数据结构树_二叉树的定义和二叉树性质与存储本共40页

合集下载

数据结构实验报告 二叉树

数据结构实验报告 二叉树

数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。

二叉树作为一种常见的数据结构,广泛应用于各个领域。

本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。

一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。

1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。

二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。

在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。

2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。

中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。

2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。

后序遍历常用于计算二叉树的表达式或释放二叉树的内存。

三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。

链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。

3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。

二叉搜索树常用于实现查找、插入和删除等操作。

(2)堆:堆是一种特殊的二叉树,它满足堆序性质。

堆常用于实现优先队列,如操作系统中的进程调度。

(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。

四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。

在实践中,我进一步理解了二叉树的定义、性质和应用。

二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

数据结构-C语言-树和二叉树

数据结构-C语言-树和二叉树

练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边

数据结构——- 二叉树

数据结构——- 二叉树

证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
《数据结构与算法》
★★★★★
第五章 二叉树
廊坊师范学院 数学与信息科学学院
树型结构--实例:五子棋
A
B
D
E
F
C
…...........
…...........
第五章 二叉树
本章重点难点
重点: 二叉树的定义,性质,存储结 构以及相关的应用——遍历,二叉搜 索树,堆优先 队列,Huffman树等 难点: 二叉树的遍历算法及相关应用
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
A B C E D F G
证明: 由性质4可推出
由性质2(深度为k的 二叉树,至多有2k+1-1 个结点)可知,高度 为h(k+1)的二叉树,其 有n (n>0)个结点的完全二叉树的高度为 结点个数n满足: 「log2(n+1) ,深度为「log2(n+1) -1 2h-1-1<n<=2h-1 高度:二叉树中最大叶结点的层数+1 2h-1<n+1<=2h 取对数得到: 0层 1 h-1<log2(n+1)<=h 3 1层 2 因为h是整数,所以 h= log2(n+1) 5 2层 4

数据结构树和二叉树ppt

数据结构树和二叉树ppt

A
B
C
D
E
FG
H
I
J
K
LM
树形表示法
(2) 文氏图表示法。使用集合以及集合的 包含关系描述树结构。下图就是树的文氏图 表示法。
A
C B
G EF
J
H D
IK LM
文氏图表示法
(3) 凹入表示法。使用线段的伸缩描述树结 构。下图是树的凹入表示法。
(4) 括号表示法。将树的根结点写在括号的左 边,除根结点之外的其余结点写在括号中并用逗号 间隔来描述树结构。下图是树的括号表示法。
1层 层次 根为第1层
最大层数为树的深度(高度)
2层 height 3层 = 4
双亲 (直接前驱) 孩子(直接后继)
KL
M d=0 4层
兄弟 堂兄弟 子孙 祖先
森林----m(m>=0)棵互不相交的树的集合。
B EF
A BC
树和森林的遍历
A C GH
F DG E
先 深根度次优序先遍遍历历
当树非先空根次序遍历
树孩结子点结结点构的:序da号ta
}link; he指ad向ptr下一个孩子结点typedef struct
特点:很快确定孩子指结向点第一个孩子结点{ dliantkaty*pheeaddapttar;;
每个结点但拥有确孩定子双的亲个效数率不同低,
所以采用单链表链接孩子结点。
}ctree; ctree T[maxnode];
bcd
在二叉树中查找指定结点
?a
? find(BTNode *b, elemtype x) {
b
c
if(b==NULL)
return(NULL); /*空树*/

云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK

云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK

^d ^ ^ e ^ 三叉链表
3)二叉链表是二叉树最常用的存储结构。还有其它链接方 法,采用何种方法,主要取决于所要实施的各种运算频度。
例:若经常要在二叉树中寻找某结点的双亲时,可在每个结 点上再加一个指向其双亲的指针域parent,称为三叉链表。
lchild data parent rchild
2021/8/16
2021/8/16
9
6.2 二 叉 树
6.2.1 二叉树的概念
一、二叉树的定义: 二叉树(Binary Tree)是n(n>=0)个结点的有限集,它或者是 空集(n=0)或者由一个根结点和两棵互不相交的,分别称 为根的左子树和右子树的二叉树组成。 可以看出,二叉树的定义和树的定义一样,均为递归定 义。
A
集合3
集合1
BCD
EF
G
集合2
2021/8/16
3
2、树的表示方法 1)树形图法
A
BCD
EF
G
2)嵌套集合法
3)广义表形式 ( A(B, C(E,F), D(G) )
4)凹入表示法
2021/8/16
A B
D
CG
EF
A B C E DF G
4
3、 树结构的基本术语
1)结点的度(Degree):为该结点的子树的个数。 2)树的度:为该树中结点的最大度数。
7)路径(Path):若树中存在一个结点序列k1,k2,…,kj,使得ki是 ki+1的双亲(1<=i<j),则称该结点序列是从ki到kj一条路径 (Path)
路径长度:路径的长度为j-1,其为该路径所经过的边的数 目。
A
BCD
EF
G

自考软件基础(数据结构--树与二叉树)

自考软件基础(数据结构--树与二叉树)
A
B
C
D
E
F
G
H
I
J
第 5 /209页
第二节 二叉树
一、定义
南昌大学
二叉树是一种重要的树形结构,它的特点是:二叉树可以为空(节点个
数为0),任何一个节点的度都小于或等于2,并且,子树有左、右之分,
其次序不能任意颠倒。 二叉树有5种基本形态,如图10-2所示。
第 6 /209页
第二节 二叉树
南昌大学
struct node
{ datatype data; struct node *Lchild,*rchild:
};
第 15 /209页
第二节 二叉树
南昌大学
例10-5 写出图10-8a所示二叉树的链式存储结构。其链式结构如图10-8b 所示。可以看出:具有n个节点的二叉树链式存储共有2n个链,其中只 有n-1个用来存放该节点的左、右孩子,其余的n +1个指针域为空。
解:第一步:由后序遍历结果确定整个二叉树根为A,由中序结果确定
A的左、右子树。 后序遍历结果: 中序遍历结果:
第 24 /209页
第三节 二叉树的遍历
第二步:确定A的左子树。 1)后序遍历结果:
南昌大学
中序遍历结果:
2)确定B的右子树: ①后序遍历结果:
第 25 /209页
第三节 二叉树的遍历
②中序遍历结果:
南昌大学
第 9 /209页
第二节 二叉树
下面介绍两种特殊的二叉树。
南昌大学
(1) 满二叉树指深度为k,且有2k-1个节点的二叉树。或者说除叶子节点外,
其它节点的度都为2的二叉树。
(2) 完全二叉树一个满二叉树的最下层从右向左连续缺少n (n>=0)个节点 的二叉树。 图10-3为满二叉树和完全二叉树示例。

计算机数据结构知识点梳理 二叉树的定义及其主要特征

计算机数据结构知识点梳理		二叉树的定义及其主要特征

当 n ≠ 2k , 即 n 不是2的方幂或者 n = 2k 但是一棵满二叉树,其高度为

当 n = 2k 但是非满二叉树,其高度为

②有n个结点的完全k叉树的高度为

性质5推广:一棵满k叉树,如果按层次顺序从1开始对全部结点编号,
①编号为p=1的结点无父结点,否则编号为p结点的父结点的编号是
(k≥2);
[题1]若一棵二叉树有126个结点,在第7层(根结点在第1层)至多有( )个结点。
A.32
B.64
C.63
D.不存在第7层
分析:根据二叉树的性质,第7层至多有64(27-1)个结点,但是题目中给出了二叉树的结点 总数126,由此来判断第7层是否可以有64个结点?
要在二叉树的第7层达到最多的结点个数,其上面6层必须是一个满二叉树,深度为6的满 二叉树有63(26-1)个结点,由此可以判断出此二叉树的第7层不可能达到64个结点,最 多是126-63=63个结点。
(2)完全二叉树:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到 右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树 中的位置相同,则这棵二叉树称为完全二叉树。它的特点是:叶子结点只能出现在最下 层和次下层,且最下层的叶子结点集中在树的左部。
任何完全二叉树中度为1的结点只有0个或1个。
中的所有结点从1开始顺序编号,则对于任意的序号为i的结点,有:
(1)如果i>1,则序号i的结点的双亲结点的序号为 ;如果i=1,则序号为i的结点是根 结点,无双亲结点。
(2)如果2i≤n,则序号为i的结点的左孩子结点的序号为2i;如果2i>n,则序号为i的结 点无左孩子。
(3)如果2i+1≤n,则序号为i的结点的右孩子结点的序号为2i+1;如果2i+1>n,则 序号为i的结点无右孩子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档