稠油及高凝油开采技术.

合集下载

稠油开采工艺技术及其应用的分析

稠油开采工艺技术及其应用的分析

稠油开采工艺技术及其应用的分析随着能源需求的不断增长和传统油田资源逐渐枯竭,对于稠油资源的开采和利用成为了石油行业的重要课题。

稠油是指粘度较高的原油,通常含有大量的沥青质和杂质,传统开采技术对其开采存在很大的难度。

研究并应用适合稠油开采的工艺技术成为了当前石油行业发展的重要方向。

本文将对稠油开采工艺技术及其应用进行分析,为完善稠油资源的开采提供参考。

一、稠油特性及开采难点稠油资源通常是指油井出口处原油的粘度在100厘波以上的原油,其具有以下特点:1. 高粘度:稠油的粘度远高于常规原油,这使得常规的采出工艺对其不适用。

2. 高密度:稠油的密度一般较大,采出后需要进行稀释才能满足运输和加工的需要。

3. 高凝点:稠油中的树脂、沥青等杂质含量较高,使得其凝固点较高,对于输送和处理造成了困难。

由于以上特性,稠油开采具有以下难点:1. 开采困难:由于粘度大、密度大等特性,传统的采出工艺对稠油的开采难度大,采油效率低。

2. 输送困难:稠油的输送难度大,需要借助特殊的热力设备或添加稀释剂。

3. 加工困难:稠油含有较多的杂质,对于提炼和加工设备要求高。

二、稠油开采工艺技术针对稠油的开采难点,石油行业逐渐形成了一系列针对稠油的开采工艺技术:1. 热采技术热采技术是指通过注入高温高压蒸汽或热介质,对稠油进行加热以降低其粘度,再通过泵功传播、压力差等将稠油推向地面。

热采技术有效克服了稠油高粘度的问题,提高了采油效率。

2. 溶剂辅助采油技术溶剂辅助采油技术是指通过注入溶剂,降低稠油的粘度以提高采油效率。

这种技术可以使用天然气、液体碳氢化合物等作为溶剂,有助于提高稠油的流动性。

3. 微生物驱油技术微生物驱油是指通过在稠油地层中注入适当的微生物,利用微生物的代谢活动改变地层中原油的理化性质,提高采油效率。

以上工艺技术主要是针对稠油的高粘度、高密度、高凝度等问题而设计的,在稠油开采中有着广泛的应用。

目前,稠油开采工艺技术在全球范围内得到了广泛的应用,其中主要是在以下领域:1. 加拿大稀油沙地区:加拿大稀油沙地区是世界上最为著名的稠油资源富集地之一,采用了大量的热采技术和溶剂辅助采油技术,取得了较好的开采效果。

稠油开采工艺技术及其应用的分析

稠油开采工艺技术及其应用的分析

稠油开采工艺技术及其应用的分析【摘要】稠油是指粘度较高的油品,其开采面临着诸多挑战。

为了提高稠油开采效率,研究者们提出了多种工艺技术,包括水热法、溶剂循环法、油藏加热法、微生物法和电加热法等。

这些技术在提高产能和降低成本方面发挥了重要作用。

未来,稠油开采工艺技术将继续发展,趋向更智能化和绿色化。

稠油开采工艺技术的未来应用前景广阔,有望在能源领域产生巨大的经济和环境效益。

【关键词】稠油、开采、工艺技术、应用、特点、挑战、水热法、溶剂循环法、油藏加热法、微生物法、电加热法、发展趋势、未来应用前景1. 引言1.1 稠油开采工艺技术及其应用的分析稠油是指粘度较高的原油,通常指粘度大于100毫米2/s的原油。

稠油开采是一项重要的工程技术,其开采难度较大,需要采用特殊的工艺技术。

稠油开采的挑战主要包括以下几个方面:1. 粘度大,流动性差,难以通过普通的开采方法进行开采;2. 含油层渗透率低,使得原油开采效率低下;3. 生产过程中易产生大量废水和固体废物,环境污染严重。

为了有效开采稠油,人们研究出了多种稠油开采工艺技术,其中较为常见的包括水热法、溶剂循环法、油藏加热法、微生物法和电加热法。

这些技术各具特点,能够有效提高稠油的开采效率,降低生产成本。

稠油开采工艺技术的发展趋势是不断向着更加高效、环保、节能的方向发展。

未来,随着技术的不断进步和完善,稠油的开采将会变得更加高效并且对环境的影响将会减少。

稠油开采工艺技术有着广阔的应用前景,将在能源领域发挥越来越重要的作用。

2. 正文2.1 稠油的特点稠油是指黏度较高、流动性较差的油类资源。

其主要特点包括密度大、粘度高、流动性差、渗透性差等。

稠油的粘度通常大于1000mPa.s,密度在0.93-1.0g/cm3之间。

由于稠油的特点,其开采过程相比常规原油开采更加困难和复杂。

稠油的流动性较差,使得在采收过程中需克服高粘度油液运输的困难。

由于稠油的密度大、粘度高,使得其在地下储层中通透性差,难以自然流出,需采取特殊的开采工艺技术。

第十章 稠油与高凝油开采技术1

第十章     稠油与高凝油开采技术1

活性剂溶液,使原油以微小油珠分散在活性水中形成水 包油乳状液或水包油型粗分散体系,同时活性剂溶液在 油管壁和抽油杆柱表面形成一层活性水膜,起到乳化降 粘和润湿降阻的作用。
主要设计参数:活性剂溶液的浓度、井下掺液器深 度、化学剂掺入量、井口的掺入温度和压力。
Xi’an Shiyou University
High-solidifying Point Crude Oil
第一节
稠油与高凝油开采特征
二、高凝油的开采特征
高凝油high-solidifying point crude oil :蜡含量高、凝固点高的原油。
凝固点:在一定条件下原油失去流动性时的最高温度。
目前对高凝油尚无统一的划分标准。若将凝固点大于40℃,含蜡量 超过35%的原油定为高凝油,则只有辽河沈阳油田、河南魏岗油田、大 港枣园油田属高凝油田,已探明还未动用的储量约 3 亿吨。 当前,沈阳 油田是我国最大的高凝油生产基地,代表我国高凝油的开采水平。 我国高凝油油藏一般埋藏较深,在油藏温度和压力条件下具有较好 的流动性,使原油可以从油层流入井筒。因此,高凝油开采的关键在于 提高井筒中流体的温度。 Xi’an Shiyou University
Chapter 10 第一节
稠油与高凝油开采特征
Production Characteristic of Viscous Oil and High-solidifying Point Crude Oil
2. 稠油的分类标准
1981年联合国训练署推荐的分类标准
oAPI=141.5/γ -131.5 o
中国稠油分类标准
油藏温度下ห้องสมุดไป่ตู้脱气油粘度 油藏条件下 原油粘度 Xi’an Shiyou University

稠油和高凝油开发技术

稠油和高凝油开发技术

稠油和高凝油开发技术发布:石油博客 | 发布时间: 2007年12月1日《加入石油杂志》1 常规地质评价技术通过精细油藏描述研究,建立了稠油、高凝油油藏的地质模型。

首先建立了地层模型、构造模型、沉积模型和储层模型,然后采用储层及其属性参数三维预测技术、油藏建模技术和数值模拟技术,以静态模型为基础,建立了预测模型。

该模型不仅利用了资料控制点的实测数据,而且保障控制点间的内插外推值的精确度,在一定范围内对无资料点具有预测能力。

针对高凝油主要在潜山储层富集的特点,对潜山储层油藏进行了精细描述,利用地层研究技术、构造及断裂系统研究技术、井点储层描述技术、储集岩空间分布预测技术、构造裂缝空间分布预测技术和裂缝性油藏储层建模技术等对潜山储层进行了研究,利用确定性建模或随机模拟的方法,根据实际的区域地质背景、构造发育特征、岩心资料、野外露头资料、测井及动态测试等资料建立了裂缝型储层三维属性模型。

2 蒸汽吞吐注汽参数优化技术根据地质特点,应用产量特征趋势分析法及数值模拟研究方法,对影响吞吐效果的注汽强度、注汽压力、注汽速度及焖井时间等参数进行了优化。

尤其是对高轮次吞吐注汽参数的优化,解决了吞吐进入高周期后油汽比低的问题。

对吞吐8 周期以上的近800 井次实施优化,平均单井周期可以节约注汽量200 m3 ,周期油汽比提高0105 。

3 蒸汽驱开发技术经过多年的研究与试验,基本上形成了适合辽河油区中深层稠油油藏的蒸汽驱技术,并通过曙12725块和齐40 块的蒸汽驱试验的应用而得到进一步的发展和完善。

4 分层和选层注汽技术针对多油组互层状油藏吸汽不均、油层纵向动用差的问题,广泛采用了分层注汽及调剖工艺技术,包括:(1) 封隔器分层、选层注汽技术用封隔器封堵高吸汽层,动用吸汽差层或不吸汽的油层。

相继又开发出滑套式分层、选层注汽技术,一次可实现两层分注或多层选注,有效地提高了油层动用程度。

(2) 机械投球选注技术堵塞高吸汽层射孔孔眼,实现选择性注汽。

复杂条件下的开采技术

复杂条件下的开采技术

第6 部分复杂条件下的开采技术稠油及高凝油开采技术一、稠油几高凝油的开采特征1.稠油和重油的区分稠油是以其粘度高低作为分类标准,而原油粘度的的高低取决于原油中胶质、沥青质及含蜡量的多少;重油则是以原油密度的大小进行分类,而原油密度的大小往往取决于其金属、机械混合物及硫含量的多少。

2.稠油的特点(1)粘度高、密度大、流动性差。

它不仅增加了开采难度和成本,而且使油田的最终采收率非常低。

稠油开采的关键是提高其在油层、井筒和集输管线中的流动能力。

(2)稠油的粘度对温度敏感。

随着稠油温度的降低,其粘度显著增加(3)稠油中轻质组分含量低,而胶质、沥青质含量高。

3.井筒降粘开采技术1)井筒化学降粘技术是指通过向井筒流体中掺入化学药剂,从而使流体粘度降低的开采稠油及高凝油的技术。

2)井筒热力降粘技术是利用高凝油、稠油的流动性对温度敏感这一特点,通过提高井筒流体的温度,使井筒流体粘度降低的工艺技术。

提高采收率的油层热处理及微生物采油技术简介一、热处理油层采油法1.热处理油层采油法是指利用热能加热油藏,降低原油粘度,将原油从地下采出的一种方法。

2. 热处理油层采油法的基本原理:通过加热使原油粘度大大降低,改善流度比,提高波及系数;热力学能还会使原油膨胀,增加原油从油藏排出的动力;此外,热力学能对原油有蒸发甚至蒸馏的作用,蒸馏出的轻质馏分和前面较冷的地层接触时会凝析下来,在前沿形成一混相带,从而具有某种混相作用。

3.热处理油层采油包括蒸汽吞吐、蒸汽驱和火烧油层三种常规方法1)蒸汽吞吐采油过程可以分为三个阶段,即注汽阶段(吞蒸汽)、关井阶段(焖井)和回采阶段(吐蒸汽)。

2)蒸汽吞吐机理:(1)原油降粘(2)地层能量增加(3)井筒附近地层堵塞清除(4)相渗透率与润湿性改变.3)蒸汽驱采油机理(1)降粘作用(2)热膨胀作用(3)蒸汽蒸馏作用(汽提)(4)溶解气驱作用(5)溶剂抽提作用(油相混相作用、溶剂萃取作用)(6)重力分离作用(7)高温对相对渗透率的影响4)火烧油层分为正向燃烧和反向燃烧正向燃烧由于注入的仅仅是空气或氧气而无水,因此又称干式燃烧法反向燃烧法是空气从准备成为生产井的井中注入并点燃油层,燃烧很短距离后,停止注入空气,而转为向相应的注入井注空气,而最初的点火井变为生产井1)反向燃烧的缺点(1)燃烧的是相对较轻的原油馏分,而不是正向燃烧的重质组分:(2)需要大量的氧气(大约为正向的两倍);(3)原油在注入井易于自燃,难于进行反向燃烧。

稠油开采方案

稠油开采方案

稠油开采方案1. 引言稠油是指黏度较高的原油,由于其黏度高,相比于常规原油,开采过程更加复杂且困难。

本文将介绍稠油开采的方案,涵盖一些常用的稠油开采技术和方法。

2. 稠油开采技术2.1 热蒸汽注入法热蒸汽注入法是常用于稠油开采的技术之一。

该方法通过注入高温的蒸汽来减低油藏中的原油粘度,降低黏度后,使得原油更易于抽采。

热蒸汽注入法可以分为直接蒸汽驱和蒸汽辅助重力排油两种。

直接蒸汽驱是将高温蒸汽注入到油藏中,通过热蒸汽的温度和压力作用,降低原油的粘度,使得原油流动性得到改善,从而提高采收率。

蒸汽辅助重力排油是通过注入蒸汽从而提高油温,使得原油流动性增加,同时借助地层的自然排水能力,将原油通过重力驱出。

2.2 转矩驱油技术转矩驱油技术是一种基于转子引动原理的稠油开采技术。

该方法通过在井下安装转子设备,利用转子的运动来产生剪切力和推动力,使得原油流动起来。

转矩驱油技术主要用于黏度较高的胶体状原油开采。

2.3 溶剂驱油技术溶剂驱油技术是一种常用的稠油开采方法,通过注入特定的溶剂来降低原油的粘度,提高其流动性。

常用的溶剂包括丙酮、苯和二甲苯等。

该方法可以与蒸汽驱、转矩驱油技术等相结合,提高稠油开采效果。

3. 稠油开采方法3.1 增注增注是指向油层注入特定的驱油剂以改善油层的流动性。

这是一种常用的稠油开采方法,可以提高原油的采收率。

增注方法包括水驱、聚合物驱、碱驱、聚合物-碱联合驱等。

水驱是指注入水来增加原油流动性和驱出原油。

聚合物驱是指注入具有降低粘度的聚合物溶液来改善原油流动性。

碱驱是指注入具有碱性的溶液来降低油藏中的黏土含量,改善原油流动性。

聚合物-碱联合驱是将聚合物驱和碱驱相结合的方法,可以更好地改善稠油开采效果。

3.2 高压气体驱油高压气体驱油是指通过注入高压气体来提高砂岩孔隙中的压力,从而驱使原油流动。

常用的高压气体包括天然气和二氧化碳。

该方法可以提高原油流动性,增加采收率。

3.3 超声波驱油技术超声波驱油技术是一种新兴的稠油开采方法,通过在井下注入超声波来改变原油的流变性质,提高原油的流动性。

高凝油开采过程中的主要开采技术

高凝油开采过程中的主要开采技术

- 55 -工 业 技 术0 前言目前我国的高凝油开采已经逐渐由传统形式上的开采技术转变成为新型的高凝油开采技术。

这一转变给我国的石油开采行业带来了非常高的工作效率以及工作质量。

传统形式上的高凝油开采技术最大的弊端有两点,首先是传统形式上的高凝油开采技术能够耗费非常大的能源;其次是传统形式上的高凝油开采技术在工作效率以及工作质量上都非常低下。

随着我国科学技术的快速发展,我国的高凝油开采技术也在不断地发展以及创新提升中,因此我国的石油开采领域在针对传统形式上的高凝油开采技术的弊端进行不断地改善和发展。

目前有两种较为先进的高凝油开采技术已经逐渐地扩大应用,首先是伴热保温高凝油开采技术,其次是封闭循环式自喷高凝油开采技术。

上述两种技术在应用的效果上非常的相似但是在实际的应用过程中还是存在一定的区别,下面针对上述两种高凝油开采技术以及其他的相关开采技术进行详细的阐述。

1 高凝油开采技术中的封闭循环式抽油开采技术封闭循环是抽油开采技术,是一种后期开发出来的高凝油开采技术,主要是依托自喷循环式开采技术进行发展和完善。

在这种高凝油开采技术主要应用的环境中,有的开采矿井中的高凝油存量较小,因此不能够形成自主喷发的状态,这种情况下我们就需要采取抽油的开采措施来保障高凝油的顺利开采。

我们在抽油方式开采的过程中要在油井中设置一台或者几台抽油泵,其他的开采装备就按照自喷开采技术中的相关设施进行布置即可。

这种高凝油开采技术能够有效地保障在油井存油量较小的状况下,还能够进行高凝油的开采。

但是在实际的高凝油开采的过程中我们会遇到开采油井深度不同的问题,动力液面不同深度的问题以及开采作业量较小的问题,面对这些问题我们在高凝油开采的过程中可以将普通的抽油泵变成循环式的抽油泵,这样就能够有效的解决上述高凝油开采过程中遇到的问题,并且在实际的应用过程中效果非常明显。

2 高凝油开采技术中的封闭循环式自喷开采技术封闭循环式自喷开采技术是通过两种开采技术的结合,首先是动力采油技术,其次是热力采油技术。

高凝稠油采油后期采油技术

高凝稠油采油后期采油技术

高凝稠油采油后期采油技术摘要:相对来说稠油的胶质和沥青质含量比较高,从而造成了流动性不强。

对于稠油来说,一般运用正常的采油方式,不能进行开采,需要对稠油进行降稠处理。

关键词:高凝稠油;采油后期;采油技术1.1热水循环工艺热水循环流程为二联来水进入采油站热水循环管内,经循环水泵房,进入加热炉,经加热后,温度控制在90℃以上,输送至单井。

在井口,经由隔热管与油管环形空间进入井底,通过分流器,经隔热管与套管环形空间回至井口,并回到采油站循环水回水阀组,最终进入循环水罐内。

进行再次循環。

采用热水循环工艺,循环深度较大,循环水温度较高,优势在于原油在举升过程中获得较多的热量,出井温度较高。

原油流动性较好。

缺点在于对天然气消耗量较大,而且存在循环水向油管内漏失情况,无法准确计量原油产量。

但随着开采时间的延长,该项工艺暴露出来的问题日益突出。

1.2蒸汽吞吐采油工艺针对稠油油藏的特点,将热蒸汽注入到油层部位,然后关井一定时间,作为焖井的过程,之后当井下的热能散失到油层中,提高油层的温度后,使油流流动起来,开井生产,达到预期的产量。

经过一段时间的采油生产后,当油井的产量下降到蒸汽吞吐前的状态,继续实施蒸汽吞吐采油技术措施,循环往复地应用蒸汽吞吐采油的方式,直到油井继续进行蒸汽吞吐后,产能没有得到提升,之后,进行注蒸汽开采的方式,保持油井的正常生产。

而当油井的供液能力不足时,可以改变油井的生产,变为间歇生产的方式,达到油井生产的要求。

应用蒸汽吞吐采油的方式,能够提高油层的温度,降低油流的粘度,解除油层的堵塞状况,降低油层流体的界面张力,有利于原油破乳,达到流体和岩石的热膨胀效果,从而提高稠油井的产量。

1.3火烧油层技术火烧油层又称火驱或层内燃烧法,即在一口或数口注气井(又称中点燃油层后,通过不断向油层注入适量氧化剂(空气或富氧气体)助燃,形成径向移动的燃烧前缘(又称火线)。

施工区域油层划分为六个不同区带,已燃区、燃烧带、结焦带、蒸发区、轻质油带、富油带和未受影响区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

筒生产流体的温度、降低粘度、改善其流动性目的的工
艺技术。
8/1/2018
采油工程
10
1)开式热流体循环工艺
开式热流体反循 环工艺是油井产出的 流体或地面其他来源 的流体经过加热后, 以一定的流量通过油 套环形空间注入井筒 中,加热井筒生产流 体及油管、套管和地 层,然后在泵下或泵 上的某一深度上进入 油管并与生产流体混 合后一起采到地面。
8/1/2018
采油工程
21
8/1/2018
采油工程
22
(1)乳化剂比较容易与原油形成水包油型乳状液,具有好的 流动性和的稳定性; (2)乳化剂用量少,经济合理; (3)油水采出后重力分离快,易于破乳脱水。
8/1/2018
采油工程
6
2、化学降粘工艺技术
单井乳化降粘 (1)加药剂地点不同
在井口加药剂 在计量站加药剂 在接转站 加药剂
计量站多井乳化降粘 大面积集中管理乳化降粘
8/1/2018
采油工程
18
2)伴热电缆采油工艺
井下自控温电缆的内部有两根相距约 为10mm的平行导线,两导线间有一半导电 的塑料层,为发热元件。电流由一根导线 流经半导电塑料至另一根导线,半导电塑 料因而发热。由于该半导电塑料有热胀冷 缩的特性,从而改变其电阻,造成随温度 不同半导电塑料通过电流大小就会发生变 化,导致自动控制发热量。
超稠油 >50000 >0.9800(<13 API ) 高凝油是指蜡含量高、凝固点高的原油。 某油井原油粘温曲线 凝固点:在一定条件下原油失去流动性时的最高温度。

(一)稠油的基本特点
(二)高凝油的基本特点
8/1/2018
采油工程
3
二、井筒降粘技术
井筒降粘技术是指通过热力、化学、稀释等措施使得井
为两大类:即热流体循环加热降粘技术和电加热降粘技
术。
8/1/2018
采油工程
9
(1)热流体循环加热降粘技术
热流体循环加热降粘技术应用地面泵组,将高于井 筒生产流体温度的油或水等热流体,以一定的流量通过 井下特殊管柱注入井筒中建立循环通道以伴热井筒生产 流体(开式循环时还有稀释降粘作用 ),从而达到提高井
(2)电加热降粘技术
在电加热降粘技术的工艺设计中关键是确定加热深度和 加热功率两个主要的参数。 加热深度根据井筒中生产流体的温度、粘度分布及流动
特性等为基础确定。
加热功率的大小取决于所需的温度增值,要通过设计使 得井筒内的生产流体具有低粘度和较好的流动性,同时考虑 到节省材料和节约能源。 因此要根据油井的具体情况确定合理的加热深度和经济 的加热功率。
8/1/2018
采油工程
13
8/1/2018
采油工程
14
3)空心抽油杆开式热流体循环工艺
空心抽油杆开式 热流体循环工艺装置 及流程如图8—32所示。 地面热流体经地面立 管、胶管、悬接器进 入空心抽油杆,在其 杆底部经掺水单流阀 进入油管和空心抽油 杆环形空间与泵抽出 的流体混合在一起返 到井口。
筒中的流体保持低粘度,从而达到改善井筒流体的流动条
件,缓解抽油设备的不适应性,提高稠油及高凝油的开发 效果等目的的采油工艺技术。
目前常用的井筒降粘技术:

化学降粘技术

热力降粘技术
8/1/2018
采油工程
4
(一)井筒化学降粘技术
化学降粘:通过向井筒流体中掺入化学药剂,从而使流体 粘度降低的开采稠油及高凝油的技术。 作用机理:在井筒流体中加入一定量的水溶性表面活性剂
泵上乳化降粘
地面乳化降粘 (2)化学药剂与原油混合点不同
泵下乳化降粘
井筒中乳化降粘
8/1/2018
采油工程
7
8/1/2018
采油工程
8
(二)井筒热力降粘技术
井筒热力降粘技术是利用高凝油、稠油的流动性对
温度敏感这一特点,通过提高井筒流体的温度,使井筒
流体粘度降低的工艺技术。
目前常用的井筒热力降粘技术根据其加热介质可分
8/1/2018
采油工程
19
1.产液
2.动液面 3.油管 4.套管 9.伴热电缆
5.油层
伴热电缆井筒结构示意图
8/1/2018
采油工程
20
小 结




掌握稠油、高凝油的特点 掌握常用的井筒降粘技术 掌握并理解井筒化学降粘技术的作用机理 掌握井筒热力降粘技术的分类 掌握热流体循环加热降粘技术的四种形式 掌握电加热降粘技术的作用机理
8/1/2018
采油工程
15
4)空心抽油杆闭式热流体循环工艺
空心抽油杆闭式 热流体循环工艺的井 下管柱结构如图8— 33(b)所示。油层流 体进入油管后,经特 定的换向设备进入空 心抽油杆流向地面, 而热流体由杆与油管 的环形空间进入井筒, 然后由油套环形空间 返回地面。
8/1/2018
采油工程
16
8/1/2018
采油工程
17
1)电热空心抽油杆采油工艺
其工作原理是: 三相交流电经过控制 柜的调节,变成单相 交流电,与抽油杆内 部的电缆相连,通过 空心抽油杆底部的终 端器构成回路,在电 缆线和杆体上形成集 肤效应(空心抽油杆外 径电压为零)使空心抽 油杆发热,通过传热 提高井筒生产流体的 温度,降低粘度,改 善其流动性。
溶液,使原油以微小油珠分散在活性水中形成水包油乳状
液或水包油型粗分散体系,同时活性剂溶液在油管壁和抽 油杆柱表面形成一层活性水膜,起到乳化降粘和润湿降阻 的作用。
8/1/2018
采油工程
5
1.乳化剂的选择
乳化剂选用一般按其亲油亲水平衡值(HLB)来确定通常形
成水包油型乳状液的HLB值为8~18。选择标准有三条:
第四节 稠油及高凝油 开采技术
一、稠油及高凝油的开采特征
二、井筒降粘开采技术
8/1/2018
采油工程
2
一、稠油及高凝油开采特征
表8-3 中国稠油分类标准 (1)粘度高、密度大、流动性差 稠油分类 粘度 mPa s 相对密度 (20℃ ) (2)稠油的粘度对温度敏感 普通 Ⅰ 50* ~ 100* >0.9000(<25 API ) (3)稠油中轻质组分含量低,而胶质、沥青质含量高 稠油 Ⅱ 100* ~ 10000 >0.9200(<22 API ) 特稠油 10000~ 50000 >0.9500(<17 API )
热流体与原油 混合
8/1/2018
采油工程
11
开式热流体正 循环工艺是指 热流体由油管 注入井筒中, 在井筒中的某 一深度处进入 油套环形空间 与生产流体混 合后一起采到 地面。
8/1/2018
采油工程
12
2)闭式热流体循环工艺
闭式热流体循环工艺的热流体与从油层采出的 流体不相混合,而且循环流体也不会对油层产 生干扰。
相关文档
最新文档