高一数学必修一检测(完整资料)
高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修1测试卷(含详细答案)

则 f ( 0 ) f (x ) f ( x )
f ( x)
f ( x)
(0)
,, 3 分
所以 f ( x ) 为 R 上的奇函数
,, 6 分
(3 )令 x y 1
则 f (1 1) f (2) f (1) f (1) 2
,, 8 分
f ( 2 a ) f (a 1 ) 2 f ( a2 ) f a( 1 ) f
( D ) { x x 0}
1 (C ) y
2
x
(D) y
2
( x)
2
x
3. 集合 A {( x, y ) y x} ,集合 B {( x, y )
2x y 1 } 之间的关系是
x 4y 5
( A) A B
(B) B A
(C ) A B
(D ) B A
4. 已知函数 f ( x ) log 2 x 1 , 若 f ( a ) 1, 则 a
取值范围 .
22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分) ( A 类) 定义在 R 上的函数 y f ( x ) ,对任意的 a, b R ,满足
f ( a b) f (a ) f (b ) ,当 x 0 时,有 f ( x ) 1,其中 f (1) 2 .
( 1) 求 f ( 0 ) 、 f ( 1) 的值; ( 2) 证明 y f ( x ) 在 (0, ) 上是增函数;
10. 已知 f ( x)
2
1 1
x x2
,则
f
( x ) 不.满.足. 的关系是
( A) f ( x) f ( x )
1 (C ) f ( )
x
f (x)
(完整版)高一数学必修一测试题及答案

高中数学必修1检测题一、选择题: 1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x 与()g x ;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lgyx a y x 则 ( )A .a 3B .a 23 C .aD .2a 8、 若定义运算b a ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A[)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x=D、2log (45)y x x =-+11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
最新高中数学必修1综合测试卷(三套+含答案)教学教材

1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则
,
,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一试题(带答案)

高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
(完整版)高一数学必修1试题附答案详解

高一数学必修1试题附答案详解、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有项是符合题目要求的)1. 已知全集1 = (0 , 1, 2},且满足 C I (AU B)= {2}的A 、B 共有组数 A.5 B.7C.92.如果集合 A = (x|x= 2k 兀 + 兀,k€ Z} , B = (x|x= 4k 兀 + 兀,k€ Z},则A .A MB B E AC .A =B 3. 设 A=(x£ Z||x|< 2} , B=(y|y = x 2 + 1, x€ A},贝U B 的元素个数是 A.5B.4C.34若集合 P= (x|3<x< 22},非空集合 Q= (x|2a+1 < x<3a-5},则能使 Q 有实数a 的取值范围为 A.(1 , 9)B. [1 , 9]C. [6, 9)5.已知集合 A = B = R, x€ A, y€ B, f:x^y= ax + b,若4和10的原象分别对应是6和9,则19在f 作用下的象为一…3x — 1.. .................. .................. .— ..6.函数f(x)= -一 (x€ R 且 对2)的值域为集合 N ,则集合(2, 一 2,— 1, — 3}中不属于 N 的兀2— x 素是A.18B.3027C. 7D.28D.11D.A n B=D.2(PA Q)成立的所D.(6 , 9] A.2 B. - 2 C. - 1 D. — 3 7. 已知f(x)是一次函数,且 2f ⑵一3f(1) = 5, A.3x-2B.3x+ 28. 下列各组函数中,表示同一函数的是 A. f(x) = 1, g(x) = x 02f(0) — f(- 1) = 1,则f(x)的解析式为C.2x+ 3D.2x- 3c -、 ,c , 、 x 2—4B.f(x)= x + 2, g(x)=—— x —2x x>0C.f(x)= |x|, g(x)= 一 x xV 0 x 2 x> 09. f(x)= 兀 x= 0 ,则 f(f [f(— 3): }等于0 xv 0 A.0B.兀一,…x ,10. 已知 2lg(x — 2y)= lgx+lgy,则 y 的值为 A.1B.411. 设 x€ R,若 a<lg(|x- 3| + |x+ 7|)恒成立,则 A. a> 1B.a>1 12. 若定义在区间(一D.f(x)= x, g(x)=(山)2D.9D. 1 或 44D.a<1C.1 或 4C.0<av 11, 0)内的函数f(x) = log 2a (x+ 1)满足f(x)>0,则a 的取值范围是1 B.(0,-二、填空题(本大题共6小题,每小题13. 若不等式x2 + ax+ a- 2>0的解集为4分,共24分.把答案填在题中横线上R,则a可取值的集合为14. 函数y=《X + x+ 1的定义域是,值域为_^^^.15. ________________________________________________________________________ 若不等式3X2 2ax>(1 )x+1对一切实数x恒成立,则实数a的取值范围为___________________________33X 1 2x( 1 ,,16. f(x) = 3 (,,则f(x)值域为_.3 2 x 1,一,, 1 …-17. 函数y= 2^刁的值域是...............18. 方程log2(2 — 2x) + x+ 99= 0的两个解的和是.13 14 1516 17 18三、解答题(本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.全集U = R, A = (x||x|> 1}, B= (x|x2- 2x— 3 > 0},求(QjA)n (C U B).20. 已知f(x)是定义在(0, +8)上的增函数,且满足f(xy)= f(x) + f(y), f(2) = 1.(1)求证:f(8) = 3 (2)求不等式f(x)- f(x- 2)>3的解集.21. 某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元, 未租出的车每辆每月需要维护费50元.(1) 当每辆车的月租金定为3600元时,能租出多少辆车?(2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22. 已知函数f(x)= log i 2x- log 1 x+5, x£ [2, 4],求f(x)的最大值及最小值4 4.一… a 、,. 一................ . ..一..一一23. 已知函数f(x)= a^2 (a x—a x)(a>0且a乒1)是R上的增函数,求a的取值范围高一数学综合训练(一)答案-、选择题_ 3 1 313. 14. R : * +°°) 15. 一§ < a < 216. ( — 2, - 1] 17. (0, 1) 18. — 99三、解答题(本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤)19. 全集U = R, A = (x||x|> 1}, B= (x|x2- 2x- 3 > 0},求(C u A)n (C U B).(C u A)n (C u B)= {x|— 1v xv 1}20. 已知f(x)是定义在(0, +8)上的增函数,且满足f(xy)= f(x) + f(y), f(2) = 1.(1)求证:f(8) = 3 (2)求不等式f(x)- f(x- 2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8) = f(4 X 2)= f(4) + f(2) = f(2X 2) + f(2) = f(2) + f(2) + f(2) = 3f(2) 又.•f(2) = 1 ••• f(8) = 3(2)【解】不等式化为f(x)>f(x- 2)+3. • f(8) = 3••• f(x)>f(x- 2) + f(8) = f(8x- 16)f(x)是(0, +勺上的增函数8(x 2) 0“曰 c 16 •- 8( 2)解得2<x<^21. 某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1) 当每辆车的月租金定为3600元时,能租出多少辆车?(2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为x— 3000 x- 3000f(x)= (100 —50)(x— 150) —50 X 50整理得:f(x) = 一去 + 162x— 2100=—1 (x-4050)2 + 307050 50 50 .••当x= 4050 时,f(x)最大,最大值为f(4050) = 307050 元22. 已知函数f(x)= log 1 24考查函数最值及对数函数性质 .【解】令t= log 1 x x€ [2, 4], t = log 1 x在定义域递减有4 4 3600—3000 -50 =12,所x—log^x+5, x£ [2, 4],求f(x)的最大值及最小值. 4log 1 4<log 1 x<log 1 2,444• •f(t)=t2 —1+ 5= (t —2)2+149,任[—1,—2 : 1 23••当t=— 2时,f (x )取取小值— 当t=— 1时,f(x)取最大值7..一… a v -v .. 一 .............................. . ..一..一 一 23. 已知函数f(x)= a^2 (a a x )(a>0且a 乒1)是R 上的增函数,求 a 的取值范围考查指数函数性质. 【解】f(x )的定义域为则f(x2)- f(x 1) = 0^,2为 O x2 口 *x1 \(a — a — a +a )1由于 a>0,且 a 乒 1, . . 1 + —~— >0 •.•f(x)为增函数,贝U (a 2-2)( a x -a x 1 )>0…a 2 2 0 〜于是有或a x2 a x 1 0解得a> 2或0<a<11X I一 x 2是膏一5七\「1•.•te [— 1-2 :R,设 x 1、x 2 € R,且 x 1<x 2a 2 2 0a x2 a x 1 0x2_X1。
(完整版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1.已知全集{}{}{}()====N M C 。
N M U U 则3,2,2.1,0,4,3,2,1,0A. B. C. D. {}2{}3{}432。
{}43210。
2.下列各组两个集合A 和B,表示同一集合的是A.A=,B=B. A=,B={}π{}14159.3{}3,2{})32(。
C. A=,B=D. A=,B={}π,3,1{}3,1,-π{}N x x x ∈≤<-,11{}13. 函数的单调递增区间为2x y -=A . B . C .D .]0,(-∞),0[+∞),0(+∞),(+∞-∞4. 下列函数是偶函数的是A. B.C.D. x y =322-=x y 21-=xy ]1,0[,2∈=x x y 5.已知函数f(2) =()则。
x x x x x f ⎩⎨⎧>+-≤+=1,31,1A.3B,2C.1D.06.当时,在同一坐标系中,函数的图象是10<<a x y a y a xlog ==-与 A BCD7.如果二次函数有两个不同的零点,则m 的取值范围是)3(2+++=m mx x y A.(-2,6)B.[-2,6]C. D.{}6,2-()()∞+-∞-.62, 8. 若函数 在区间上的最大值是最小值的2倍,则的值为(()log (01)a f x x a =<<[],2a a a )A B C 、D 、14129.三个数之间的大小关系是3.0222,3.0log ,3.0===c b a A . B. C. D.b c a <<c b a <<c a b <<a c b <<10. 已知奇函数在时的图象如图所示,则不等式的解集为()f x 0x ≥()0xf x <A. B.(1,2)(2,1)--C. D.(2,1)(1,2)-- (1,1)-11.设,用二分法求方程内近似解的过程中得()833-+=x x f x()2,10833∈=-+x x x在则方程的根落在区间()()(),025.1,05.1,01<><f f f A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定12.计算机成本不断降低,若每隔三年计算机价格降低,则现在价格为8100元的计算机9年31后价格可降为A.2400元B.900元C.300元D.3600元二、填空题(每小题4分,共16分.)13.若幂函数y =的图象经过点(9,), 则f(25)的值是_________-()x f 1314. 函数的定义域是()()1log 143++--=x x xx f 15. 给出下列结论(1)2)2(44±=-(2)331log 12log 22-=21 (3) 函数y=2x-1, x [1,4]的反函数的定义域为[1,7 ]∈(4)函数y=的值域为(0,+)x12∞其中正确的命题序号为16. 定义运算 则函数的最大值为.()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩()12x f x =*三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤)17. (12分)已知集合,, 全集,求:{|240}A x x =-<{|05}B x x =<<U R =(Ⅰ);(Ⅱ).A B ()U C A B 18. 计算:(每小题6分,共12分)(1) 36231232⨯⨯19.(12分)已知函数,(Ⅰ) 证明在上是增函数;1()f x x x=+()f x [1,)+∞(Ⅱ) 求在上的最大值及最小值.()f x [1,4]20. 已知A 、B 两地相距150千米,某人开车以60千米/小时的速度从A 地到B 地,在B 地停留一小时后,再以50千米/小时的速度返回A 地.把汽车与A 地的距离y (千米)表示为时间t (小时)的函数(从A 地出发时开始),并画出函数图象. (14分).18lg 7lg 37lg 214lg )2(-+-21.(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.22.已知函数对一切实数都有成立,且()f x ,x y R ∈()()f x y f y +-=(21)x x y ++. (Ⅰ)求的值;(Ⅱ)求的解析式;(1)0f =(0)f ()f x (Ⅲ)已知,设:当时,不等式 恒成立;a R ∈P 102x <<()32f x x a +<+Q :当时,是单调函数。
人教版数学必修一综合测试(含答案)

人教版数学必修一一、单选题1.已知集合A ={x |x =2sin nπ3,n ∈N ∗},B ={x |x 2―2x ―3<0},则A ∩B =( )A .{―3,0,3}B .{0,3}C .{―3,0}D .{―1,0,3}2.函数f (x )=log 2(3―x )+1x ―1的定义域为( )A .[1,3]B .[1,3)C .[1,+∞)D .(1,3)3.函数 y =2x ―1的定义域为 (―∞,1)∪[2,5) , 则其值域是( ) A .(0,+∞)B .(―∞,2]C .(―∞,12)∪[2,+∞)D .(―∞,0)∪(12,2]4.函数f (x )=|x -2|·(x -4)的单调递减区间是( )A .[2,4]B .[2,3]C .[2,+∞)D .[3,+∞)5.已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且存在0≤x 1<x 2≤π,满足f(x 1)=f (x 2)=―45,则cos(x 2―x 1)=( )A .―35B .35C .45D .―456.函数 f (x )=3―x 2+4x +3 的单调递增区间为( )A .(―∞,2)B .(2,+∞)C .(―3,2)D .(2,7)7.已知函数f (x )={x 2+2x ,x⩽0,ln 1x ,x >0.若函数g (x )=f (x )―a |x |恰有三个零点,则实数a 的取值范围是( )A .(―2,―1e )∪[0,+∞)B .[―2,―1e ]∪(0,+∞)C .(―e ,0)∪[2,+∞)D .{―1e}∪[0,+∞)8.已知a =5log 56―log 29×lo g 32,b =log 56+log 3025,5b +12b =13c ,则( )A.c<b<a B.b<c<a C.a<c<b D.a<b<c二、多选题9.图中阴影部分用集合符号可以表示为( )A.∁U B∩(A∪C)B.∁U((A∩B)∪(B∩C))C.A∪(C∩∁U B)D.(A∩∁U B)∪(C∩∁U B)10.下列命题中正确的是( )A.函数y=1―sin2x的周期是πB.函数y=1―co s2x的图像关于直线x=π4对称C.函数y=2―sinx―cosx在[π4,π]上是减函数D.函数y=cos(2022x―π3)+3sin(2022x+π6)的最大值为1+311.已知抛物线C1:y=x2与抛物线C2:y=a x2+1―a(0<a<13)在第一象限交于M点,过M点的直线l 分别与C1,C2交于P,Q两点,且M为线段PQ的中点,O为坐标原点,则( )A.|PQ|>2|OP|B.|PQ|<|OQ|C.tan∠POQ+2>0D.tan∠POQ+1<012.定义在(―1,1)上的函数f(x)满足f(x)―f(y)=f(x―y1―xy),且当x∈(―1,0)时,f(x)<0,则有( )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)三、填空题13.(lg5)2+lg2×lg50= .14.不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是 .15.已知函数f(x)=3sinωx+cosωx(ω>0),若函数f(x)在区间(π3,π2)内没有零点,则实数ω的最大值是 .16.设正数x,y满足a≥x+yx+y恒成立,则a的最小值是 .四、解答题17.计算下列各式的值:(1)(14)―1+log23;(2)2723+(5)2―1614+(e―1)0.18.已知方程ax2+x+b=0.(1)若方程的解集为{1},求实数a,b的值;(2)若方程的解集为{1,3},求实数a,b的值.19.如图,在直角坐标系xOy中,角α的顶点是原点,始边与轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2),将角α的终边按照逆时针方向旋转π3,交单位圆于点B,记A(x1,y1),B(x2,y2)(1)若x1=13,求x2;(2)分别过A、B做x轴的垂线,垂足依次为C、D,记ΔAOC的面积为S1,ΔBOD的面积为S2,若S1=2S2,求角α的值.20.已知函数f(x)满足2f(x)+f(―x)=x+2x(x≠0).(1)求y=f(x)的解析式;(2)若对∀x1、x2∈(2,4)且x1≠x2,都有f(x2)―f(x1)x2―x1>kx2⋅x1(k∈R)成立,求实数k的取值范围.21.已知定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x <0时,f(x)>0且f(1)=―3.(1)求证:f(x)是奇函数;(2)解不等式f(2x―2)―f(x)≥―12.22.已知函数f(x)=2x+ab⋅2x+1是定义域为R的奇函数.(1)求函数f(x)的解析式;(2)若存在x∈[―2,2]使不等式f(m⋅4x)+f(1―2x+1)≥0成立,求m的最小值.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】A,D10.【答案】A,D11.【答案】A,D12.【答案】A,B,C13.【答案】114.【答案】(2,+∞)15.【答案】17316.【答案】217.【答案】(1)解:原式=(14)―1⋅(2―2)log23=4×3―2=49.(2)解:原式=33×23+5―24×14+1=32+5―2+1=13. 18.【答案】(1)解:若方程的解集为{1},则①若a=0,则1+b=0,解得a=0,b=﹣1;②若a≠0,则a+1+b=0且1﹣4ab=0,解得a=b=﹣12.综上所述,a=0,b=﹣1或a=b=﹣12(2)解:依题意得:1+3=﹣1a ,1×3= ba,解得a=﹣14,b=﹣3419.【答案】(1)解:由三角函数定义,得x1=cosα,x2=cos(α+π3).因为 α∈(π6,π2) , cos α=13 ,所以 sin α=1―cos 2α=223.所以 x 2=cos(α+π3)=12cos α―32sin α=1―266 .(2)解:依题意得 y 1=sin α , y 2=sin(α+π3) . 所以 S 1=12x 1y 1=12cos α·sin α=14sin2α ,S 2=12|x 2|y 2=12[―cos(α+π3)]·sin(α+π3)=―14sin(2α+2π3) .依题意 S 1=2S 2 得 sin2α=―2sin(2α+2π3) ,即 sin2α=―2[sin2αcos 2π3+cos2αsin 2π3]=sin2α―3cos2α ,整理得 cos2α=0 .因为 π6<α<π2 ,所以 π3<2α<π ,所以 2α=π2 ,即 α=π4 .20.【答案】(1)解:由条件2f (x )+f (―x )=x +2x,可知函数f (x )的定义域为{x |x ≠0},所以,2f (―x )+f (x )=―x ―2x,可得{2f (x )+f (―x )=x +2x2f (―x )+f (x )=―x ―2x,解得f (x )=x +2x(x ≠0).(2)解:对∀x 1、x 2∈(2,4),x 1≠x 2,都有f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1(k ∈R ),不妨设2<x 1<x 2<4,由f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1,则f (x 2)―f (x 1)>k (x 2―x 1)x 2⋅x 1=k x 1―k x 2,可得f (x 2)+k x 2>f (x 1)+k x 1,也即可得函数g (x )=f (x )+k x =x +k +2x 在区间(2,4)上递增;g ′(x )=1―k +2x2≥0对任意的x ∈(2,4)恒成立,即k +2≤x 2,当x ∈(2,4)时,4<x 2<16,故k +2≤4,解得k ≤2.因此,实数k 的取值范围是(―∞,2].21.【答案】(1)证明:令 x =y =0 , f (0)=f (0)+f (0) ,∴ f (0)=0 ,令 y =―x , ∴ f (0)=f (―x )+f (x )=0∴f(x)=―f(―x).∴函数f(x)是奇函数.(2)解:设x1<x2,则x1―x2<0,∴f(x1)―f(x2)=f(x1)+f(―x2)=f(x1―x2)>0∴f(x)为R上减函数.∵f(2x―2)―f(x)=f(2x―2)+f(―x)=f(x―2)≥―12,―12=4f(1)=f(4).∴x―2≤4即x≤6.∴不等式f(2x―2)―f(x)≥―12的解集为{x|x≤6}.22.【答案】(1)解:因为函数f(x)是定义域为R的奇函数,可知f(0)=0, ∴a=-1,又f(―x)=―f(x),则2―x―1b⋅2―x+1=- 2x―1b⋅2x+1,∴1―2x b+2x =- 2x―1b⋅2x+1,∴b=1,∴f(x)=2x―12x+1(2)解:∵f(x)=2x―12x+1=1- 22x+1,所以f(x)在[―2,2]上单调递增;由f(m⋅4x)≥―f(1―2x+1)=f(2x+1―1)可得m⋅4x≥2x+1―1在[―2,2]有解分参得m≥2x+1―14x =2⋅12x―14x,设t=12x ,t∈[14,4], m≥―t2+2t=―(t―1)2+1,所以m≥―8,则m的最小值为―8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑数学必修一检测一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设全集为实数集R ,{}R x x x M ∈+≤=,21,{}4,3,2,1=N ,则=⋂N M C R A .{}4 B .{}4,3 C . {}4,3,2 D .{}4,3,2,1 2、设集合{}R x y y S x∈==,31,{}R x x y y T ∈-==,12,则T S ⋂为A .SB .TC .ΦD .R3、已知集合{}x y y x A ==),(,{}x y y x B ±==),(,则A 与B 的关系是A .B A B .A BC .A=BD .A B ⊆ 4、a=0是函数a x x f -=)(在区间 [0,+∞)上为增函数的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、已知44:≥-≤a a p 或,12:-≥a q ,若""q p 或是真命题,""q p 且是假命题, 则a 的取值范围是A .(-∞, -4]∪[4,+∞)B .[-12,-4]∪[4,+∞)C .(-∞,-12)∪(-4,4)D .[-12,+∞)6、设函数)(x f 定义在R 上,它的图像关于直线x=1对称,且当1≥x 时,13)(-=xx f ,则有A .)32()23()31(f f f <<B .)31()23()32(f f f <<C .)23()31()32(f f f <<D .)31()32()23(f f f <<7、二次函数6)1(32+-+=x a x y 在区间(-∞,1]上是减函数,则a 的取值范围是 A .1>aB .6≥aC .5-≤aD .5-<a8、设函数)(x f 在(1,+∞)上是减函数,则)(a f ,)2(a f ,)1(2+a f ,)1(2+a f 中最小的值是A .)(a fB .)2(a fC .)1(2+a f D .)1(2+a f 9、设{}4,2,1,0=A ,⎭⎬⎫⎩⎨⎧=8,6,2,1,0,21B ,下列对应法则能构成A 到B 的映射的是 A .1:3-→x x f B .2)1(:-→x x f C .12:-→x x f D .x x f 2:→10、已知)(x f y =的反函数是)(1x f y -=,若方程01)(=-+x x f 与01)(1=-+-x x f的实数解分别为α,β,则α+β=A .1B .2C .-1D .-211、设函数⎩⎨⎧≤++>=)0(,)0(,2)(2x c bx x x x f ,若)0()4(f f =-,2)2(-=-f 则关于x 的方程x x f =)(的解的个数是A .1B .2C .3D .4 12、)(x f 表示6+-x 和6422++-x x 中较小者,则)(x f 的最大值是A .0B .-1C .6D .32二、填空题:本大题共4小题,每小题4分,共16分。
把答案填在题中横线上。
13、已知函数xxx f +⋅-=121)(2009则)1(1-f的值等于14、命题:1"y 1-,1y "2<<<则若的逆否命题是 15、函数12)(22-=+-aax xx f 的定义域为R ,则a 的取值范围是16、)1(-=x f y 的定义域为[1,2],当21a 0<<时,)()()(a x f a x f x F ++-=的定义域是 .三、解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
17、(本小题满分12分) (1)计算313373329a a a a ⋅÷⋅--(2)关于x 的方程01032=+-k x x 有两个同号且不相等的实根,求实数k 的取值范围。
18、(本小题满分12分)设{}x x x R x A ≤-∈=22,⎭⎬⎫⎩⎨⎧-≤-∈=x x x x Rx B 11,{}02<++∈=b x ax R x C , 若Φ=⋂⋃C B A )(,R C B A =⋃⋃)(,求b a ,的值19、(本小题满分12分)有一批材料可以围成36m 的围墙,现用此材料围成一块矩形场地且中间用同样材料隔成两块矩形,试求所围矩形面积的最大值。
20、(本小题满分12分)(1) 证明:4)(x x f =在(-∞, +∞)上不具有单调性。
(2) 已知21)(++=x ax x g 在(-2, +∞)上是增函数,求a 的取值范围。
21、(本小题满分12分)设21)(⎪⎭⎫⎝⎛+=x x x f (x>0)(1)求)(x f 的反函数)(1x f-(2)若2≥x 时,不等式)()()1(1x a a x f x ->--恒成立,求实数a 的取值范围。
22、(本小题满分14分)设x x f 3)(=,且18)2(=+a f ,x axx g 43)(-=(R x ∈)(Ⅰ)求g (x )的解析式;(Ⅱ)讨论g (x )在[0,1]上的单调性并用定义证明;(Ⅲ)若方程g (x )-b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围。
参考答案一、选择题:本大题共12小题,每小题5分,共60分。
1.B2.A3.B4.A5.C6.A7.C8.C9. C 10.A 11.C 12.C 二、填空题:本大题共4小题,每小题4分,共16分。
13.0 14. 1,112≥-≤≥y y y 则或若 15.[0,1] 16.[a,1-a] 三、解答题:本大题共6小题,共74分。
17、(本小题满分12分) (1)解:原式=)(31321)37(21)23(312931⨯-⨯-⨯⨯⋅÷⋅aaaa -------------(2分)=613)67()63(69----+a- ------------(2分)=0a (∵0≠a )=1 ------------- (2分)(2)解:设01032=+-k x x 的根为1x ,2x 由1x +3102=x ⋅1x 32kx = ------------- (3分) 由条件⎪⎩⎪⎨⎧>>⨯-0334102k k 3250<<⇔k ------------- (3分)18、(本小题满分12分) 设,⎭⎬⎫⎩⎨⎧-≤-∈=x x x x Rx B 11,{}02<++∈=b x ax R x C ,若Φ=⋂⋃C B A )(,R C B A =⋃⋃)(,求b a ,解:{}{}031⋃≤≤=x x A -------------(3分) {}10<≤=x x B -------------(3分)∵Φ=⋂⋃C B A )( R C B A =⋃⋃)(∴{}30><=x x x C 或 -------------(3分) ∴0,3是方程02=++b x ax 的两根由韦达定理:⎪⎪⎪⎩⎪⎪⎪⎨⎧≠=⨯-=+030130a a b a -------------(2分)解得 31-=a , 0=b -------------(1分) 19、(本小题满分12分) 解:设宽为x m ,则长为m x )336(21-,记面积为S 2m -------------(4分) 则)120)(336(21<<-=x x x S ------------ (3分) 54)6(232+--=x -------------(3分)∴当x=6时,)(542max m S = -------------(2分)∴所围矩形面积的最大值为542m 20、(本小题满分12分)(1)证明:∵定义域为(-∞, +∞)取2,121==x x ,则21x x < 又∵8)2(,1)1(==f f ∴)()(21x f x f < ∴21x x <时,)()(21x f x f <∴)(x f 在定义域上不是减函数 -------------(3分) 取1,243=-=x x ,则43x x <又∵1)1(,8)2(==-f f ∴)()(43x f x f >即43x x <时,)()(43x f x f < -------------(3分) ∴)(x f 在定义域上不是增函数综上:)(x f 在定义域上不具有单调性。
(注:也可两次使用反证法证明)(2)设任意),2(,21+∞-∈x x ,且21x x < -------------(1分)则)2)(2()12)(()()(212121++--=-x x a x x x g x g -------------(2分)∵2,221->->x x ,21x x <∴02,0221>+>+x x ,021<-x x -------------(1分) ∵)(x g 是),2(+∞-的减函数 ∴)()(21x g x g >恒成立 即0)()(21>-x g x g 恒成立 ∴A 中必有2a-1>0 ∴21>a -------------(2分) 21、(本小题满分12分)解:(1)∵22)11(1x x x y +=⎪⎭⎫⎝⎛+=(x>0) ∴1>y -------------(2分)由原式有:y xx =+1∴x y x =+1∴11-=y x -------------(2分)∴11)(1-=-x x f),1(+∞∈x -------------(2分)(2)∵)()()1(1x a a x f x ->--∴)(11)1(x a a x x ->-- (0>x )∴)(11)1)(1(x a a x x x ->--+∴x a a x ->+21∴1)1(2->+a x a ------------(2分)①当01>+a 即1->a 时1->a x 对2≥x 恒成立121+<<-a②当01<+a 即1-<a 时1-<a x 对2≥x 恒成立∴12+>a 此时 无解 ----------(3分)综上 121+<<-a - -----------(1分)22、(本小题满分14分)解:(1)∵xx f 3)(=,且18)2(=+a f ,∴1832=+a 23=a - -----------(2分)∵x x a x axx g 4)3(43)(-=-= ∴x x x g 42)(-= ------------(2分)(2)g (x )在[0,1]上单调递减。