第二章音频的数字化
《音频数字化》课件

音频编辑和处理
数字音频工具提供丰富的编辑和处理功能,使音频 效果更加精细和个性化。
音频传输和存储
数字音频的压缩和网络传输技术使得音频内容能够 快速传输和存储。
音乐播放器和流媒体服务
数字音频技术促进了音乐播放器和流媒体服务的发 展,使音乐更普及和便捷。
结语
音频数字化的未来发展充满无限可能,但也面临着一些挑战。只有充分认识和发挥音频数字化的 价值和意义,才能更好地应对挑战。
音频数字化的意义
音频数字化使得音频信号能够以数字形式存储、传输和处理,提高音频质量和便捷性。
常见的音频数字化格式
常见的音频数字化格式包括WAV、MP3、AAC、FLAC等。
音频数字化原理
音频数字化涉及模拟信号与数字信号之间的转换,以及ADC和DAC转换器的工作原理。
模拟信号与数字信号
模拟信号是连续变化的信号,而 数字信号是离散的信号,可以通 过采样和量化将其转换。
1
录制和采集
使用录音设备或计算机软件采集音频信号,并将其转为数字音频。
2
编码和压缩
对数字音频进行编码和压缩,以减少文件大小并提高传输效率。
3
存储和传输
将数字音频保存在存储设备中,或通过网络传输音频格式决定了音频信号的存储和传输方式,常见格式包括WAV、MP3、AAC、FLAC等。
WAV格式
WAV是一种无损音频格式,支持高音质的音频录制和 编辑。
MP3格式
MP3是一种有损压缩音频格式,文件大小较小,适合 在网络上传输和存储。
AAC格式
FLAC格式
数字音频的应用
数字音频在音频录制、编辑和处理、音频传输和存储、音乐播放器和流媒体服务等方面得到广泛应用。
音频录制
第二章 数字音频编辑与处理

定俗成的整个电脑音乐的统称。
● 特点:文件不记载声音本身波形数据,可以理解为一个乐队的“总谱”
:上边记录的是有哪些乐器、每种乐器的音高、节奏、强弱等;通过声卡将
这个乐谱识出来,并用已经存放在声卡或者软件中的音色库把对应的声音播 放出来。 ● 应用:适合应用在对资源占用要求苛刻的场合,比如多媒体光盘、游戏 制作、背景音乐等。主要用于计算机声音的重放和处理。
● 声音的三要素
代表声音的快慢,与频率有关;使
● 音调 — (快慢)
用音频处理软件对声音的频率进行
调整时,其音调也会随之发生变化 (慢) (快) 声音的强度 (响度或音量),与声波振幅成
● 音强 — (强弱)
正比;唱盘、CD 盘等声音载体中的音强
不变,通过播放设备的音量控制可改变聆 (弱) (强) (停) 听时强度;音频处理软件可提高声源音强 声音的特色,主要影响因素是复音;复
主讲:韩立华
信息学院基础教研室
目标
• • • • • • 掌握声音的概念、特点和三个要素; 理解模拟音频转换为数字音频的过程; 掌握常见的音频文件格式及其特点; 了解音量调整、声音录制等基本知识; 掌握音频处理软件CoolEdit的基本用法。 会用CoolEdit制作自己的音频作品。
数字音频编辑处理
数字音频编辑处理
(1)采样
采样是采集声音模拟信号的样本,然 后再转换成数字信号。
数字音频编辑处理
(1)采样
采样是采集声音模拟信号的样本,然后再转 换成数字信号。
采样用两个参数来衡量:
采样频率 采样分辨率
又称:采样位数、 采样精度、量化 位数、量化精度
单位时间内 采样的数量
记录每次采样值大 小的数值的位数
三年级《数字化声音》教案

三年级《数字化声音编辑》优秀教案第一章:声音与数字化教学目标:1. 了解声音的数字化过程。
2. 学习音频文件的基本格式。
3. 掌握音频编辑软件的基本操作。
教学重点:1. 声音的数字化过程。
2. 音频文件的基本格式。
3. 音频编辑软件的基本操作。
教学难点:1. 音频文件的基本格式。
2. 音频编辑软件的基本操作。
教学准备:1. 计算机或平板设备。
2. 音频编辑软件(如Audacity)。
教学过程:1. 导入:向学生介绍声音的数字化过程,引导他们思考声音如何被转化为数字信号。
2. 讲解:讲解音频文件的基本格式,如WAV、MP3等。
3. 演示:使用音频编辑软件进行基本操作,如剪切、复制、粘贴等。
4. 实践:让学生分组使用音频编辑软件进行实践操作,教师巡回指导。
作业布置:1. 学生分组完成一个简单的音频编辑项目,如剪辑一段音频片段。
第二章:音量的调整与效果处理教学目标:1. 学习音量的调整方法。
2. 了解音频效果处理的基本技巧。
教学重点:1. 音量的调整方法。
2. 音频效果处理的基本技巧。
教学难点:1. 音量的调整方法。
2. 音频效果处理的基本技巧。
教学准备:1. 计算机或平板设备。
2. 音频编辑软件(如Audacity)。
教学过程:1. 复习:回顾上一章所学的内容,检查学生的掌握情况。
2. 讲解:讲解如何调整音量,如放大、缩小等。
3. 演示:使用音频编辑软件进行音量调整和效果处理,如混响、淡入淡出等。
4. 实践:让学生分组使用音频编辑软件进行音量调整和效果处理,教师巡回指导。
作业布置:1. 学生分组完成一个音频效果处理项目,如为一段音频添加混响效果。
第三章:剪辑与拼接音频教学目标:1. 学习音频剪辑的方法。
2. 掌握音频拼接的技巧。
教学重点:1. 音频剪辑的方法。
2. 音频拼接的技巧。
教学难点:1. 音频剪辑的方法。
2. 音频拼接的技巧。
教学准备:1. 计算机或平板设备。
2. 音频编辑软件(如Audacity)。
数字音频处理与音乐制作教程

数字音频处理与音乐制作教程第一章:数字音频处理介绍1.1 什么是数字音频处理?1.2 数字音频处理的历史发展1.3 数字音频处理的应用领域第二章:音频采样与数字化2.1 音频采样的原理和过程2.2 常见的音频采样率和比特深度2.3 音频数字化的优势与劣势第三章:数字音频处理软件3.1 数字音频处理软件的功能与分类3.2 常见的数字音频处理软件介绍3.3 数字音频处理软件的操作与应用第四章:音频编辑与修复4.1 音频编辑的基本操作技巧4.2 音频修复的方法与工具4.3 音频编辑与修复的实例演示第五章:音频效果处理5.1 音频效果处理的基本概念5.2 常见的音频效果处理器介绍5.3 音频效果处理的实践应用第六章:音频编码与格式转换6.1 音频编码的原理与常见格式6.2 音频格式转换的方法与工具6.3 音频编码与格式转换的注意事项第七章:音乐制作基础7.1 MIDI音乐制作的原理与应用7.2 MIDI音乐制作软件介绍7.3 制作简单音乐作品的实例演示第八章:音乐编曲与混音8.1 音乐编曲的基本原则与技巧8.2 音乐编曲软件介绍8.3 音乐混音的方法与实践第九章:音乐制作的高级技术9.1 混响与空间效果的应用技巧9.2 音频合成与采样器的使用方法9.3 音频自动化与编曲技巧第十章:音乐制作的后期处理10.1 音频母带处理的原则与技巧10.2 音频母带处理器介绍10.3 音频后期处理的注意事项与实践第十一章:数字音频处理的未来发展11.1 数字音频处理的趋势与展望11.2 新兴技术对音乐制作的影响11.3 数字音频处理的应用前景总结:本文详细介绍了数字音频处理与音乐制作的相关知识,包括音频采样与数字化、数字音频处理软件、音频编辑与修复、音频效果处理、音频编码与格式转换、音乐制作基础、音乐编曲与混音、音乐制作的高级技术、音乐制作的后期处理等方面的内容。
希望读者通过本文的学习,能够了解数字音频处理的基本原理和应用技巧,提升音乐制作的能力和水平。
第二章 视频与音频信号的数字化

信号带宽: 视频信号:6MHz(Y、R、G、B) 色差信号:1.5MHz(R-Y、B-Y压缩)
像素:组成图像的最小基本单元。
像素颗粒越小,单位面积上的像素数越多, 图像就越清晰、越逼真。
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
fs≥2fm
3、频谱混叠和限带滤波
当fs<2fm时,上下边带的边界处频谱重叠在 一起,使信号分离不出来而产生干扰失真,叫 混叠干扰。
• 限带:使fm信号的最高频率<1/2·fs。
通常取fs=(2.2~2.7)fm。
二、量化
量化的概念 量化:把在时间上离散化的信号在幅度上
也离散化。
①量化级与量化级差
如果是4:4:4标准:总数码率R=3×13.5×8=324Mb/s。
2.6 ITU-R601标准和中国HDTV标准介绍
一、 ITU-R601标准介绍 演播室数字分量编码(4:2:2)标准—
ITU-R601 主要参数为:P22
参数名称
1.编码信号
2.一行取样点数 亮度信号(Y) 色度信号R-Y、B-Y
R、G、B或Y:74.25MHz
CR、CB :37.125MHz
格式:1920×1080i/50
第一、二章小结
数字电视: HDTV的基本参数: 数字电视的主要优缺点 数字电视系统的基本组成 音频信号的数字化
取样频率:32KHz、44.1KHz、48KHz 量化比特数:n=16bit 数码率: R=fs×n×声道数
多媒体技术及应用数字音频技术02

4. WMA文件
WMA(Windows Media Audio)是 Windows Media格式中的一个子集(音频 格式)。
特点:压缩到MP3一半
多媒体技术及应用数字音频技术02
2-11
2.1 数字音频基础
5. MIDI和RMI文件 MIDI(乐器数字接口)是由一组音乐、乐 谱或乐器符号的数字集合。 特点:播放效果与硬件相关,数据量很小, 音质不高、音色单调等 6.VOC文件 创新公司开发的声音文件格式,由文件头 块和音频数据块组成。
音乐是符号化的声音。
多媒体技术及应用数字音频技术02
2.1 数字音频基础
二、声音的数字化 1.声音信号的类型 模拟信号(自然界、物理) 数字信号(计算机) 2.声音数字化过程
模拟信号
采样
量化
编码
数字信号
模拟信号
A/D ADC D/A DAC
数字信号
多媒体技术及应用数字音频技术02
2.1 数字音频基础
霍夫曼编码、算术编码、行程编码 ②有损压缩
波形编码--PCM、DPCM、ADPCM 子带编码、矢量量化
参数编码--LPC 混合编码--MPLPC、CELP
多媒体技术及应用数字音频技术02
2.2 数字音频压缩标准
二、音频压缩技术标准
分类
电话语 音质量
调幅广 播质量 高保真 立体声
标准 G.711 G.721 G.723 G.728
多媒体技术及应用数字 音频技术02
2020/11/14
多媒体技术及应用数字音频技术02
第二章 数字音频技术
2.1 数字音频基础 2.2 数字音频压缩标准 2.3 声卡与电声设备 2.4 MIDI与音乐合成 2.5 音频编辑软件 2.6 语音识别技术 本章小结
音频信号的数字化

R-2R梯形网络式D/A转换器
只用到R、2R这样两个阻值
用网络的等效阻值来实现2的倍数的加权
级联积分式D/A转换器
D/A转换器的主要技术指标
• 分辨率
最小输出电压与最大输出电压之比。分辨率越高, 对应最小数字输入的模拟输出信号值越小,越灵敏。
• 线性度
非线性误差为理想的输入-输出特性曲线与实际转换 曲线的偏差,一般取偏差的最大值来表示。
• 噪声整形的工作原理是将噪声分量进行负反馈
噪声整形
噪声整形 上述电路变型后可得:1阶Δ-Σ调制器。
2阶Δ-Σ调制器
1比特A/D、D/A转换器 输出1个量化比特的△-∑调制器称为1比特转换器。
• 转换精度
转换精度以最大的静态转换误差的形式给出。转换 误差应该包括非线性误差、比例系数误差、以及漂移 误差等综合误差。
转换精度与分辨率是不同的。精度是指转换后所 得的实际值对于理想值的逼近程度。分辨率是指能够 对转换结果发生影响的最小输入量。
D/A转换器的主要技术指标
• 建立时间
D/A转换器的输入代码有满度值的变化时,输出模拟 信号电压达到满度值±1/2LSB精度时所需要得时间。 • 温度系数
当采样脉冲宽度为采样周期的1/4时,孔径效应就可以忽 略了。
5.采样频率
目前常用的音频采样频率有48kHz,44.1kHz,32kHz, 96kHz,192kHz……
音频信号的采样频率选取原则 1. 音频信号的最高频率 2. 防混叠低通滤波器的截止特性 3. 以录像机作为记录设备时,便于形成伪视频信号。
结论:数据率的大小取决于采样频率和量化比特。
2.5 过采样△-∑调制A/D、D/A
过采样
使用远大于奈奎斯特采样频率的频率对输入信号进行 采样。
第二章 数字音频处理

为了把采样得到的离散序列信号存入计算机, 必须将采样值量化成有限个幅度值的集合,采样值 用二进制数字表示的过程称为量化编码。
左图为采样率2000Hz,量化等级为20的采样量化过程 右图为采样率4000Hz,量化等级为40的采样量化过程
当采样率和量化等级提高一倍,从图中可以看出, 当采样率和量化等级提高一倍,从图中可以看出, 当用D/A转换器重构原来信号时(图中的轮廓线), D/A转换器重构原来信号时 ),信 当用D/A转换器重构原来信号时(图中的轮廓线),信 号的失真明显减少,信号质量得到了提高。 பைடு நூலகம்的失真明显减少,信号质量得到了提高。
2.1.2 声音的三要素
声音的三要素是音调、音色和音强。 声音的三要素是音调、音色和音强。 音调 音调---代表了声音的高低。 1.音调---代表了声音的高低 1.音调---代表了声音的高低。 音调与频率有关,频率越高,音调越高,反之亦 音调与频率有关,频率越高,音调越高, 如果改变某种声源的音调, 然。如果改变某种声源的音调,则声音会发生质 的转变,使人们无法辨别声源本来的面目。 的转变,使人们无法辨别声源本来的面目。
fs ≥2f 或者 Ts ≤T/2 其中f为被采样信号的最高频率 fs 为采样频率
2.2.3 影响数字音频质量的技术参数 对模拟音频信号进行采样量化编码后,得 到数字音频。数字音频的质量取决于采样频率、 量化位数和声道数三个因素。 1) 采样频率 采样频率是指一秒钟时间内采样的次数。 在计算机多媒体音频处理中,采样频率通常采 用三种:11.025KHz(语音效果)、22.05KHz(音 乐效果)、44.1KHz(高保真效果)。常见的CD唱 盘的采样频率即为44.1KHz。
2.1 多媒体计算机的组成与结构 2.2 多媒体音频 2.3 多媒体视频 2.4 多媒体光存储器 2.5 多媒体输入输出设备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、音频的数字化(采样) 音频的数字化(采样)
音频采样:当把模拟声音变成数字声音时, 音频采样:当把模拟声音变成数字声音时,需要每 隔一个时间间隔在模拟声音波形上取一个幅度值。 隔一个时间间隔在模拟声音波形上取一个幅度值。
信号转换示意图
三、音频的数字化(采样) 音频的数字化(采样)
采样: 采样: 将时间上连续的取值变为有限个离散取值的过程 时间上连续的取值变为有限个离散取值的过程
模拟信号
采样 量化 编码
三、音频的数字化
A/D转换中,影响质量及数据量的主要因素: 转换中,影响质量及数据量的主要因素: 转换中 •每秒钟需要采集多少个声音样本即采样频率 每秒钟需要采集多少个声音样本即采样频率 每秒钟需要采集多少个声音样本即 •每个声音样本的位数 每个声音样本的位数(bps)应该是多少即量化位数 应该是多少即量化位数 每个声音样本的位数 应该是多少即 例子:每个声音样本用 位表示 例子 每个声音样本用16位表示 测得声音样本值 每个声音样本用 位表示,测得声音样本值 是在0~65536的范围里 它的精度就是输入信号的 的范围里,它的精度就是输入信号的 是在 的范围里 1/65536
四、数字音频的文件格式
3、MIDI文件 、 文件 数字乐器接口标准 特点: 特点:midi文件中存储的是产生声音指令 文件中存储的是产生声音指令 数据量小 适用于: 适用于:需要播放长时间高质量音乐
四、数字音频的文件格式
3、MIDI文件 、 文件
四、数字音频的文件格式
3、MIDI文件 、 文件
2236752字节数据量 字节数据量
五、音频文件的读取
00h:52 49 46 46
RIFF标志 标志
82 21 22 00
总数据块大小 2236802字节 2236802字节
57 41 56 45
格式类型 WAVE
66 6D 74 20
fmt标志 标志
10h:12 00 00 00
01 00 02 00
字节数/秒 采样频率 采样频率( ) 量化位数( 字节数 秒=采样频率(HZ) * 量化位数(BIT)* 声道数/8 )
?
1分钟单声道,采样频率为11.025kHz,8位采样位数 分钟单声道,采样频率为 分钟单声道 , 位采样位数
四、数字音频的文件格式
2、MP3文件 、 文件 MPEG Audio Layer-3 特点:数据量较小,压缩率10:1—20:1 特点:数据量较小,压缩率 : : 音质较好 是目前最为流行的音频格式文件
六、声音质量的度量
3、客观质量度量:动态范围 、客观质量度量: 声音的动态范围即声音从最弱变到最强的范围。 声音的动态范围即声音从最弱变到最强的范围。 声音的动态范围还与频率有关。 声音的动态范围还与频率有关。动态范围最大的频 率区间是1000-6000HZ,计量单位是分贝(dB)。 ,计量单位是分贝 率区间是 。 动态范围越大,信号强度的相对变化范围越大, 动态范围越大,信号强度的相对变化范围越大, 音响效果越好
五、音频文件的读取
标志符(RIFF) 数据大小 格式类型("WAVE") WAV文件结构 文件结构 "fmt" Sizeof(PCMWAVEFORMAT) PCMWAVEFORMAT "data" 声音数据大小 声音数据
数据体 文件头
五、音频文件的读取
五、音频文件的读取
例:sound.wav 44.1kHz 12.68秒 秒 16位 位 双声道
只要采样频率高于信号中最高频率的2倍 只要采样频率高于信号中最高频率的 倍,就可 以从采样中完全恢复原始信号的波形。 以从采样中完全恢复原始信号的波形。
三、音频的数字化(量化) 音频的数字化(量化)
音频量化:将经采样后幅度上无限多个连续的样值 音频量化:将经采样后幅度上无限多个连续的样值 幅度 变为有限个离散值的过程
二、模拟音频与数字音频
模拟信号
数字信号
二、模拟音频与数字音频
模拟音频:在时间和幅度上都是连续变化的 模拟音频:在时间和幅度上都是连续变化的 音频 连续 数字音频:在时间和幅度上都是离散、不连续的 数字音频:在时间和幅度上都是离散、不连续的 音频 离散
三、音频的数字化
模拟音频
数字音频
采样、量化、编码 采样、量化、
44 AC 00 00
采样频率 44.1kHz
10 B1 02 00
每秒数据量 176400
音频格式数据块大小 编码格式 双声道 18 waveformatPCM
20h:04 00 10 00
00 00 66 61
63 74 04 00
00 00 54 88
区块对齐单位 量化位数 4 16位 位
30h:08 00 64 61
三、音频的数字化(量化) 音频的数字化(量化)
量化过程:先将整个幅度划分成为有限个幅度(量化阶距) 量化过程:先将整个幅度划分成为有限个幅度(量化阶距) 的集合,把落入某个阶距内的样值归为一类,并赋予相同的 的集合,把落入某个阶距内的样值归为一类, 量化值。 量化值。
量化等级的划分
三、音频的数字化
一、声音
声音是通过空气传播的一种连续的波,叫声波。 声音是通过空气传播的一种连续的波,叫声波。 声音的强弱体现在声波压力的大小上 音调的高低体现在声音的频率上
一、声音——有关概念 声音 有关概念
复合信号: 复合信号:声音信号由许多频率不同的信号组成 分量信号: 分量信号:单一频率的信号 带宽:描述组成复合信号的频率范围。 带宽:描述组成复合信号的频率范围。如: 高保真声音的频率范围为10 高保真声音的频率范围为 Hz~20K Hz,它的带宽 , 约为20K Hz。 约为 。
一、声音——三要素 声音 三要素
音强(volume) —> 响度,由振幅决定 音强 响度, 音调(pitch) 音调 音色 —> 由频率决定 —> 指声音频率组成成分
一、声音——分类 声音 分类
次音频信号<20HZ(人耳听不到 人耳听不到) 次音频信号 人耳听不到 音频信号20HZ~20kHZ(人能听到 人能听到) 音频信号 人能听到 超音频信号>20kHZ(人听不到,有很强的方向 超音频信号>20kHZ(人听不到,有很强的方向 人听不到 可以形成波束) 性,可以形成波束 可以形成波束
六、声音质量的z 50—7KHz 20—15KHz 10—20KHz 电话声音范围 调幅广播声音范围 调频广播声音范围 高保真立体声音范围
六、声音质量的度量
2、客观质量度量:带宽 、客观质量度量: 音频信号的频带越宽, 音频信号的频带越宽,所包含的音频信号分 量越丰富, 量越丰富,音质越好
74 61 50 21
22 00 00 00
00 00 FF FF
data标志 标志
声音裸数据长度 2236752字节 字节
声音数据内容
40h:00 00 FE FF
FE FF 00 00
00 00 FE FF
FE FF 01 00
六、声音质量的度量
1、客观质量度量:信噪比 、客观质量度量: 信噪比SNR(Signal to Noise Ratio)是有用信 信噪比 ( ) 号与噪声之比的简称。 号与噪声之比的简称。 噪音可分为环境噪音和设备 噪音。信噪比越大,声音质量越好。 噪音。信噪比越大,声音质量越好。
五、音频文件的读取
工具: 工具:
UltraEdit Debug 其他反汇编软件
五、音频文件的读取
WAVE文件作为多媒体中使用的声波文件格式之一, WAVE文件作为多媒体中使用的声波文件格式之一,它 文件作为多媒体中使用的声波文件格式之一 是以RIFF格式为标准的。 RIFF格式为标准的 是以RIFF格式为标准的。 RIFF是英文Resource Format( RIFF是英文Resource Interchange File Format(资 是英文 的缩写,每个WAVE WAVE文件的头四个字 源互换文件格式 )的缩写,每个WAVE文件的头四个字 节便是“RIFF” 对应的十六进制是52 46。 节便是“RIFF”。对应的十六进制是52 49 46 46。 RIFF/WAV文件标识段 RIFF/WAV文件标识段 WAVE文件 WAVE文件 文件头 声音数据格式说明段 数据体
四、数字音频的文件格式
1、WAV文件 、 文件 声音是随着时间连续变化的物理量, 声音是随着时间连续变化的物理量,并且是 一种能借助介质传播的波。 一种能借助介质传播的波。
四、数字音频的文件格式
1、WAV文件 、 文件 特点: 特点:数据量大 音质好 不适合网络传播或播放 文件数据量计算: 文件数据量计算:
四、数字音频的文件格式
4、ASF、WMA文件 、 、 文件 微软开发的网上流式数字音频文件格式 微软开发的网上流式数字音频文件格式 网上流式 特点:音质好 特点: 数据量小 适合网络流式传输 适合网络流式传输
四、数字音频的文件格式
5、RAM、RA文件 、 、 文件 RealNetworks开发的网上流式数字音频文件格式 开发的网上流式数字音频文件格式 开发的网上流式 特点:能随带宽的不同而改变音质,在保证大多 特点:能随带宽的不同而改变音质, 数人听到流畅声音的前提下, 数人听到流畅声音的前提下,带宽宽裕的听众获 得较好的音质 适合低网速的实时传输 适合低网速的实时传输
作业
1、你认为多媒体技术发展的八大技术基础中哪 、 一个是最重要的技术基础?并说明原因。 一个是最重要的技术基础?并说明原因。 2、请简述音频数字化过程。 、请简述音频数字化过程。 3、计算: 、计算: 三分钟的采样频率为22.05kHz,量化位数为 位 ,量化位数为16位 三分钟的采样频率为 的立体声音频数据量为多少? 的立体声音频数据量为多少?