高一上册数学必修一测试卷
高一必修一考试卷数学

高一必修一考试卷数学高一必修一数学考试卷一、选择题(每题3分,共30分)1. 函数\( f(x) = 2x^2 - 3x + 1 \)的对称轴方程是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = \frac{3}{4} \)D. \( x = 0 \)2. 若\( a \),\( b \),\( c \)是三角形的三边长,且满足\( a^2 + b^2 = c^2 \),则三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形3. 已知\( \sin \alpha = \frac{3}{5} \),\( \alpha \)为锐角,求\( \cos \alpha \)的值:A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{4} \)D. \( -\frac{3}{4} \)4. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \):A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)5. 已知\( x \),\( y \)满足约束条件\( \begin{cases} x + y\leq 3 \\ x - y \geq 0 \end{cases} \),目标函数\( Z = 2x + y \)的最大值是:A. 4B. 5C. 6D. 76. 函数\( f(x) = x^3 - 3x \)的导数是:A. \( 3x^2 - 3 \)B. \( x^2 - 3 \)C. \( 3x^2 + 3 \)D. \( x^3 - 3 \)7. 已知等差数列\( \{a_n\} \)的首项为\( a_1 = 3 \),公差为\( d = 2 \),求第5项:A. 11B. 13C. 15D. 178. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 29. 已知\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),\( a >0 \),\( b > 0 \),求\( a + b \)的值:A. \( \frac{6}{5} \)B. \( \frac{5}{6} \)C. \( \frac{7}{5} \)D. \( \frac{6}{7} \)10. 函数\( y = x^2 \)在点\( (1, 1) \)处的切线斜率是:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 若\( \cos \theta = \frac{\sqrt{3}}{2} \),则\( \sin\theta \)的值为________。
高一数学必修一试题含答案

高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。
高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。
高一上学期数学必修1测试题(很好的一套高中数学必修一试题)绝对经典

高一上学期数学必修1测试题一、选择题: 本卷共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 ( ) A. {}2 B. {}3 C. {}432,,D. {}4321,0,,, 2.设0.3222,0.3,log 0.3a b c ===,则,,a b c 的大小关系是 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<3、设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是( )4.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,35、与函数y x =有相同图象的一个函数是( )A .2x y =B . 2)(x y = C . xx y 2= D .)1,0(log ≠>=a a a y x a 6.设函数()log (0,1)a f x x a a =>≠,若122010()8f x x x =,则2212()()f x f x ++22010()f x +的值等于A .4B .8C .16D .2log 8a7.下列图像表示的函数能用二分法求零点的是( )xy123123 B.xy123123 C.y123123xy123123o1y xxoy xoy xoyA B C D8.给定函数①12y x =,②12log (1)y x =+,③|2|2x x y -=,④xx y 1+=,其中在区间(0,1)上单调递减的函数序号是 ( )A .①③B .②③C .②④D .①④9.设f (x )是R 上的偶函数, 且在[)∞+,0上递增, 若f (21)=0, 0)(log 41<x f ,那么x 的取值范围是 ( )A .x >2或21<x <1 B .21<x <2 C .21<x <1 D .x >2 10.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是A .(0,1)B .(1,2)C .(0,2)D .∞[2,+)二、填空题:(本大题共5小题,每小题5分,共25分。
2023-2024学年高一上数学必修一第1章综合测试卷(附答案解析)

2023-2024学年高一上数学必修一第1章综合测试卷
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={-1,0,1,2},集合B={y|y=2x-3,x∈A},则A∩B=(B)
A.{-1,0,1}B.{-1,1}
C.{-1,1,2}D.{0,1,2}
解析:由题可得集合B={-5,-3,-1,1},所以A∩B={-1,1},故选B.
2.命题“对任意x∈R,都有x2≥0”的否定为(D)
A.对任意x∈R,都有x2≥0B.不存在x∈R,使得x2<0
C.存在x∈R,使得x2≥0D.存在x∈R,使得x2<0
3.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD 为菱形”是“AC⊥BD”的(A)
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
解析:若四边形ABCD为菱形,则菱形的对角线互相垂直,即“四边形ABCD为菱形”⇒“AC⊥BD”;但是“AC⊥BD”推不出“四边形ABCD为菱形”,例如对角线垂直的等腰梯形.所以“四边形ABCD 为菱形”是“AC⊥BD”的充分不必要条件,故选A.
4.设集合U={1,2,3,4,5,6},M={1,2,3},N={3,4,5},则(∁U M)∩(∁U N)=(D)
A.{1,2,3,4,5}B.{1,2,4,5,6}
C.{1,2,6}D.{6}
解析:由题意∁U M={4,5,6},∁U N={1,2,6},则(∁U M)∩(∁U N)=
第1页共9页。
高一数学必修一第一章综合测试卷

高一数学必修一第一章综合测试卷一、选择题已知函数f(x) = √(2x - 1) 的定义域是 ( )A. ( -∞, 1/2]B. [1/2, +∞)C. (0, +∞)D. (-∞, 0]答案:B已知集合 A 到 B 的映射 f:x → y = 2x + 1,那么集合 A 中元素 2 在 B 中对应的元素是 ( )A. 2B. 6C. 5D. 8答案:C设集合A = {x | 1 ≤ x ≤ 2},B = {x | x ≤ a}。
若 A ⊆ B,则 a 的取值范围是 ( )A. a < 2B. a ≤ 1C. a ≥ 2D. a ≤ 2答案:C函数 y = (k * 2)^x - 1 在实数集上是减函数,则 k 的取值范围是 ( )A. k < -2B. k ≤ -2C. k > -2D. k ≥ -2答案:B全集 U = {0, 1, 3, 5, 6, 8},集合 A = {1, 5, 8},B = {2},则∁_U(A ∩ B) = ( )A. {2}B. ∅C. {0, 3, 6}D. {0, 1, 3, 5, 6, 8}答案:B(注:此处∁_U 表示全集 U 的补集,A ∩ B 表示集合 A 与 B 的交集)二、填空题已知函数 f(x) = x^2 - 2x + 3 在区间 [0, a] 上的最小值为 2,则 a 的取值范围是 _______。
答案:[1, +∞)(注:因为 f(x) = (x - 1)^2 + 2,在 x = 1 时取得最小值 2,所以 a ≥ 1)设集合 A = {x | -3 ≤ x ≤ -1},B = {x | 1 ≤ x ≤ 2, x ∈ Z},则 A ∪B = _______。
答案:{-3, -2, -1, 1, 2}若函数f(x) = { x + 1, x ≤ 0 ; 2^x, x > 0 } ,则 f(f(-2)) = _______。
高一数学必修一测试题

高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。
A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。
A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。
2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。
三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。
求直线 l1 的解析式,并画出其图像。
2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。
3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。
四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。
证明:BD = CD。
2. 若 a + b = b + c,证明 a = c。
答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。
2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。
2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx
在
1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )
(完整word版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1。
已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 A. {}2 B. {}3 C. {}432,, D. {}43210,,,。
2。
下列各组两个集合A 和B,表示同一集合的是A. A={}π,B={}14159.3 B. A={}3,2,B={})32(, C. A={}π,3,1,B={}3,1,-π D 。
A={}N x x x ∈≤<-,11,B={}1 3。
函数2x y -=的单调递增区间为A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 4。
下列函数是偶函数的是A. x y =B. 322-=x y C 。
21-=xy D. ]1,0[,2∈=x x y5.已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =A 。
3B ,2C 。
1 D.0 6.当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是 .A B C D 7.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是A 。
(-2,6)B 。
[—2,6]C 。
{}6,2- D.()()∞+-∞-.62, 8. 若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )ABC 、14D 、129.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是A b c a <<. B. c b a << C. c a b << D.a c b << 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上册数学必修1测试题
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项是符合题目要求的)
1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数
2.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则
=B ∩B =∅
3.设A ={x ∈Z||x |≤2},B ={y |y =x 2
+1,x ∈A },则B 的元素个数是
4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所有实数a 的取值范围为
A.(1,9)
B.[1,9]
C.[6,9)
D.(6,9]
5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为
C. 272
6.函数f (x )=3x -1
2-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N
的元素是
B.-2
C.-1
D.-3
7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 -2 +2 +3 -3 8.下列各组函数中,表示同一函数的是 (x )=1,g (x )=x
(x )=x +2,g (x )=x 2-4
x -2
(x )=|x |,g (x )=⎩⎨
⎧x x ≥0-x x <0
(x )=x ,g (x )=(x )2
9. f (x )=⎩⎪⎨⎪⎧x 2
x >0
π x =00 x <0
,则f {f [f (-3)]}等于
B.π
C.π
2
10.已知2lg(x -2y )=lg x +lg y ,则x y
的值为
或4
D. 1
4
或4 11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则
≥1 >1 <a ≤1 <1
12.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是
A.(0,1
2 )
B.(0,⎥⎦
⎤
21
C.( 1
2
,+∞)
D.(0,+∞)
二、填空题(本大题共6小题,每小题4分)
13.若不等式x 2
+ax +a -2>0的解集为R ,则a 可取值的集合为__________.
14.函数y =x 2
+x +1 的定义域是______,值域为__ ____.
15.若不等式3ax x 22->(13
)x +1
对一切实数x 恒成立,则实数a 的取值范围为___ ___.
16. f (x )=]()
⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =1
2x +1
的值域是__________.
18.方程log 2(2-2x
)+x +99=0的两个解的和是______.
三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)
19.全集U =R ,A ={x ||x |≥1},B ={x |x 2
-2x -3>0},求(C U A )∩(C U B ).
20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.
21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少
22.已知函数f (x )=log 4
12
x -log 4
1x +5,x ∈[2,4],求f (x )的最大值及最小值.
23.已知函数f (x )=a
a 2
-2
(a x -a -x
)(a >0且a ≠1)是R 上的增函数,求a 的取值范围.
高一数学综合训练(一)答案
一、选择题
二、填空题
13. ∅ 14. R [
32,+∞) 15. -12 < a < 32
16. (-2,-1] 17. (0,1) 18. -99
三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)
19.全集U =R ,A ={x ||x |≥1},B ={x |x 2
-2x -3>0},求(C U A )∩(C U B ).
(C U A )∩(C U B )={x |-1<x <1}
20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集. 考查函数对应法则及单调性的应用. (1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2)
又∵f (2)=1 ∴f (8)=3
(2)【解】 不等式化为f (x )>f (x -2)+3
∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数
∴⎩⎨⎧->>-)
2(80
)2(8x x x 解得2<x <167
21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的
月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少 考查函数的应用及分析解决实际问题能力.
【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-3000
50 =12,所
以这时租出了88辆.
(2)设每辆车的月租金定为x 元,则公司月收益为
f (x )=(100-x -300050
)(x -150)-x -3000
50
×50
整理得:f (x )=-x 2
50 +162x -2100=-150
(x -4050)2
+307050
∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元
22.已知函数f (x )=log 4
12
x -log 4
1x +5,x ∈[2,4],求f (x )的最大值及最小值.
考查函数最值及对数函数性质.
【解】 令t =log 4
1x ∵x ∈[2,4],t =log 4
1x 在定义域递减有
log 4
14<log 4
1x <log 4
12, ∴t ∈[-1,-1
2
]
∴f (t )=t 2
-t +5=(t -12 )2+194 ,t ∈[-1,-12 ]
∴当t =-12 时,f (x )取最小值 23
4
当t =-1时,f (x )取最大值7. 23.已知函数f (x )=
a
a 2
-2
(a x -a -x
)(a >0且a ≠1)是R 上的增函数,求a 的取值范围.
考查指数函数性质.
【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)= a
a 2
-2
(a 2x -a 2x --a 1x +a 1x -) =
a
a 2
-2 (a 2x -a 1x )(1+2
11
x x a a ⋅) 由于a >0,且a ≠1,∴1+2
11
x x a a >0
∵f (x )为增函数,则(a 2
-2)( a 2x -a 1x )>0
于是有⎪⎩
⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-00
200212
1222x x x x a a a a a a 或, 解得a > 2 或0<a <1
. . .。