2018年北京市东城高三一模理科数学试题

合集下载

北京市东城区2018届高三上学期期末考试数学(理)试题_Word版含解析

北京市东城区2018届高三上学期期末考试数学(理)试题_Word版含解析

北京市东城区 2017-2018 学年第一学期期末教学统一检 高三数学 (理科)本试卷共 5 页,150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试 结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合U  {1, 2,3, 4},集合 A  {1,3, 4} , B  {2, 4} ,那么集合 (C A) I B  U(A){2}(B){4}【考点】集合的运算(C) {1, 3}(D){2, 4}【试题解析】 【答案】A,所以,故选 A(2)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于333正(主)视图1侧(左)视图13俯视图3 (A) 2 cm3(B)3 cm3【考点】空间几何体的三视图与直观图(C)3 cm3【试题解析】由三视图可知,直观图为底面积为(D)9 cm3,高的三棱锥,所以体积为,故选 A 【答案】A(3)设 i 为虚数单位,如果复数 z 满足 (1 2i)z  5i ,那么 z 的虚部为(A) 1(B)1【考点】复数综合运算(C) i(D) i【试题解析】 【答案】B,虚部为 1,故选 B(4)已知 m  (0,1) ,令 a  logm 2 , b  m2 , c  2m ,那么 a,b, c 之间的大小关系为(A) b  c  a(B) b  a  c【考点】对数与对数函数指数与指数函数(C) a  b  c(D) c  a  b【试题解析】因为,所以,,【答案】C(5)已知直线 l 的倾斜角为 ,斜率为 k ,那么“   ”是“ k  3(A)充分而不必要条件 (B)必要而不充分条件3 ”的(C)充分必要条件(D)既不充分也不必要条件【考点】充分条件与必要条件,即,故选 C【试题解析】当时, ,当时,,所以“”是“”的必要而不充分条件,故选 B 【答案】B(6)已知函数f(x) 1 x1,0  x  2 ,如果关于 x 的方程 f (x)  k 有两个不同的实根,那么实数 k 的ln x, x  2取值范围是(A) (1, )(B)[ 3 , ) 23(C)[e2 , )【考点】零点与方程 【试题解析】在同一坐标系内作出函数与的图象(如图),(D)[ln 2, )关于 x 的方程有两个不同的实,等价于直线与图象有两个不同的交点,所以 的取值范围是,故选 B 【答案】B(7)过抛物线 y2  2 px(p  0) 的焦点 F 的直线交抛物线于 A, B 两点,点 O 是原点,如果 BF  3 ,BF  AF , BFO  2 ,那么 AF 的值为 3( A) 1【考点】抛物线3 (B)2(C) 3(D) 6【试题解析】由已知直线的斜率为,则方程为,联立方程得,即因为,所以,依题意,所以,则,故选A【答案】A(8)如图所示,正方体 ABCD  ABCD 的棱长为 1, E, F 分别是棱 AA ,CC 的中点,过直线 E, F 的平面分别与棱 BB、 DD 交于 M , N ,设 BM  x , x  (0,1) ,给出以下四个命题:① 四边形 MENF 为平行四边形;D'② 若四边形 MENF 面积 s  f (x) , x  (0,1) ,则 f (x) 有最N小A'值;C'B' F③ 若四棱锥 A MENF 的体积V  p(x) , x  (0,1) ,则 EDp(x) 常函数;C M④ 若多面体 ABCD MENF 的体积V  h(x) , x  (1 ,1) , AB2则 h(x) 为单调函数.其中假.命.题.为( A) ①(B) ②【考点】立体几何综合【试题解析】对①,因为平面(C) ③平面,平面(D)④ 平面,平面平面,所以,同理,所以四边形为平行四边形。

2018年北京市东城区高三第一学期期末数学(理)试题与答案

2018年北京市东城区高三第一学期期末数学(理)试题与答案

东城区 2017-2018 学年度第一学期期末教课一致检测高三数学(理科)本试卷共 6 页, 150 分。

考试时长 120 分钟。

考生务势必答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分 (选择题共40分)一、选择题(共 8 小题,每题 5 分,共 40 分,在每题给出的四个选项中,选出切合题目要求的一项。

)(1 )若会合 A { 2, 1,0,1,2,3} , B { x | x1 或 x 2},则AIB (A ) { 2,3} (B ){2, 1,2,3}( C ) {0,1}(D ) { 1,0,1,2}( 2 ) 函数 y 3sin(2 x ) 图象的两条相邻对称轴之间的距离是4( A )(B )( C )( D )24(3 )履行以下图的程序框图,输出的x 值为开始(A )1(B )2(C )3b=x 2(D )7x= 1 ( x+ 3)42 xxb12否是输出 x结束 y ≥2 x,(4 )若 x, y 知足 xy ≥3, 则 x y 的最小值为y ≤3,(A ) 5(B ) 3 (C ) 2(D ) 1(5 )已知函数f (x)4x 1x ,则 f (x) 的2( A )图象对于原点对称,且在 [ 0 , ) 上是增函数( B )图象对于 y 轴对称,且在 [ 0 , ) 上是增函数( C )图象对于原点对称,在[ 0 , ) 上是减函数( D )图象对于 y 轴对称,且在 [ 0 ,) 上是减函数(6 )设 a , b 为非零向量,则“a +b a - b ”是“ a b= 0”的( A )充足而不用要条件 (B )必需而不充足条件( C )充足必需条件(D )既不充足也不用要条件(7 )某三棱锥的三视图以下图, 则该三棱锥的体积为1(A )1116正(主)视图侧(左)视图1( B )3(C )12(D )1俯视图(8 )现有 n 个小球, 甲乙两位同学轮番且不放回抓球, 每次最少抓 1 个球,最多抓 3 个球,规定谁抓到最后一个球谁赢 . 假如甲先抓,那么以下推测正确的选项是( A )若( C )若n4 ,则甲有必赢的策略 ( B )若n 9 ,则甲有必赢的策略( D )若n 6 ,则乙有必赢的策略n 11 ,则乙有必赢的策略第二部分 (非选择题共 110 分)二、填空题共 6 小题,每题 5 分,共 30 分。

高考最新-东城数学(理) 精品

高考最新-东城数学(理) 精品

北京市东城区2018年高三年级综合练习(一)数学试卷(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题 共40分)参考公式:①如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) ②如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B)③如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(④球的表面积公式 24R S π= 其中R 表示球的半径 ⑤球的体积公式 334R V π=球 其中R 表示球的半径一、选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,A={x |x <-3或x ≥2},B={x |-1<x <5},则集合|x |-1<x <2|是 ( )A .( U A )∪( UB ) B . U (A ∪B )C .( U A )∩BD .A ∩B2.复数(1+i )3的虚部是 ( ) A .2 B .-2 C .2i D .-2i 3.预测人口的变化趋势有多种方法,最常用的是“直接推算法”,使用的公式是P n =P 0(1+k)n (k 为常数,k>-1),其中P n 为预测期内n 年后人口数,P 0为初期人口数,k 为预 测期内年增长率,如果-1<k<0,那么在这期间人口数 ( ) A .呈上升趋势 B .呈下降趋势 C .先上升后下降 D .先下降后上升4.已知2cos ,2524)sin(,θθπθ则为第二象限角=-的值为( )A .53B .54 C .±53 D .±545.已知m 、n 为两条不同的直线α、β为两个不同的平面,给出下列四个命题 ①若m ⊂α,n//α,则m//n ; ②若m ⊥α,n//α,则m ⊥n ; ③若m ⊥α,m ⊥β,则α//β; ④若m//α,n//α,则m//n. 其中真命题的序号是( )A .①②B .③④C .①④D .②③ 6.数列{a n }的前n 项和S n =3n -2n 2,则当n ≥2时,下列不等式成立的是 ( ) A .na 1>S n >na n B .S n >na 1>na n C .na n >S n >na 1 D .S n >na n >na 1 7.已知在△ABC 中,OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC 的 ( )A .内心B .外心C .重心D .垂心8.设f (x )、g (x )是定义域为R 的恒大于零的可导函数,且0)()()()(<'-'x g x f x g x f ,则当 a <x <b 时有 ( )A .f (x ) g (x )> f (b ) g (b )B .f (x ) g (a )> f (a ) g (x )C .f (x ) g (b )> f (b ) g (x )D .f (x ) g (x )> f (a ) g (a )第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.在(1-2x )6展开式中,含x 2项的系数为 ;所有项系数的和为 . 10.抛物线241x y =在点(2,1)处的切线的斜率为 ;切线方程为 . 11.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号 (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 18 88 77 18 74 47 67 21 76 33 50 25 83 92 12 18 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 18 44 39 52 38 79 33 21 12 34 29 78 64 56 18 82 52 42 18 44 38 15 51 00 13 42 99 66 18 79 5412.把曲线14:221=-ky x C 按向量a =(1,2)平移后得到曲线C 2,曲线C 2有一条准线方程为x =5,则k 的值为 ;离心率e 为 .13.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且AM=31,点P 在平面ABCD 上,且动点P 到 直线A 1D 1的距离的平方与P 到点M 的距离的平方的差为1, 在x Ay 直角坐标系中,动点P 的轨迹方程是 .14.一种计算装置,有一数据人口A 和一个运算出口B ,执行某种运算程序; (1)当从A 口输入自然数1时,从B 口得到实数31,记为=)1(f 31;(2)当从A 口输入自然数)2(≥n n 时,在B 口得到的结果)(n f 是前一结果3)1(21)1(2)1(+----n n n f 的倍. 当从A 口输入3时,从B 口得到 ;要想从B 口得到23031,则应从A 口输入自然数 .三、解答题:本大题共6个小题,共80分,解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知向量1)(),cos 2,cos 3(),cos ,sin 2(-⋅===x f x x x x 定义函数.(1)求函数)(x f 的最小正周期;(2)求函数)(x f 的单调减区间; (3)画出函数]125,127[),()(ππ-∈=x x f x g 的图象,由图象研究并写出)(x g 的对称轴和16.(本小题满分13分)一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱中的二等品,我们对该箱中的产品逐一取出进行测试.(1)求前两次取出的都是二等品的概率;(2)求第二次取出的是二等品的概率;(3)用随机变量ξ表示第二个二等品被取出时共取出的件数,求ξ的分布列及数学期望.17.(本小题满分14分)已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.(1)求证:DE//平面ABC;(2)求证:B1F⊥平面AEF;(3)求二面角B1—AE—F的大小(用反三角函数表示).18.(本小题满分13分) 已知R m ∈,研究函数xe m x m mx xf 63)1(3)(2++++=的单调区间.19.(本小题满分13分) 已知O 为坐标原点,点E 、F 的坐标分别为(-1,0)和(1,0),点A 、P 、Q 运动时满足.//,0,|,|2||=⋅== (1)求动点P 的轨迹C 的方程;(2)设M 、N 是C 上两点,若,32=+求直线MN 的方程.20.(本小题满分13分)已知数列),4,3,2(1,1,}{111 =+==--n a a a a a n n n n 中 (1)求2a 、3a 的值;(2)证明当.2312,,4,3,2-≤<-=n a n n n 时数学试卷(理科)参考答案一、选择题1.C 2.A 3.B 4.C 5.D 6.A 7.D 8.C 二、填空题9.60,1; 10.1,x -y -1=0; 11.785,567,199,518,175; 12.-3,2113.;91322-=x y 14.24,351注:9、10、11、14小题第一个空2分,第二个空3分,(11)小题答对一个给1分。

北京市东城区第一学期高三级期末数学统一练习理科

北京市东城区第一学期高三级期末数学统一练习理科

东城区 2018-2018学年度第一学期期末教学设计一致检测高三数学 (理科)学校 _____________班级 _______________姓名 ______________考号 ___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页,共 150 分。

考试时长 120 分钟。

考生务势必答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题共 40 分)一、本大题共 8 小题,每题 5 分,共40 分。

在每题列出的四个选项中,选出切合题目要求的一项。

( 1)设会合 A{1,2} ,则知足 A B {1,2,3} 的会合 B 的个数是(A ) 1(B) 3(C) 4(D) 8( 2)已知 a 是实数,ai是纯虚数,则 a 等于1 i(A ) 1(B ) 1(C ) 2 (D )2( 3)已知 { a n } 为等差数列,其前n 项和为 S n ,若 a 3 6 , S 3 12 ,则公差 d 等于(A ) 1(B )5(C ) 2(D ) 33( 4)履行如下图的程序框图,输出的k 的值为( A ) 4 ( B ) 5 ( C ) 6( D ) 7( 5)若 a , b 是两个非零向量,则“a b a b ”是“ a b ”的( A )充足不用要条件 (B )必需不充足条件( C )充要条件(D )既不充足也不用要条件x 0,( 6)已知 x , y 知足不等式组y0,当 3 s 5 时,目标函数 z 3x 2 y 的最大值x y s, y 2x 4.的变化范围是( A ) [6,15] ( B ) [7,15] ( C ) [6,8]( D ) [7,8]( 7)已知抛物线y2 2 px 的焦点F与双曲线x2y21的右焦点重合,抛物线的准线79与 x 轴的交点为K,点A在抛物线上且 | AK | 2 | AF | ,则△AFK的面积为(A)4(B)8(C) 16(D)32(0,)上,函数y x 1, y 11)2, y x3中有三( 8)给出以下命题:①在区间x 2, y ( x个是增函数;②若log m 3 log n 30,则0n m 1 ;③若函数 f ( x) 是奇函数,则 f (x1) 的图象对于点A(1,0) 对称;④已知函数3x 2 ,x2,f ( x)1), x则方程log3 (x2,f (x)1有 2 个实数根,此中正确命题的个数为2(A)1(B)2(C)3(D)4第Ⅱ卷(共 110 分)y二、填空题:本大题共 6 小题,每题 5 分,共 30 分。

【推荐下载】2018届北京东城区高三数学模拟试卷及答案-优秀word范文 (10页)

【推荐下载】2018届北京东城区高三数学模拟试卷及答案-优秀word范文 (10页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 2018届北京东城区高三数学模拟试卷及答案高考数学复习必不可少的是数学模拟试卷,我们在复习阶段需要通过多做数学模拟试卷来提升巩固基础知识点,以下是小编为你整理的2018届北京东城区高三数学模拟试卷,希望能帮到你。

2018届北京东城区高三数学模拟试卷题目一、选择题:本大题12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则 ( )A. B. C. D.2.若复数满足 ( 为虚数单位),则复数的虚部为 ( )A.1B.C.D.3. 指数函数且在上是减函数,则函数在R上的单调性为 ( )A.单调递增B.单调递减C.在上递增,在上递减 D .在上递减,在上递增4.已知命题p: ;命题q:,则下列命题中的真命题是 ( )A. B. C. D.5.在下列区间中,函数的零点所在的区间为( )A.( ,0)B.(0, )C.( , )D.( , )6.设,则 ( )A. B. C. D.7.已知函数的图像关于对称,则函数的图像的一条对称轴是( )A. B. C. D.8. 函数的部分图象大致为 ( )9.函数的单调增区间与值域相同,则实数的取值为 ( )A. B. C. D.10.在整数集中,被7除所得余数为的所有整数组成的一个“类”,记作,即,其中 .给出如下五个结论:① ; ② ;③ ;④ ;⑤“整数属于同一“类””的充要条件是“ ”。

其中,正确结论的个数是 ( )A.5B.4C.3D.211.已知是定义在上的偶函数,对于 ,都有 ,当时,,若在[-1,5]上有五个根,则此五个根的和是 ( )A.7B.8C.10D.1212.奇函数定义域是,,当 >0时,总有>2 成立,则不等式 >0的解集为A. B.C. D.第Ⅱ卷 (非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.函数在点处切线的斜率为 .14.由抛物线,直线 =0, =2及轴围成的图形面积为 .15. 点是边上的一点,则的长为_____.16.已知函数则关于的不等式的解集为 .三、解答题:本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤17.(本小题满分10分)设、,,。

2018届北京市东城区高三第二学期综合练习(一)数学理-(27660)

2018届北京市东城区高三第二学期综合练习(一)数学理-(27660)

北京市东城区2017-2018学年度第二学期高三综合练习(一)数学(理科) 2018. 4本试卷共4页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合{}31A x x =-,{}12B x x x =-或,则A B =(A) {}32x x - (B) {}31x x --(C) {}11x x - (D) {}11x x -(2)复数1i z i=-在复平面上对应的点位于 (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限(3)已知,a b R ∈,且a b ,则下列不等式一定成立的是(A) 220a b - (B) cos cos 0a b -(C) 110a b - (D) 0a be e ---(4)在平面直角坐标系xOy中,角θ以Ox 为始边,终边与单位圆交于点(35,45),则tan()θπ+的值为(A)43(B)34(C)43-(D) 34-(5)设抛物线24y x=上一点P到y轴的距离是2,则P到该抛物线焦点的距离是(A)1 (B) 2 (C)3 (D)4(6)故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、“赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有(A)6种(B) 8种(C) 10种(D) 12种(7)设{}na是公差为d的等差数列,n S为其前n项和,则“d>0”是“{}nS为递增数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)某次数学测试共有4道题目,若某考生答对的题大于全部题的一半,则称他为“学习能手”,对于某个题目,如果答对该题的“学习能手”不到全部“学习能手”的一半,则称该题为“难题”.已知这次测试共有5个“学习能手”,则“难题”的个数最多为(A)4 (B) 3 (C)2 (D)1第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京市东城区高三一模理科数学试题及答案 精品

2018年北京市东城区高三一模理科数学试题及答案 精品

北京市东城区2018-2018学年度第二学期综合练习(一)高三数学 (理科)学校_____________班级_______________姓名______________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为(A ){3} (B ) {3,4} (C ){1,2} (D ){2,3} (2)已知ABCD 为平行四边形,若向量AB =a ,AC =b ,则向量BC 为(A )-a b (B )a +b (C )-b a (D )--a b(3)已知圆的方程为22(1)(2)4x y -+-=,那么该圆圆心到直线3,1x t y t =+⎧⎨=+⎩(t 为参数)的距离为(A )2(B )2(C )2 (D )2(4)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 (A )316 (B )14 (C )34 (D )116(5)已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于(A )130 (B )120 (C )55 (D )50(6)已知1(,0)F c -,2(,0)F c 分别是双曲线1C :22221x y a b-=(0,0)a b >>的两个焦点,双曲线1C 和圆2C :222x y c +=的一个交点为P ,且12212PF F PF F ∠=∠,那么双曲线1C 的离心率为 (A(B(C )2 (D1(7)已知定义在R 上的函数()f x 的对称轴为3x =-,且当3x ≥-时,()23x f x =-.若函数()f x 在区间(1,)k k -(k ∈Z )上有零点,则k 的值为(A )2或7- (B )2或8- (C )1或7- (D )1或8-(8)已知向量OA ,AB ,O 是坐标原点,若AB k OA =,且AB 方向是沿OA 的方向绕着A 点按逆时针方向旋转θ角得到的,则称OA 经过一次(,)k θ变换得到AB .现有向量=(1,1)OA 经过一次11(,)k θ变换后得到1AA ,1AA 经过一次22(,)k θ变换后得到12A A ,…,如此下去,21n n A A --经过一次(,)n n k θ变换后得到1n n A A -.设1(,)n n A A x y -=,112n n θ-=,1cos nnk θ=,则y x -等于 (A )1112sin[2()]211sin1sin sin 22n n --- (B )1112sin[2()]211cos1cos cos 22n n ---(C )1112cos[2()]211sin1sin sin 22n n --- (D )1112cos[2()]211cos1cos cos 22n n ---第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2018年北京市东城区高考数学一模试卷(理科)

2018年北京市东城区高考数学一模试卷(理科)

2018年北京市东城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 若集合A={x|−3<x<1},B={x|x<−1或x>2},则A∩B=()A.{x|−3<x<2}B.{x|−3<x<−1}C.{x|−1<x<1}D.{x|1<x<2}2. 复数z=i1−i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3. 已知a,b∈R,且a>b,则下列不等式一定成立的是()A.a2−b2>0B.cosa−cosb>0C.1 a −1b<0 D.e−a−e−b<04. 在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(35, 45 ),则tan(π+θ)的值为()A.4 3B.34C.−43D.−345. 设抛物线y2=4x上一点P到y轴的距离是2,则点P到该抛物线焦点的距离是()A.1B.2C.3D.46. 故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、“赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有()A.6种B.8种C.10种D.12种7. 设{a n}是公差为d的等差数列,S n为其前n项和,则“d>0”是“{S n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8. 某次数学测试共有4道题目,若某考生答对的题大于全部题的一半,则称他为“学习能手”,对于某个题目,如果答对该题的“学习能手”不到全部“学习能手”的一半,则称该题为“难题”.已知这次测试共有5个“学习能手”,则“难题”的个数最多为()A.4B.3C.2D.1二、填空题共6小题,每小题5分,共30分.在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+c2=b2+ac,则B=________π3.在极坐标系中,圆ρ=2cosθ的圆心到直线ρsinθ=1的距离为________.若x,y满足{x−y≤0x+y≤4x≥1,则2x+y的最大值为________.某几何体的三视图如图所示,则该几何体的表面积为________设平面向量a→,b→,c→为非零向量.能够说明“若a→⋅b→=a→∗c→,则b→=c→”是假命题的一组向量a→,b→,c→的坐标依次为________.单位圆的内接正n(n≥3)边形的面积记为f(n),则f(3)=________;下面是关于f(n)的描述:①f(n)=n2sin2πn②f(n)的最大值为π③f(n)<f(n+1)④f(n)<f(2n)≤2f(n)其中正确结论的序号为________.(注:请写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知函数f(x)=sin2x+2sin xcos x−cos2x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在[0,π2brack上的最大值和最小值.从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;(II)从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为ξ,求ξ的分布列和数学期望E(ξ);(Ill)试判断这100名学生数学成绩的方差a与语文成绩的方差b的大小.(只需写出结论)如图1,在边长为2的正方形ABCD中,P为CD中点,分别将△PAD,△PBC沿PA,PB 所在直线折叠,使点C与点D重合于点O,如图2.在三棱锥P−OAB中,E为PB中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP与平面POA所成角的正弦值;(Ⅲ)求二面角P−AO−E的大小.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,且过点A(2, 0).(Ⅰ)求椭圆C的方程;(II)设M,N是椭圆C上不同于点A的两点,且直线AM,AN斜率之积等于−14,试问直线MN是否过定点?若是,求出该点的坐标;若不是,请说明理由.已知函数f(x)=e x−a(x+1).(Ⅰ)若曲线y=f(x)在(0, f(0))处的切线斜率为0,求a的值;(Ⅱ)若f(x)≥0恒成立,求a的取值范围;(Ⅲ)求证:当a=0时,曲线y=f(x)(x>0)总在曲线y=2+lnx的上方.在n×n(n≥2)个实数组成的n行n列的数表中,a i,j表示第i行第j列的数,记r i=a i1+ a i2+...+a in(1≤i≤n).c j=a1j+a2j+...+a nj(1≤j≤n)若a i,j∈{−1, 0, 1} ((1≤i, j≤n)),且r1,r2,…,r n,c1,c2,..,c n,两两不等,则称此表为“n阶H表”,记H={ r1, r2, ..., r n, c1, c2, .., c n}.(I)请写出一个“2阶H表”;(II)对任意一个“n阶H表”,若整数λ∈[−n, n],且λ∉H n,求证:λ为偶数;(Ⅲ)求证:不存在“5阶H表”.参考答案与试题解析2018年北京市东城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】B【考点】交集及其运算【解析】根据集合交集的定义进行求解即可.【解答】集合A={x|−3<x<1},B={x|x<−1或x>2},则A∩B={x|−3<x<−1},2.【答案】B【考点】复数的代数表示法及其几何意义【解析】将复数化简整理,得z=−12+12i,由此不难得到它在复平面内对应的点,得到点所在的象限.【解答】解:z=i1−i =i(1+i)(1−i)(1+i)=−12+12i,所以复数z=i1−i 在复平面内对应的点为(−12, 12),为第二象限内的点.故选B.3.【答案】D【考点】不等式的概念【解析】由a<0,b<0,可判断A;a=2π,b=0,即可判断B;由a>0,b<0,即可判断C;运用指数函数的单调性,即可判断D.【解答】a,b∈R,且a>b,a2−b2=(a+b)(a−b),若a<0,b<0,则a+b<0,a−b>0,a2−b2<0,A不一定成立;若a=2π,b=0,则cos2π=cos0=1,B不一定成立;若a>0,b<0,则1a >1b,C不一定成立;由a>b可得−a<−b,函数y=e x在R上递增,可得e−a<e−b,即e−a−e−b<0,则D一定成立,4.【答案】A【考点】三角函数运用诱导公式化简求值【解析】由已知利用任意角的三角函数的定义可求tanθ的值,进而运用诱导公式化简求值即可得解.【解答】∵角θ以Ox为始边,终边与单位圆交于点(35, 45 ),∴tanθ=4535=43,∴tan(π+θ)=tanθ=43.5.【答案】C【考点】抛物线的求解【解析】由题意可得点P的横坐标为2,抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线x=−1的距离,由此求得结果.【解答】由于抛物线y2=4x上一点P到y轴的距离是2,故点P的横坐标为(2)再由抛物线y2=4x的准线为x=−1,以及抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,故点P到该抛物线焦点的距离是2−(−1)=3,6.【答案】C【考点】排列、组合及简单计数问题【解析】根据题意,分2种情况讨论:①,该同学只参观一个画展,②,该同学参观两个画展,求出每种情况的参加方案的数目,由加法原理计算可得答案.【解答】根据题意,分2种情况讨论:①,该同学只参观一个画展,在“历代青绿山水画展”、“赵孟頫书画展”中任选1个,有C21=2种选法,可以在“戏曲文化展”、“明代御窖瓷器展”中任选1个,有C21=2种选法,将选出2的2个展览安排在五一的上、下午,有A22种情况,则只参观一共画展的方案有2×2×2=8种,②,该同学参观两个画展,将“历代青绿山水画展”、“赵孟頫书画展”全排列,安排在五一的上、下午,有A22种情况,即参观两个画展有2种方案,则不同的参观方案共有8+2=10个;7.【答案】D【考点】充分条件、必要条件、充要条件【解析】根据等差数列的前n项和公式以及充分条件和必要条件的定义进行判断即可.【解答】由S n+1>S n⇔(n+1)a1+n(n+1)2d>na1+n(n−1)2d⇔dn+a1>0⇔d≥0且d+a1>0.即数列{S n}为递增数列的充要条件d≥0且d+a1>0,则“d>0”是“{S n}为递增数列”的既不充分也不必要条件,8.【答案】D【考点】概率的应用【解析】根据题意,结合题目中“学习能手”、“难题”的定义,分析可得5个“学习能手”最多可以做错5道题,而至少有3个“学习能手”做错的题目称为“难题”,据此分析可得答案.【解答】根据题意,每位“学习能手”最多做错1道题,则5个“学习能手”最多可以做错5道题,又由至少有3个“学习能手”做错的题目称为“难题”,故难题最多有1道;二、填空题共6小题,每小题5分,共30分.【答案】π3【考点】余弦定理【解析】根据题意,分析可得a2+c2−b2=ac,结合余弦定理分析可得cosB=a2+c2−b22ac =12,又由B的范围,分析可得答案.【解答】根据题意,△ABC中,若a2+c2=b2+ac,则有a2+c2−b2=ac,则cosB=a2+c2−b22ac =12,又由0<B<π,则B=π3;【答案】1圆的极坐标方程 【解析】首先把极坐标方程转换为直角坐标方程,进一步利用点到直线的距离求出结果. 【解答】圆ρ=2cosθ转化为直角坐标方程为:x 2+y 2=2x , 转化为标准形式为:(x −1)2+y 2=1, 则圆心坐标为:(1, 0)半径r =(1)直线ρsinθ=1转化为直角坐标方程为:y =1, 故直线与圆相切,则圆心到直线的距离为(1) 故答案为:1 【答案】 6【考点】 简单线性规划 【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【解答】作出不等式组对应的平面区域如图:(阴影部分ABC ). 由z =2x +y 得y =−2x +z , 平移直线y =−2x +z ,由图象可知当直线y =−2x +z 经过点C 时,直线y =−2x +z 的截距最大, 此时z 最大.由{x −y =0x +y =4,解得{x =2y =2 ,即C(2, 2) 将C(2, 2)的坐标代入目标函数z =2x +y ,得z =2×2+2=(6)即z =2x +y 的最大值为(6) 【答案】 12+2√3 【考点】由三视图求体积 【解析】几何体为三棱柱,根据三视图尺寸计算棱柱的表面积. 【解答】由三视图可知几何体为侧放的正三棱柱, 底面边长为2,棱柱的高为2,∴ 几何体的表面积为12×2×√3×2+2×3×2=12+2√3. 【答案】(1, 0),(0, 1),(0, −1) 【考点】平面向量数量积的性质及其运算律 【解析】令b →,c →为与a →垂直的两个相反向量即可得出命题为假.不妨设a→,b→,c→均为单位向量,则只需b→,c→与a→的夹角相等即可,特别地,不妨令b→,c→与a→都垂直,则只需令b→,c→为相反向量即可.故而,当a→=(1, 0),b→=(0, 1),c→=(0, −1)时,即可说明“若a→・b→=a→∗c→,则b→=c→”是假命题.【答案】3√34,①③④【考点】命题的真假判断与应用【解析】求得圆的内接正n边形的边长及边心距,再由三角形的面积公式可得f(n),运用导数,结合三角函数的性质可得f(n)的单调性,再由二倍角公式和正弦函数、余弦函数的图象和性质,即可判断正确结论.【解答】半径为1的圆的内接正n边形的边长为2sinπn,边心距为cosπn,则正n边形的面积为f(n)=n⋅12⋅2sinπn⋅cosπn=n2sin2πn,可得f(3)=32sin2π3=3√34;考虑函数f(x)=x2sin2πx,x>2,且x∈N,可得导数f′(x)=12sin2πx−πxcos2πx,当x=3,4时,f′(x)>0成立;当x>4,且x∈N,0<2πx <π2,有0<sin2πx <1,0<cos2πx<1,且sin2πx <2πx<tan2πx,可得12sin2πx>πxcos2πx,可得f′(x)>0,则f(x)在x>2,且x∈N,为增函数,则f(n)<f(n+1);由于f(n)为增函数,且sin2πn <2πn,0<2πn<π2,可得f(n)<n2⋅2πn=π,即f(n)取不到π;又f(n)−f(2n)=n2sin2πn−nsinπn=nsinπncosπn−nsinπn=nsinπn (cosπn−1)<0,即f(n)<f(2n);由f(2n)−2f(n)=nsinπn −2⋅n2sin2πn=nsinπn(1−2cosπn),由于n≥3,可得12≤cosπn<1,可得f(2n)−2f(n)≤0,即f(2n)≤2f(n).综上可得,正确结论序号为①③④.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】(Ⅰ)函数f(x)=sin2x+2sinxcosx−cos2x=sin2x−cos2x=√2sin(2x−π4);则f(x)的最小正周期为T=2π2=π;(Ⅱ)x∈[0, π2]时,2x−π4∈[−π4, 3π4];∴sin(2x−π4)∈[−√22, 1],∴f(x)在[0,π2brack上的最大值是√2,最小值是−(1)【考点】三角函数的周期性及其求法三角函数的最值【解析】(Ⅰ)化函数f(x)为正弦型函数,求出它的最小正周期;(Ⅱ)求出x∈[0, π2]时2x−π4的取值范围,根据正弦函数的图象与性质求出f(x)的最大、最小值.【解答】(Ⅰ)函数f(x)=sin2x+2sinxcosx−cos2x=sin2x−cos2x=√2sin(2x−π4);则f(x)的最小正周期为T=2π2=π;(Ⅱ)x∈[0, π2]时,2x−π4∈[−π4, 3π4];∴sin(2x−π4)∈[−√22, 1],∴f(x)在[0,π2brack上的最大值是√2,最小值是−(1)【答案】(Ⅰ)由图知有9名学生数学和语文成绩均低于60分,则从100名学生中随机选一人,该生数学和语文成绩均低于60分的概率为9100.(Ⅱ)由题知ξ的可能取值为0,1,2,3,P(ξ=0)=C62C102=1545=13,P(ξ=1)=C61C41C102=2445=815,P(ξ=2)=C42C102=645=215,∴ξ的分布列为:E(ξ)=0×13+1×815+2×215=45.(Ⅲ)a>b.【考点】离散型随机变量及其分布列离散型随机变量的期望与方差【解析】(Ⅰ)由图知有9名学生数学和语文成绩均低于60分,从100名学生中随机选一人,利用古典概型能求出该生数学和语文成绩均低于60分的概率.(Ⅱ)由题知ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).(Ⅲ)a>b.【解答】(Ⅰ)由图知有9名学生数学和语文成绩均低于60分,则从100名学生中随机选一人,该生数学和语文成绩均低于60分的概率为9100.(Ⅱ)由题知ξ的可能取值为0,1,2,3,P(ξ=0)=C62C102=1545=13,P(ξ=1)=C61C41C102=2445=815,P(ξ=2)=C42C102=645=215,∴ξ的分布列为:E(ξ)=0×13+1×815+2×215=45.(Ⅲ)a >b . 【答案】则A(1, 0, 0),O(−1, 0, 0),B(0, √3, 0),P(−1, 0, 1),E(−12, √32, 12),∴ OA →=(2, 0, 0),OE →=(12, √32, 12),设平面OAE 的一个法向量为m →=(x, y, z),则{2x =012x +√32y +12z =0, 令y =1得m →=(0, 1, −√3),又BM ⊥平面POA ,故而n →=(0, 1, 0)为平面POA 的一个法向量, ∵ cos <m →,n →>=m →∗n→|m →||n →|=12×1=12,且二面角P −AO −E 为锐二面角,∴ 二面角P −AO −E 等于π3.【考点】直线与平面垂直 直线与平面所成的角二面角的平面角及求法 【解析】(I )根据PO ⊥OA ,PO ⊥OB 即可得出PO ⊥平面AOB ,故而PO ⊥AB ;(II)取OA 的中点M ,证明BM ⊥平面POA 得出∠BPM 为所求角,在Rt △PBM 中求出sin∠BPM ;(III)建立坐标系,求出平面PAO 和平面AOE 的法向量,计算法向量的夹角得出二面角的大小. 【解答】(I )证明:∵ PO ⊥OA ,PO ⊥OB ,OA ∩OB =O , ∴ PO ⊥平面AOB ,又AB ⊂平面AOB , ∴ PO ⊥AB .(II)取OA 的中点M ,连接BM ,PM , ∵ OA =OB =AB =2, ∴ BM ⊥OA ,BM =√3,∵ PO ⊥平面AOB ,BM ⊂平面AOB , ∴ PO ⊥BM ,又OA ∩PO =O , ∴ BM ⊥平面POA ,∴ ∠BPM 为PB 与平面POA 所成的角, 又PB =2+OB 2=√5, ∴ sin∠BPM =BM PB=√3√5=√155. (III)取PA 的中点N ,连接MN ,则MN // PO ,MN =12PO =12,∴ MN ⊥平面AOB .以M 为原点,以MA ,MB ,MN 为坐标轴建立空间直角坐标系, 【答案】(Ⅰ)由题意过点A(2, 0),则a =2,椭圆的离心率e =ca=√32,则c =√3,b 2=a 2−c 2=1,∴ 椭圆的标准方程:x 24+y 2=1;(II)①当直线MN 的斜率时,则M(x 0, y 0),N(x 0, −y 0), 则k AM ⋅k AN =y 0x−2⋅−y 0x−2=−14,则y 02=14(x 0−2)2, 由M 在椭圆上,x 024+y 02=1,解得:x 0=0,y 0=±1,则直线MN 的方程为:x =0,②当MN 的斜率存在时,当直线斜率存在,且k ≠0,则直线MN 的方程:y =kx +m ,M(x 1, y 1),N(x 2, y 2),则{x 24+y 2=1y =kx +m ,整理得:(1+4k 2)x 2+8kmx +4m 2−4=0,△>0,即4k 2+1−m 2>0,x 1+x 2=−8km1+4k 2,x 1x 2=4m 2−41+4k,y 1y 2=(kx 1+m)(kx 2+m)=m 2−4k 21+4k ,k AM ⋅k AN =y 1x 1−2⋅y 2x 2−2=y 1y 2x 1x 2−2(x 1+x 2)+4=m 2−4k 21+4k 24m 2−41+4k 2+16km 1+4k 2+4+16k 21+4k 2=m 2−4k 24m +16km+16k=−14,则m 2−4k 2=−m 2−4km −4k 2,∴ m 2+2km =0,解得:m =0或m =−2k ,当m =−2k 时,直线MN 方程:y =k(x −2),恒过点(2, 0),不符合① 当m =0,直线MN 的方程:y =kx ,结合①,恒过点(0, 0), 综上可知:直线MN 过点(0, 0). 【考点】椭圆的标准方程 椭圆的应用直线与椭圆的位置关系 【解析】(Ⅰ)根据椭圆的离心率公式及椭圆过点A ,即可求得a 和b 的值,即可求得椭圆方程; (II)分类讨论,当直线MN 的斜率存在时,代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得m =0或m =−2k ,结合直线的斜率不存在的情况,即可求得直线MN 是否过定点. 【解答】(Ⅰ)由题意过点A(2, 0),则a =2,椭圆的离心率e =ca=√32,则c =√3,b 2=a 2−c 2=1,∴ 椭圆的标准方程:x 24+y 2=1;(II)①当直线MN 的斜率时,则M(x 0, y 0),N(x 0, −y 0), 则k AM ⋅k AN =y 0x−2⋅−y 0x−2=−14,则y 02=14(x 0−2)2,由M 在椭圆上,x 024+y 02=1,解得:x 0=0,y 0=±1,则直线MN 的方程为:x =0,②当MN 的斜率存在时,当直线斜率存在,且k ≠0,则直线MN 的方程:y =kx +m ,M(x 1, y 1),N(x 2, y 2),则{x 24+y 2=1y =kx +m ,整理得:(1+4k 2)x 2+8kmx +4m 2−4=0,△>0,即4k 2+1−m 2>0,x 1+x 2=−8km1+4k 2,x 1x 2=4m 2−41+4k 2,y 1y 2=(kx 1+m)(kx 2+m)=m 2−4k 21+4k 2,k AM ⋅k AN =y 1x1−2⋅y 2x2−2=y 1y 2x1x 2−2(x 1+x 2)+4=m 2−4k 21+4k 24m 2−41+4k 2+16km 1+4k 2+4+16k 21+4k 2=m 2−4k 24m 2+16km+16k 2=−14,则m 2−4k 2=−m 2−4km −4k 2,∴ m 2+2km =0,解得:m =0或m =−2k ,当m =−2k 时,直线MN 方程:y =k(x −2),恒过点(2, 0),不符合① 当m =0,直线MN 的方程:y =kx ,结合①,恒过点(0, 0), 综上可知:直线MN 过点(0, 0). 【答案】(I)f′(x)=e x −a ,∴ f′(0)=1−a =0,解得a =(1)(II)∵ f(x)≥0恒成立,即e x ≥a(x +1)恒成立, ∴ y =e x 的图象在直线y =a(x +1)上方,由图象可知:a ≥(0)设直线y =k(x +1)与y =e x 相切,切点为(x 0, y 0), 则{y 0=e x 0y 0=k(x 0+1)e x 0=k,解得{x 0=0y 0=1k =1 ,∴ 0≤a ≤(1)(III)当a =0时,f(x)=e x ,设曲线y =2+lnx 在(x 1, y 1)处的切斜斜率为1, 则{1x 1=1y 1=2+lnx 1,解得{x 1=1y 1=2 , ∴ 曲线y =2+lnx 在(1, 2)处的切斜为y =x +1,∴ y =2+lnx 的图象在直线y =x +1下方, 由(II)可知y =e x 的图象在直线y =x +1上方,∴ 当a =0时,曲线y =f(x)(x >0)总在曲线y =2+lnx 的上方. 【考点】导数求函数的最值利用导数研究曲线上某点切线方程 【解析】(I )根据f′(0)=0解出a 的值;(II)结合函数图象,求出y =e x 的过点(−1, 0)的切线方程,从而可得a 的范围;(III)求出y =2+lnx 的斜率为1的切线,可得直线y =x +1为两函数图象的公切线,从而得出结论. 【解答】(I)f′(x)=e x −a ,∴ f′(0)=1−a =0,解得a =(1)(II)∵ f(x)≥0恒成立,即e x ≥a(x +1)恒成立, ∴ y =e x 的图象在直线y =a(x +1)上方,由图象可知:a ≥(0)设直线y =k(x +1)与y =e x 相切,切点为(x 0, y 0), 则{y 0=e x 0y 0=k(x 0+1)e x 0=k,解得{x 0=0y 0=1k =1 ,∴ 0≤a ≤(1)(III)当a =0时,f(x)=e x ,设曲线y =2+lnx 在(x 1, y 1)处的切斜斜率为1, 则{1x 1=1y 1=2+lnx 1,解得{x 1=1y 1=2 , ∴ 曲线y =2+lnx 在(1, 2)处的切斜为y =x +1,∴ y =2+lnx 的图象在直线y =x +1下方, 由(II)可知y =e x 的图象在直线y =x +1上方,∴ 当a =0时,曲线y =f(x)(x >0)总在曲线y =2+lnx 的上方. 【答案】(Ⅰ)由题意写出一个“2阶H 表”如下:证明:(Ⅱ)对任意一个“n阶H表”,r i表示第i行所有数的和,c i表示第j列所有数的和,(1≤i, j≤n),∑i=n ri与∑j=1n cj均表示数表中所有数的和,∴∑=i=n ri∑j=1n cj,∵a ij∈{−1, 0, 1},∴r1,r2,…,r n,c1,c2,..,c n只能取[−n, n]内的整数,∵r1,r2,…,r n,c1,c2,..,c n互不相等,λ∈[−n, n],且λ∉H n,∴{r1, r2, ..., r n, c1, c2, .., c n}={−n, −n+1, ..., −1, 0, 1, ..., n−1, n},∴λ+∑+i=1n ri ∑=j=1n cj−n+(−n+1)+...+(−1)+0+1+...+(n−1)+n=0,∴λ=−2∑i=1n ri为偶数.(Ⅲ)假设存在一个“5阶H表”,则由(Ⅱ)知5,−5,3,−3∈H5,且4∈H5和−4∈H5至少有一个成立,不妨设4∈H5,设r1=5,r2=−5,则a1j=1,a2j=−1(1≤j≤5),∴|c j|≤3,(1≤j≤5),∴可设r3=4,a31=a32=a33=a34=1,a35=0,①若3是某列的和,∵|c5|≤2,∴只能是某前四列的和,不妨设是第一列,即a41=a51=1,现考虑−3,只能是r4或r5,不妨设r4=−3,即a42=a43=a44=a45=−1,由c2,c3,c4两两不等知a52,a53,a54两两不等,不妨设a52=−1,a53=0,a54=1,若a55=−1,则r5=0=c3,若a55=0,则r5=1=c4,若a55=1,则c5=0=c3,均与已知矛盾.②若3是某行的和,不妨设r4=3,则第4行至少有3个别,若这3个1是前四个中的某三个数,不妨设a41=a42=a43=1,则前五行前三个数只能是3个不同的数,不妨设a51=−1,a52=0,a53=1,则c3=3=r4矛盾,故第四行只能前四个数有2个1,第五个数为1,不妨设a41=a42=0,a43=a44=a45=1,∴r5=−3,第5行只能是2个0,3个−1或1个1,4个−1,则a51,a52,a53至少两个数相同,不妨设a51=a52,则c1=c2,与已知矛盾.综上,不存在“5阶H表”.【考点】数列的应用【解析】(Ⅰ)利用“n阶H表”的概念,由题意能写出一个“2阶H表”.(Ⅱ)对任意一个“n阶H表”,r i表示第i行所有数的和,c i表示第j列所有数的和,(1≤i, j≤n),推导出∑=i=n ri ∑j=1n cj,从而λ+∑+i=1n ri∑=j=1n cj0,由此能证明λ=−2∑i=1n ri为偶数.(Ⅲ)假设存在一个“5阶H表”,则5,−5,3,−3∈H5,且4∈H5和−4∈H5至少有一个成立,推导出假设不成立,由此能证明不存在“5阶H表”.【解答】(Ⅰ)由题意写出一个“2阶H表”如下:证明:(Ⅱ)对任意一个“n阶H表”,r i表示第i行所有数的和,c i表示第j列所有数的和,(1≤i, j≤n),∑i=n ri与∑j=1n cj均表示数表中所有数的和,∴∑=i=n ri∑j=1n cj,∵a ij∈{−1, 0, 1},∴r1,r2,…,r n,c1,c2,..,c n只能取[−n, n]内的整数,∵r1,r2,…,r n,c1,c2,..,c n互不相等,λ∈[−n, n],且λ∉H n,∴{r1, r2, ..., r n, c1, c2, .., c n}={−n, −n+1, ..., −1, 0, 1, ..., n−1, n},∴λ+∑+i=1n ri ∑=j=1n cj−n+(−n+1)+...+(−1)+0+1+...+(n−1)+n=0,∴λ=−2∑i=1n ri为偶数.(Ⅲ)假设存在一个“5阶H表”,则由(Ⅱ)知5,−5,3,−3∈H5,且4∈H5和−4∈H5至少有一个成立,不妨设4∈H5,设r1=5,r2=−5,则a1j=1,a2j=−1(1≤j≤5),∴|c j|≤3,(1≤j≤5),∴可设r3=4,a31=a32=a33=a34=1,a35=0,①若3是某列的和,∵|c5|≤2,∴只能是某前四列的和,不妨设是第一列,即a41=a51=1,现考虑−3,只能是r4或r5,不妨设r4=−3,即a42=a43=a44=a45=−1,由c2,c3,c4两两不等知a52,a53,a54两两不等,不妨设a52=−1,a53=0,a54=1,若a55=−1,则r5=0=c3,若a55=0,则r5=1=c4,若a55=1,则c5=0=c3,均与已知矛盾.②若3是某行的和,不妨设r4=3,则第4行至少有3个别,若这3个1是前四个中的某三个数,不妨设a41=a42=a43=1,则前五行前三个数只能是3个不同的数,不妨设a51=−1,a52=0,a53=1,则c3=3=r4矛盾,故第四行只能前四个数有2个1,第五个数为1,不妨设a41=a42=0,a43=a44=a45=1,∴r5=−3,第5行只能是2个0,3个−1或1个1,4个−1,则a51,a52,a53至少两个数相同,不妨设a51=a52,则c1=c2,与已知矛盾.综上,不存在“5阶H表”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市东城区2017-2018学年度第二学期高三综合练习(一)数学(理科)本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{|31}A x x =-<<,{1B x x =<-或2}>x ,则=A BA.{|32}x x -<<B.{|31}x x -<<-C.{|11}x x -<<D.{|12}x x <<2.复数1iz i=-在复平面上对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,a b R ∈,且a b >,则下列不等式一定成立的是A.220a b ->B.cos cos 0a b ->C.110ab-<D.0a b e e ---<4.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34(,)55,则tan()πθ+的值为 A.43B.34C.43-D.34-5.设抛物线24=上一点P到y轴的距离是2,则P到该抛物线焦点的y x距离是A.1B.2C.3D.46.故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、“赵孟頫书画展”四个展览。

某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有A.6种B.8种C.10种D.12种7.设{}n a是公差为d的等差数列,n S为其前n项和,则“0d>”是“{}n S为递增数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.某次数学测试共有4道题目,若某考生答对的题大于全部题的一半,则称他为“学习能手”,对于某个题目,如果答对该题的“学习能手”不到全部“学习能手”的一半,则称该题为“难题”,已知这次测试共有5个“学习能手”,则难题的个数最多为A.4B.3C.2D.1第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222a c b ac +=+,则B =____________.10.在极坐标系中,圆2cos ρθ=的圆心到直线sin 1ρθ=的距离为_____.11.若,x y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为_____.12.某几何体的三视图如图所示,则该几何体的表面积为_____.13.设平面向量a,b,c 为非零向量,能够说明若“⋅⋅a b =a c ,则b =c ”是假命题的一组向量a,b,c 的坐标依次为______.14.单位圆的内接正n (3n ≥)边形的面积记为()f n ,则(3)=f ________; 下面是关于()f n 的描述: ①2()=sin2nf n nπ; ②()f n 的最大值为π;③()(1)f n f n <+;④()(2)2()f n f n f n <≤.其中正确结论的序号为________(注:请写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,验算步骤或证明.15.(本题满分13分)已知函数22()sin 2sin cos cos f x x x x x =+- (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.(本小题满分13分)从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;(Ⅱ)从语文成绩大于80分的学生中随机选取两人,记这两人中数Eξ;学成绩高于80分的人数为ξ,求ξ的分布列和数学期望()(Ⅲ)试判断这100名学生数学成绩的方差a与语文成绩的方差b的大小.(只需写出结论)17.(本小题14分)如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别 将,PAD PBC ∆∆沿,PA PB 所在直线折叠,使点C 与点D 重合 于点O ,如图2. 在三棱锥P OAB -中,E 为PB 中点. (Ⅰ)求证:PO AB ⊥;(Ⅱ)求直线BP 与平面POA 所成角的正弦值; (Ⅲ)求二面角P AO E --的大小.18.(本小题13分)已知椭圆()2222:10x y C a b a b +=>>3,且过点()2,0A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上不同于点A 的两点,且直线AM ,AN 的斜率之积等于14-,试问直线MN 是否过定点?若是,求出该点的坐标;若不是,请说明理由.19. (本小题满分14分)已知函数()(1)x f x e a x =-+.(Ⅰ)若曲线()y f x =在(0,(0))f 处的切线斜率为0,求a 的值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围(Ⅲ)求证:当0a =时,曲线()(0)y f x x =>总在曲线2ln y x =+的上方.20.(本小题13分)在(2)n n n ⨯≥个实数组成的n 行n 列的表中,ij a 表示第i 行第j 列的数,记12(1)i i i in r a a a i n =++⋅⋅⋅+≤≤,12(1)j j j nj c a a a j n =++⋅⋅⋅+≤≤.若{}1,0,1(1,)ij a i j n ∈-≤≤,且1212,,,,,n n r r r c c c ⋅⋅⋅⋅⋅⋅两两不等,则称此表为 “n 阶H 表”,记{}1212,,,,,,,n n n H r r r c c c =⋅⋅⋅⋅⋅⋅. (Ⅰ)请写出一个“2阶H 表”;(Ⅱ)对任意一个“n 阶H 表”,若整数[,]n n λ∈-,且n H λ∉, 求证:λ为偶数;(Ⅲ)求证:不存在“5阶H 表”.北京市东城区2017-2018学年度第二学期高三综合练习(一)数学(理科)本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.【答案】B【解析】由题易知,{|31}.A B x x =-<<-故选B2.【答案】B 【解析】(1)1111(1)(1i)222i i i i z i i i +-====-+--+,所以z 在复平面上对应的点为11(,)22-,在第二象限,故选B3.【答案】D【解析】,,a b a b >∴-<-由x y e =在R 上单调递增可知,,0,a b a b e e e e ----<∴-<故选D4.【答案】A【解析】由正切函数定义可知: 445tan 335y x θ===,4tan()tan 3πθθ+==,故选A5.【答案】C【解析】在抛物线中, 24.y x =焦点(1,0),F 准线1.x =-|||||| 1.PF PH PM ==+P 点到y 轴的距离为2.|| 2.PM ∴=即||||||1 3.PF PH PM ==+=故选C6.【答案】C【解析】法一:224210A A -=种法二:1122222210A A A A ⨯⨯+=种.故选C7.【答案】D【解析】充分条件的反例,当14a =-,1d =时,114S a ==-,2127S a a =+=-,充分不成立.必要条件的反例,例n S n =,11n n n S S a --==,0d =,必要不成立. 故选D.8.【答案】D【解析】由题意可知每位“学习能手”最多做错1道题,5位“学习能手”则最多做错5道题.而至少有3个“学习能手”做错的题目才能称之为“难题”,所以难题最多1道.故选D.第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.【答案】3π【解析】2221cos 222a cb ac B ac ac +-===,3B π∴=10.【答案】1【解析】即求2220x y x +-=圆心到直线1y =的距离,()2211x y ∴-+=的圆心为()1,0.距离为1.11.【答案】6【解析】可行域如右图所示:设2+z x y =即2y z x =-,当2y z x =-过(2,2)B 时,z 取最大值,所以6z =.12.【答案】23+12 【解析】该几何体如图所示:可知2AB AC BC ===,ABC 为等边三角形, 所以12332ABCS=⨯⨯=所以四边形11ACC A 的面积为 11224ACC A S=⨯=,所以11232312ABCACC A S SS=+=+表.13.【答案】(1,1)a =,(1,2)b =,(2,1)c =(答案不唯一) 【解析】设(1,1)a =,(1,2)b =,(2,1)c =,则3⋅a b =,3⋅a c =,所以⋅⋅a b =a c 但≠b c ,所以若⋅⋅a b =a c ,则b =c 为假命题。

14.①③④ 【解析】内接正n 边形可拆解为n 个等腰三角形,腰长为单位长度1,顶角为2n π.每个三角形的面积为12sin 2nπ,所以正n 边形面积为 2()sin 2n f n n π=.323(3)sin 232=f π=,①正确;正n 边形面积无法等于圆的面积,所以②不对;随着n 的值增大,正n 边形面积也越来越大,所以③正确; 当且仅当3n =时,有2(3)(6)f f =,由几何图形可知其他情况下都有(2)2()f n f n <,所以④正确.四、解答题共6小题,共80分.解答应写出文字说明,验算步骤或证明. 17. 【解析】(Ⅰ)由题意得:()sin 2cos 2)4f x x x x π=-=-,22T ππ∴== (Ⅱ)当0,2x π⎡⎤∈⎢⎥⎣⎦时,32,444x πππ⎡⎤-∈-⎢⎥⎣⎦ 当242x ππ-=时,即38x π=时,()f x . 当244x ππ-=-时,即0x =时,()f x 取得最小值1-.所以()f x 在0,2π⎡⎤⎢⎥⎣⎦和1-.18. 【解析】(Ⅰ)由图知有9名学生数学和语文成绩均低于60分,则从100名学生中随机选一人,该生数学和语文成绩均低于60分的概率为9100. (Ⅱ)由题可知,ξ的可能取值为0,1,226210151(0)=453C P C ξ===1164210248(1)4515C C P C ξ⋅==== 2421062(2)=4515C P C ξ===1824()012315155E ξ=⨯+⨯+⨯=(Ⅲ)a b >17.【解析】(Ⅰ)由图1知,PD AD PC CB ⊥⊥由图2知,C D 重合于点O .则,PO AO PO BO ⊥⊥AOBO O =AO ⊂面AOB BO ⊂面AOBPO ∴⊥面AOB ,又AB ⊂面AOB PO AB ∴⊥(Ⅱ)由题知1OP =2OA OB AB ===ABO ∆为等边三角形过O 取1OF = 延长作OF AO ⊥建立如图空间直角坐标系则()()()()0,0,02,0,0,0,0,13,0O A P B ,,易知面POA 的法向量为()0,1,0OF =()13,1BP =- 设BP 与平面POA 夹角为θ则315sin cos ,515OF BP OF BP OF BPθ⋅-====⨯⋅∴ 直线BP 与平面POA(Ⅲ)由(Ⅱ)知面POA 的法向量为()0,1,0OF = 设面EOA 法向量为(,,)m x y z =易知E 为PB 中点11()22E ∴,,11()22OE =,,(200)OA =,, 00OE m OA m ⎧⋅=⎪∴⎨⋅=⎪⎩即022220x z y x ⎧++=⎪⎨⎪=⎩令1y =-则(0,m =-则11cos ,212m OF m OF m OF⋅-===-⨯⋅ 由图知二面角为锐角,∴ 二面角P AO E --为3π18.【解析】(Ⅰ)32e =,c a ∴=,过()2,0,2a ∴=,c =2221b a c =-=,2214x y ∴+=(Ⅱ)①当MN 斜率不存在时,设()00,M x y ,则()00,N x y -,00001224AM AN y y k k x x -⋅=⋅=---,()2200124y x =-, 又()00,M x y 在椭圆上,220014x y ∴+=, 解得00x =,01y =±,:0MN l x ∴=.②当MN 斜率存在时,设:MNl y kx m =+,与椭圆联立,由2214x y y kx m ⎧+=⎪⎨⎪=+⎩得()222148440k xkmx m +++-=,0∆>,即22410k m +->,设()11,M x y ,()22,N x y ,则12221228144414km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,()()2212122414m k y y kx m kx m k -=++=+, ()12121212122224AM AN y y y y k k x x x x x x ⋅=⋅=---++222222222222441144416416416164141414m k m k k m km k m km k k k k --+===--++++++++,2222444m k m km k ∴-=---, 220m km +=,0m ∴=或2m k =-,当2m k =-时,():2MN l y k x =-, 恒过()2,0不符合①, 当0m =时,:MN l y kx =, 结合①,恒过()0,0, 综上,直线MN 恒过()0,0.19. 【解析】(Ⅰ)()x f x e a '=-,由题可得(0)0f '=,即10a -=,故1a = (Ⅱ)()x f x e a '=-①当0a =时,()0x f x e =>恒成立,符合题意。

相关文档
最新文档