概率统计知识点汇总
统计概率所有知识点总结

统计概率所有知识点总结一、基本概率论概率论是统计学中最基础的部分,它研究的是随机事件的可能性。
随机事件是不确定的事件,而概率就是描述这种不确定性的量。
在概率论中,经常用到的概念包括事件、概率、样本空间等。
事件是指可能发生或者不发生的事物,而概率则是衡量事件发生可能性的大小。
样本空间是所有可能结果的集合,它包括了所有可能的事件。
二、条件概率条件概率是指在已知某些信息的情况下,另一个事件发生的概率。
条件概率的计算方法通常使用乘法法则。
条件概率在许多领域中都有着广泛的应用,比如医学诊断、市场营销、风险管理等。
三、独立性在概率论中,独立性是一个非常重要的概念。
两个事件如果是独立的,那么它们的发生不会互相影响。
独立性的概念在统计推断中有着广泛的应用,比如在抽样调查中,我们通常要求样本之间是独立的,以保证统计推断的准确性。
四、随机变量随机变量是统计学中的一个重要概念,它是对随机事件的量化描述。
随机变量可以是离散的,也可以是连续的。
对于离散的随机变量,我们通常关心的是它的概率分布;而对于连续的随机变量,我们通常关心的是它的密度函数。
五、概率分布概率分布是描述随机变量取值可能性的函数。
常见的概率分布包括均匀分布、正态分布、泊松分布、指数分布等。
概率分布在统计学中有着广泛的应用,比如在假设检验、参数估计等问题中。
六、抽样分布抽样分布是指统计量在重复抽样过程中的概率分布。
常见的抽样分布包括t 分布、F分布、卡方分布等。
抽样分布在统计推断中有着重要的作用,它可以帮助我们理解样本统计量的性质,从而进行参数估计和假设检验。
七、统计推断统计推断是统计学中一个重要的领域,它研究的是如何通过样本数据对总体特征进行推断。
统计推断通常包括参数估计和假设检验两个部分。
参数估计是指在已知总体分布的情况下,通过样本数据估计总体参数的值;而假设检验是指在总体参数未知的情况下,通过样本数据来对总体特征进行检验。
统计推断在医学、经济学、社会学等领域中有着广泛的应用。
概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
统计概率知识点归纳总结大全

统计概率知识点归纳总结大全1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归.考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =nm ;等可能事件概率的计算步骤:(1) 计算一次试验的基本事件总数n ;(2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n=求值;(4) 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值ix (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:ξ1… k… nPn n q p C 00111-n n q p C…k n k kn q p C -q p C n n n称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生.随机变量ξ的概率分布为:ξ1x2x… i x… PP 1P 2…i P…ξ1 2 3… k… Ppqp2q p…1k q p -…考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2pq 其中q=1-p.考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 (1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D . (3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.(4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.(1)若2~(,)N ξμσ,则~(0,1)N ξμησ-= ;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y +=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.。
概率和统计的基本概念知识点总结

概率和统计的基本概念知识点总结概率和统计是数学中的两个重要分支,被广泛应用于各个领域,包括自然科学、社会科学和工程学等。
本文将对概率和统计的基本概念进行总结和阐述,并提供一些实际应用案例。
1. 概率的基本概念概率是描述事件发生可能性的数值,通常用一个介于0和1之间的数表示。
概率的计算可以根据事件的性质和概率空间来进行。
1.1 事件与样本空间事件是指在一次试验中可能发生的一种或几种结果。
样本空间是指试验的所有可能结果的集合。
事件是样本空间的子集。
1.2 随机试验与概率空间随机试验是指具有以下特点的实验:可以在相同的条件下重复进行,并且每次试验的结果无法提前确定。
概率空间包括样本空间和概率函数。
1.3 概率函数概率函数是一个将样本空间的事件映射到实数区间[0,1]的函数。
它满足以下条件:对于任意样本空间的事件A,概率函数P(A)具有非负性、规范性和可列可加性。
2. 统计学的基本概念统计学是研究收集、整理、分析和解释数据的方法和技术的学科。
统计学分为描述统计和推断统计两个方面。
2.1 描述统计描述统计是用图表、统计量等方法对数据进行总结和描述的过程。
常用的描述统计方法包括平均数、中位数、众数、方差、标准差等。
2.2 推断统计推断统计是通过对样本数据进行分析,得出关于总体的结论或推断的过程。
推断统计方法包括假设检验、置信区间估计等。
3. 概率与统计的应用案例概率和统计的理论在实际生活和科学研究中有着广泛的应用。
以下是几个典型的案例:3.1 风险评估概率与统计能够用于评估风险和制定保险政策。
根据历史统计数据和概率模型,可以估计某种风险发生的可能性,并制定相应的保险费率。
3.2 质量控制概率与统计可以用于质量控制中的过程监控和产品检验。
通过收集数据并进行统计分析,可以判断生产过程是否处于控制状态,以及产品是否符合质量标准。
3.3 经济预测概率与统计可以应用于经济领域的预测和决策。
通过对历史数据进行分析,可以建立经济模型并做出相应的预测,帮助政府和企业做出合理决策。
概率统计知识点

一.随机事件和概率1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。
设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A =2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式P(A-B)=P(A)-P(AB)当B ⊂ A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(4)全概公式设事件B 1, B 2,Λ , B n 满足1°B 1, B 2,Λ , B n两两互不相容,P (B i ) > 0(i = 1,2,Λ , n ) ,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。
概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。
样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。
2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。
基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。
3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。
4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。
二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。
2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。
3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。
三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。
2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。
3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。
四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。
统计概率知识点总结公式

统计概率知识点总结公式统计概率是统计学中的一个重要分支,用来描述和分析随机现象和随机变量的概率分布规律。
在实际应用中,概率可以用来评估风险、预测未来、制定决策等方面。
本文将对统计概率的基本概念、常见分布、概率的性质以及相关公式进行总结。
一、基本概念1.1 随机变量随机变量是指在一次试验中所能观察到的结果。
随机变量可以是离散型的,比如扔一枚硬币得到正反面,也可以是连续型的,比如测量一群学生的身高。
1.2 概率分布概率分布是描述随机变量的取值和概率之间的关系的数学模型。
离散型随机变量的概率分布可以用概率质量函数(PMF)描述,连续型随机变量的概率分布可以用概率密度函数(PDF)描述。
1.3 期望随机变量的期望是指这个随机变量所有可能取值的加权平均值。
对于离散型随机变量,期望可以用下面的公式计算:E(X) = Σx * P(x)对于连续型随机变量,期望可以用下面的公式计算:E(X) = ∫x * f(x) dx1.4 方差方差是衡量随机变量波动性的指标。
对于离散型随机变量,方差可以用下面的公式计算:Va r(X) = Σ(x - μ)² * P(x)对于连续型随机变量,方差可以用下面的公式计算:Var(X) = ∫(x - μ)² * f(x) dx1.5 协方差随机变量X和Y的协方差表示它们之间的线性关系。
协方差可以用下面的公式计算:Cov(X,Y) = E((X - μX) * (Y - μY))1.6 相关系数相关系数是协方差的标准化形式,用来衡量两个随机变量之间的线性关系程度。
相关系数的计算公式如下:ρ(X,Y) = Cov(X,Y) / (√Var(X) * √Var(Y))二、常见分布2.1 二项分布二项分布描述了进行n次独立的重复试验,每次试验成功的概率为p,求得成功次数的概率分布。
二项分布的PMF如下:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,C(n,k)表示组合数。
概率与统计知识点总结

概率与统计知识点总结概率与统计是数学中的重要分支,广泛应用于各个领域。
它们是研究随机现象的规律性和统计规律的数学方法。
本文将对概率与统计的基础知识点进行总结,并介绍其应用领域。
一、概率1. 概率的基本概念概率是事件发生的可能性大小的度量。
其中,随机试验是指具有不确定性的实验,样本空间是指该实验的所有可能结果的集合,事件是样本空间的子集。
2. 概率的计算规则概率的计算通常使用频率来估计,频率是指在大量重复试验中某一事件发生的次数与总试验次数之比。
根据频率计算概率的规则有加法规则和乘法规则。
3. 条件概率与独立事件条件概率是指事件A在事件B发生条件下发生的概率,表示为P(A|B)。
独立事件是指两个事件互不影响,其概率的乘积等于各自概率的积。
4. 事件的组合与排列组合是指从n个不同元素中取出m个元素(m≤n)的方式数,用C(n,m)表示。
排列是指从n个不同元素中按一定顺序取出m个元素(m≤n)的方式数,用P(n,m)表示。
二、统计1. 统计的基本概念统计是指通过收集、整理和分析数据来描述和推断总体的方法。
其中,总体是指研究对象的全体,样本是从总体中抽取的一部分。
2. 数据的表示与整理数据可以使用表格、图表等形式进行表示。
常用的图表有条形图、饼图、折线图等。
数据的整理包括频数分布、频率分布等。
3. 统计指标统计指标是对数据进行度量和描述的工具,常用的统计指标有均值、中位数、众数、标准差等。
均值是指一组数据的算术平均值,中位数是指一组数据中居于中间位置的数值,众数是指一组数据中出现频次最高的数值。
4. 抽样与推断抽样是从总体中随机抽取样本的方法。
通过对样本的分析,可以对总体进行推断。
常用的推断方法有参数估计和假设检验。
三、概率与统计的应用领域1. 自然科学概率与统计在物理学、化学、生物学等自然科学中有广泛应用。
例如,在物理学中,概率与统计可以用来描述微粒的运动规律;在化学中,可以用来研究物质反应的速率与产率;在生物学中,可以用来研究生物种群的数量与分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计知识点汇总概率统计知识点汇总1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m i种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N = m+m F m 种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m i种不同的方法,完成第二步有m2种不同的方法,,完成第n步有m n种不同的方法,那么完成这件事情共有N = m x m x^x m种不同的方法.3•两个原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数•它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.4.排列与排列数公式 (1) 排列与排列数所有不同、 排列的个数(2) 排列数公式A m = n (n — 1)( n — 2)…(n —计 1)=⑶排列数的性质①A n = n !; ②0!= 1. 5 •组合与组合数公式(1) 组合与组合数合成一组闽 所有不同 >人 > I 合I 组合的个数按照一定的顺序排成一列n !n —(2)组合数公式c m=常n n —1 n —2 …n —m+ 1 m!n!m! n —m !'(3)组合数的性质①C n = 1 ;②c m=C n ;③c m+c m 1= c n+1.6 •排列与组合问题的识别方法7.二项式定理⑴定理:(a+ b)n= C n a n+ C n a n_1b + ••• + C n a n- k b k+… +C n b n(n € N*).(2)通项:第k + 1 项为:T k +1 = C n a n" k b k.(3)二项式系数:二项展开式中各项的二项式系数为:c n* = 0,1,2,…,n).8.二项式系数的性质/对称性一与首末等距的两个二项式系数相等,即增减性一当O 号1时,二项式系数是递减的9 •概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事 件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A)=:为事件A出现的频率.(2)对于给定的随机事件 A ,在相同条件下,随着 试验次数的增加,事件 A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来 刻画随机事件A 发生的可能性大小,并把这个常 数称为随机事件A 的概率,记作P(A).的二项式系数最大 当/I 为奇数时匚.的二项式系数相等且星大与聂大值 ------- ——. F 当伪偶数时,10•事件的关系与运算11.理解事件中常见词语的含义:(1)A, B中至少有一个发生的事件为A U B;(2)A, B都发生的事件为AB ;(3)A, B都不发生的事件为AB ;(4)A, B恰有一个发生的事件为AB U AB;(5) A ,B至多一个发生的事件为A B U AB U AB.12.概率的几个基本性质(1)概率的取值范围:0 < P(A) < 1.(2)必然事件的概率:P(E) = 1.(3)不可能事件的概率:P(F) = 0.(4)概率的加法公式:如果事件A与事件B互斥,则P(A U B) = P(A + P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)= 1 —P(B) •13•互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.14 •基本事件的特点(1)任意两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.15.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验中所有可能出现的基本事件只有有限个.②每个基本事件出现的可能性相等.(2 )古典概型的概率公式:P(A)=A包含的基本事件的个数基本事件的总数.16•几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2 )几何概型的概率公式:P(A)=构成事件A的区域长度面积或体积试验的所构成的区域长度面积或体积.仃.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用P AB 符号P( B A)来表示,其公式为P(B|A) = p A = n AB(2)条件概率具有的性质:①OW P(B|A) < 1;②如果B和C是两个互斥事件,则P(B U C|A)=P(B|A) + P(C|A).18.相互独立事件(1)对于事件A、B,若A的发生与B的发生互不影响,则称A B是相互独立事件.⑵若A与B相互独立,则P(B|A) = P(B),P(AB) = P(B|A)P(A) = P(A)P(B).⑶若A与B相互独立,则A与6,~A与B,~A与6也都相互独立.⑷若P(AB)= P(A)P(B),则A与B相互独立.19.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X,Y, E n…表示•所有取值可以一一列出的随机变量,称为离散型随机变量.20.离散型随机变量的分布列及其性质(1)一般地,若离散型随机变量X可能取的不同值为X1,X2,…,X i,…,X n,X取每一个值X i(i =1,2,…,n)的概率P(X = x i) = p i,则表称为离散型随机变量X的概率分布列.(2)离散型随机变量的分布列的性质:n①p >0(i = 1,2,…,n);②篙p = 1.21.常见离散型随机变量的分布列(1)两点分布:若随机变量X服从两点分布,则其分布列为其中p= P(X= 1)称为成功概率.(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X = k}发生的概率为P(Xk n—kC M C N —M ,, r ■■=k)= n, k= 0,1,2, •…m,其中m= min{MC Nn},且n < N, M < N, n , M , N€ N*,称分布列为超几何分布列.(3)二项分布①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.②在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)= C n p k(i —p)n「k(k= 0,1,2,…,n),此时称随机变量X服从二项分布,记为X〜B(n ,p),并称p为成功概率.22.离散型随机变量的均值与方差若离散型随机变量X的分布列为<1>均值:称E(X) = X i p i + X2p2 ---------- F X i p i H - F X n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.<2>方差:称D(X)=艺(X i —E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根- D X为随机变量X 的标准差.<3>均值与方差的性质1E aX+ b = _______(a, b为常数).2___________ DaX+ b = ___________ <4>两点分布与二项分布的均值、方差23.正态曲线的特点(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x = [1对称;1(3)曲线在x =卩处达到峰值 &(4)曲线与x轴之间的面积为1;(5)当b—定时,曲线随着卩的变化而沿x轴平移;(6)当卩一定时,曲线的形状由b确定.b越小,曲线越"瘦高",表示总体的分布越集中;b越大,曲线越“矮胖”,表示总体的分布越分散.(7)正态分布的三个常用数据(不需记忆)①P( a— a<X< 卩+ b= 0.682 6;②P( a— 2 o< X w a+ 2 b = 0.954 4;③P( a— 3o<Xw a+ 3b = 0.997 4.24.简单随机抽样(1)定般地,设个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n w N),且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样.(2)常用方法:抽签法和随机数表法.25.系统抽样(1)步骤:①先将总体的N个个体编号;②根据样本容量n,当N是整数时,取分段间隔kN=n ;③在第i段用简单随机抽样确定第一个个体编号I(I < k);④按照一定的规则抽取样本.(2)适用范围:适用于总体中的个体数较多时.26.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.⑵适用范围:适用于总体由差异比较明显的几个部分组成时.27 •三种抽样方法的比较28 •作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差)・(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.29.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. ⑵总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.30•茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指_________________ 的一列数,叶是从茎的旁边生长出来的数.31.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数.这n 个数的平均数.⑷标准差与方差:设一组数据 X i , X 2, X 3,…,Xn 的平均数为X ,则这组数据标 准 差为S、、 1 ——— ——方差为 S 2= n ((X 1-X )2+(X 2 — X )2+・・・+ (X n — X )2]32 •变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数 关系,另一类是相关关系;与函数关系不同,相 关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的 区域内,两个变量的这种相关关系称为正相关, 点分布在左上角到右下角的区域内,两个变量的 相关关系为负相关.33 •两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分⑶平均数:把a i + a 2 +…+ a n称为a i , a 2,…,a nJ X i - X 2+ X 2- X2+・・・+2X n 一 X ]布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.⑵回归方程为』b x + a ,其中,a = y —bx .X{= J⑶通过求Q= (y i —bx i —a)2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r|大于0.75时, 认为两个变量有很强的线性相关性.34 •独立性检验假设有两个分类变量X 和Y ,它们的取值分别为 {x i , X 2}和{y i ,泌,其样本频数列联表(称为2X 2列联表)为:d 为样本容量).2 n ad — beK 2 = a + b a + e b +d c +d (其中 n = a + b + e +。