计毕业设计。

一、绪论。

# (一)选题背景。

桥梁这玩意儿可太酷了。

从古至今,桥梁就像一个个超级英雄,连接着被河流、山谷分隔开的地方。

我就想啊,这么伟大的工程背后肯定有着超有趣的力学原理,所以我就决定在毕业设计里搞个桥梁力学模型设计。

# (二)研究目的和意义。

目的嘛,就是想通过自己动手设计个桥梁模型,把那些在书本上看起来干巴巴的力学知识给盘活咯。

这样我就能真正明白一座桥是怎么稳稳当当站在那儿的。

这意义可就大了,不仅能让我自己在桥梁力学方面从菜鸟变大神,说不定以后真能为建大桥出份力呢!二、桥梁力学原理。

# (一)基本力学概念。

咱们先来说说那些基本的力学概念,就像力啊,应力啊,应变啥的。

力这个东西就像调皮的小精灵,这儿推一下,那儿拉一下。

应力呢,就好比是小精灵在材料里闹出来的“压力感”,应变就是材料被小精灵折腾后产生的变形情况。

# (二)桥梁受力分析。

一座桥梁可是要承受好多不同的力呢。

首先是自身的重量,就像一个大胖子坐在那儿,这叫自重。

然后还有桥上走的汽车、行人的重量,这是活载。

还有风呼呼吹过来,想把桥吹跑,这是风载;水在下面流,也想把桥推倒,这是水流作用力。

要想让桥站稳,就得把这些力都算清楚,合理安排桥的结构,让各种力都能被稳稳地接住。

三、桥梁力学模型设计。

# (一)模型选型。

我思来想去,决定选梁桥作为我的模型类型。

为啥呢?梁桥就像一个坚强的扁担,简单又实用。

它的结构比较清晰,很适合我这个初出茅庐的设计师去探索力学原理。

# (二)材料选择。

材料的选择可不能马虎。

我就像个挑菜的大妈,在材料的大市场里精挑细选。

最后选了木材和一些金属杆件。

木材嘛,便宜又好加工,就像个朴实的小伙伴。

金属杆件呢,是为了给桥梁增加点硬气,让它能承受更大的力。

# (三)模型尺寸确定。

这个尺寸的确定可有点像给桥量体裁衣。

我根据自己手头的材料和想要达到的力学效果,定了梁的长度、宽度和高度。

机械系统的力学建模与应用研究

机械系统的力学建模与应用研究

机械系统的力学建模与应用研究引言:机械系统是现代工程领域中不可或缺的一部分。

它们广泛应用于各个行业,如汽车制造、航空航天、能源等。

机械系统的力学建模与应用研究是为了更好地理解和优化机械系统的运行和性能。

本文将探讨机械系统的力学建模方法以及其在实际应用中的研究。

一、力学建模方法1.1 刚体力学模型刚体力学模型是机械系统力学建模的基础。

刚体假设是指忽略物体的形变,将其视为不可压缩和不可变形的实体。

通过刚体力学模型,可以描述机械系统中物体的运动和相互作用。

刚体力学模型的建立需要考虑物体的质量、形状、惯性力等因素。

1.2 动力学模型动力学模型是机械系统力学建模的进一步发展。

它考虑了物体的运动和相互作用的动力学特性。

通过动力学模型,可以预测机械系统中物体的运动轨迹、速度和加速度等参数。

动力学模型的建立需要考虑物体的质量、惯性力、受力情况等因素。

1.3 有限元分析有限元分析是一种常用的力学建模方法。

它将机械系统划分为多个小的有限元,通过数值计算的方法求解每个有限元的运动方程,从而得到整个机械系统的力学行为。

有限元分析可以考虑复杂的几何形状和材料特性,适用于各种不同类型的机械系统。

二、力学建模应用研究2.1 汽车碰撞模拟汽车碰撞模拟是机械系统力学建模在汽车工程领域的应用之一。

通过建立汽车和障碍物的动力学模型,可以模拟汽车碰撞的过程,并预测碰撞后的车辆变形和受力情况。

这对于汽车设计和安全性评估具有重要意义。

2.2 航天器轨道设计航天器轨道设计是机械系统力学建模在航天航空领域的应用之一。

通过建立航天器和行星的动力学模型,可以优化航天器的轨道设计,使其实现预定的任务目标。

这对于航天器的发射、飞行和着陆具有重要意义。

2.3 机械振动分析机械振动分析是机械系统力学建模在工程振动领域的应用之一。

通过建立机械系统的动力学模型,可以分析机械系统的振动特性,如频率、振幅和模态等。

这对于机械系统的设计和优化具有重要意义。

结论:机械系统的力学建模与应用研究在现代工程领域中具有重要意义。

毕业论文——工程力学【用心整理精品资料】

毕业论文——工程力学【用心整理精品资料】

****大学本科生毕业论文题目:基于ANSYS对三肢式塔架结构进行力学分析学生姓名:学号:专业:班级:指导教师:基于ANSYS对三肢式塔架结构进行力学分析摘要随着世界能源的日趋匮乏和科学技术的飞速发展,加之人们对环境保护的要求,人们在努力寻找一种能替代石油、天然气等能源的可再生、环保、洁净的绿色能源。

风能是当前最有发展前景的一种新型能源,它是取之不尽用之不竭的能源,还是一种洁净、无污染、可再生的绿色能源.风能的利用,从风车到风力发电,证明了文明和科学进步。

塔架是风力发电机主要的承重部件,直接影响机组的稳定性和整体性能.本文利用ANSYS对大型风力发电机的塔架进行了数值仿真研究,为塔架的动态设计提供了理论依据。

在风压的作用下,进行了塔架的静强度分析,得出了塔架在各种载荷情况下的最大应力及最大位移,并验证了满足静强度要求。

根据多自由度模态分析理论,对水平轴风力发电机塔架的振动模态进行了模拟,提取了塔架的前五阶的固有频率和振型。

依据振动理论,塔架振动过程的能量主要集中于一、二阶频率处,而一、二阶振型均为摆振,因此摆振是塔架的主要振动方式。

利用ANSYS软件中的优化设计模块,以塔架的梁截面的长宽为设计变量,以材料的许用应力以及许用位移为约束,以塔架的体积为目标函数进行了优化设计,最终得到塔架梁截面长宽的最优值,并验证了优化后的塔架满足静强度。

关键词:强度 ;位移;变形;有限元分析 ;优化设计。

目录摘要............................................................................................................................ - I - Abstract ................................................................................................................. —II - 第一章绪论......................................................................................................... - 1 - 1。

弹性体力学模型论文素材

弹性体力学模型论文素材

弹性体力学模型论文素材一、引言弹性体力学是研究固体在外力作用下发生形变,然后恢复到原始状态的力学学科。

它在工程、材料科学、地质学等领域中有着广泛的应用。

本文旨在探讨现有的弹性体力学模型,为进一步的研究提供素材。

二、背景弹性体力学模型通常基于材料的力学行为和微观结构来构建。

其中最常用的模型有胡克弹性模型、柯西弹性模型和Maxwell弹性模型。

胡克弹性模型是最简单的线性弹性模型,适用于线性弹性固体的研究。

柯西弹性模型则考虑到材料的剪切变形,在胡克弹性模型的基础上引入剪切弹性模量。

Maxwell弹性模型则通过串联多个弹簧和阻尼器来建立材料的应力-应变关系。

三、实验方法为了验证弹性体力学模型的准确性,研究者一般会通过实验来获取实际的应力-应变数据。

常见的实验方法包括拉伸试验、压缩试验、剪切试验等。

通过这些实验,可以得到材料在不同应力条件下的应变性能,然后将实验数据与弹性体力学模型进行对比。

四、模型适用性评估弹性体力学模型的适用性评估是确定模型的局限性和适用范围的过程。

常见的方法包括通过残差分析、F统计量和AIC准则来评估模型的拟合程度和预测能力。

此外,还可以通过与其他已有实验结果的对比来验证模型的准确性。

五、应用案例弹性体力学模型在工程和科学领域有着广泛的应用。

例如,在材料工程中,研究者可以通过弹性体力学模型来评估材料的机械性能和可靠性。

在地质学中,利用弹性体力学模型可以预测地震波传播、地壳变形等现象。

此外,弹性体力学模型还可以应用于生物力学、医学工程等领域。

六、研究挑战与未来展望弹性体力学模型的研究仍然存在一些挑战,例如非线性效应的建模、复杂材料的研究等。

未来,研究者可以采用更复杂的模型,结合实验和数值方法来深入探究材料的弹性性能。

此外,还可以将弹性体力学模型与其他学科的模型相结合,提高模型的预测能力和适用性。

七、结论通过对弹性体力学模型的理论及应用进行论述,本文提供了研究过程中所需的素材。

弹性体力学模型是研究固体材料力学性质的重要工具,可以应用于各个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学建模论文模板工程力学专业力学建模论文题目:空间梁柱结构有限元分析专业:工程力学班级: 09-2班姓名:侯德森学号: 14号力,梁柱纵筋在节点区应有可靠的锚固。

2.力学模型分析:遵循认识论的规律,其研究方法是首先从生活、工程或实验中观察各种现象,从复杂的现象中抓住共性,找出反映事物本质的主要因素,略去次要因素,经过简化,把作机械运动的实际物体抽象为力学模型(mechanical model),建立力学模型是工程力学研究方法中很重要的一个步骤。

因为实际中的力学问题往往是很复杂的,这就需要对同一个研究对象,为了不同的研究目的,进行多次实验,反复观察,仔细分析,抓住问题的本质,做出正确的假设,使问题理想化或简化,从而达到在满足一定精确度的要求下用简单的模型解决问题的目的。

建立了力学模型以后,还要按照机械运动的基本规律和力学定理,对力学模型进行数学描述,建立力学量之间的数量关系,得到力学方程,即数学模型(mathematical model)。

然后,经过逻辑推理和数学演绎进行理论分析和计算,或用计算机求数值的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。

4.问题描述:空间梁柱结构如习题图7.5所示,横向(图中x轴)跨度为1.8m,纵向(图中z轴)跨度为1.2m,柱高1.2m,柱顶四边对称起坡,起坡高度0.6m,顶点作用集中载荷20kN,四柱脚固定约束。

梁柱结构均为钢材,弹性模量为2.1×1011Pa,泊松比为0.3,密度为7850kg/m3。

柱横截面为工字型钢,主轴方向为纵轴(图中z轴),梁横截面为工字型钢,起坡斜梁为方钢管,所有截面尺寸及在结构中的布置如图所示。

a) 空间梁柱结构b) 柱截面尺寸 c) 横梁截面尺寸d) 斜梁截面尺寸二、力学模型的建立和求解梁系结构也属于自然离散结构体系,因此其有限元分析过程与桁架结构(杆系结构)相似,也包括单元分析、结构分析、引入边界条件并求解等步骤。

对于平面梁单元,在计算其轴向变形时,每个节点将有轴向位移、横向位移和弯曲转角3个位移分量,以及轴力、弯矩和弯矩3个杆端力(矩)分量,因此其单元刚度矩阵应为一个6X6矩阵。

对于一般情况的空间梁单元,其一个节点具有6个运动自由度,包括3个线位移自由度和3个转动自由度。

其中线位移自由度包括一个轴向位移和两个平面外的横向位移,转动自由度包括1个扭转角和2个弯曲转角自由度。

一个节点具有6个杆端力(矩)分量,即3个杆端力分量和3个杆端力矩分量,因此,其单元刚度矩阵应为一个12X12矩阵。

梁系结构有限元分析的基本过程:材料属性:3.创建几何模型Beam1:Beam2:Beam3:表:关键点坐标值节点编码1 2 3 4 5 6 7 8 9X 坐标-0.90.9 0.9-0.9-0.90.9 0.9-0.9Y坐标1.2 1.2 1.2 1.2 1.8Z 坐标-0.6-0.60.6 0.6-0.6-0.60.6 0.6表:线和方向点线的L1 L2 L3 L4 L5 L6 L7 L8 L9L1L11L12JUN 17 2012L1L2L3L4L5L6L7L8L9L10L11L1212345678910111213141XYZJUN 17 201208:42:32E-L-K-NUROT施加位移约束后有限元模型图:1XYZJUN 17 201208:30:55ELEMENTS1L11L22L33L44L5L6L7L8L95L106L117L1289XYZJUN 17 201208:41:26LINESLINE NUMUROT4.加载求解施加载荷后的有限元模型图:载荷方向、大小的图示:1L11L22L33L44L5L6L7L8L95L106L117L1289XYZJUN 17 201208:44:30LINESLINE NUMUROTF三、结果分析查看求解结果,ANAYA软件进行通用后处理。

变形图:1XYZJUN 17 201208:50:26DISPLACEMENTSTEP=1SUB =1TIME=1DMX =.269E-03模型位移云图:节点等效应力云图:1MNMXXYZ.298E-04.597E-04.895E-04.119E-03.149E-03.179E-03.209E-03.239E-03.269E-03JUN 17 201208:59:18NODAL SOLUTIONSTEP=1SUB =1TIME=1USUM (AVG)RSYS=0DMX =.269E-03SMX =.269E-031MNMXXYZ106516.238E+07.465E+07.693E+07.920E+07.115E+08.138E+08.160E+08.183E+08.206E+08JUN 17 201209:03:23NODAL SOLUTIONSTEP=1SUB =1TIME=1SEQV (AVG)DMX =.269E-03SMN =106516SMX =.206E+081XYZ-.205E+08-.172E+08-.140E+08-.107E+08-.744E+07-.418E+07-909947.236E+07.562E+07.889E+07JUN 17 201209:10:21LINE STRESSSTEP=1SUB =1TIME=1IZHOULI JZHOULIMIN =-.205E+08ELEM=451MAX =.889E+07ELEM=301单元剪力图:单元弯矩图:1XYZ-116.714-103.746-90.778-77.809-64.841-51.873-38.905-25.936-12.968-.159E-08JUN 17 201209:26:37LINE STRESSSTEP=1SUB =1TIME=1IWANJU JWANJUMIN =-116.714ELEM=499MAX =-.159E-08ELEM=3131XYZ-70.687-54.967-39.247-23.527-7.8077.91323.63339.35355.07370.793JUN 17 201209:24:22LINE STRESSSTEP=1SUB =1TIME=1IJIANLI JJIANLIMIN =-70.687ELEM=500MAX =70.793ELEM=451ANSYS计算得到位移矢量云图:转角矢JUN 17 201209:16:02JUN 17 201209:17:37MNMXXY Zhoudesen .293E+07.506E+07.720E+07.934E+07.115E+08.136E+08.157E+08JUN 17 2012MNMXXY Zhoudesen.198E+07.297E+07.396E+07.495E+07.595E+07.694E+07JUN 17 2012第二主应力云图: 三主应力云图:MN MXXY Zhoudesen.086169.172339.258508.344678.430847.517016.603186JUN 17 201217:53:14MNMX XY Zhoudesen-.178E+08-.156E+08-.133E+08-.111E+08-.890E+07-.667E+07-.445E+07JUN 17 201217:53:40MNMXXY Zhoudesen .305E-04.609E-04.914E-04.122E-03.152E-03.183E-03.213E-03JUN 17 201217:54:48MNMXXY Zhoudesen.139E-04.241E-04.343E-04.445E-04.546E-04.648E-04.750E-04JUN 17 201217:55:48合力大小的列表: ***** NODAL TOTAL SUMMATION *****LOAD STEP= 1 SUBSTEP= 1THE FOLLOWING FORCES ARE IN。

相关文档
最新文档