二次函数综合

合集下载

二次函数难题综合(附答案)

二次函数难题综合(附答案)

庞圣洁(二次函数难题)之马矢奏春创作创作时间:二零二一年六月三十日一.选择题(共22小题)1.(•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M (﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④ C.①②④ D.①②③2.(•泰安模拟)如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点动身,先达到抛物线的对称轴上的某点E,再达到x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为()A.B.C. D.3.(•潍坊模拟)若函数y=的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1 B.c=1 C.c>1 D.c≤14.(•天桥区一模)如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的极点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增年夜而增年夜;③AB的长度可以即是5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④ B.①②⑤ C.②③④ D.③④⑤5.(•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个6.(•杭州模拟)关于x的方程2x2+ax+b=0有两个不相等的实数根,且较小的根为2,则下列结论:①2a+b<0;②ab<0;③关于x的方程2x2+ax+b+2=0有两个不相等的实数根;④抛物线y=2x2+ax+b﹣2的极点在第四象限.其中正确的结论有()A.1个B.2个C.3个D.4个7.(•无锡校级三模)已知抛物线y=﹣x2+1的极点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD与△PEA相似吗?()A.始终不相似B.始终相似C.只有AB=AD时相似 D.无法确定8.(•杭州模拟)下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个9.(•黄石)设一元二次方程(x﹣1)(x﹣2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()A.1<α<β<2 B.1<α<2<βC.α<1<β<2 D.α<1且β>210.(•盐城模拟)如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则的值为()A.B.2 C.D.11.(•西湖区校级模拟)已知二次函数y=ax2﹣2ax+1(a<0)图象上三点A(﹣1,y1),B(2,y2)C(4,y3),则y1、y2、y3的年夜小关系为()A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y1<y212.(•乐山)已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A.M>0 B.M<0C.M=0 D.M的符号不能确定13.(•包头)已知二次函数y=ax2+2x+c(a≠0)有最年夜值,且ac=4,则二次函数的极点在()A.第一象限B.第二象限C.第三象限D.第四象限14.(•蚌埠自主招生)二次函数y=ax2+bx+c的图象如图所示,Q (n,2)是图象上的一点,且AQ⊥BQ,则a的值为()A.﹣B.﹣C.﹣1 D.﹣215.(•秀洲区一模)已知点A(x1,y1),B(x2,y2)均在抛物线y=ax2+2ax+4(0<a<3)上,若x1<x2,x1+x2=1﹣a,则()A.y1>y2 B.y1<y2C.y1=y2 D.y1与y2年夜小不能确定16.(•天河区一模)如图,二次函数y1=ax2+bx+c与一次函数y2=kx+b的交点A,B的坐标分别为(1,﹣3),(6,1),当y1>y2时,x的取值范围是()A.1<x<6 B.x<1或x>6 C.﹣3<x<1 D.x<﹣3或x>117.已知关于x的二次函数y=ax2+2ax+7a﹣3在﹣2≤x≤5上的函数值始终是正的,则a的取值范围()A.a>B.a<0或a>C.D.18.(•荣县校级二模)已知直线经过点A(0,2),B(2,0),点C 在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.A.4 B.3 C.2 D.119.(•下城区校级模拟)关于二次函数y=2x2﹣mx+m﹣2,以下结论:①抛物线交x轴有交点;②不论m取何值,抛物线总经过点(1,0);③若m>6,抛物线交x轴于A、B两点,则AB>1;④抛物线的极点在y=﹣2(x﹣1)2图象上.其中正确的序号是()A.①②③④B.①②③ C.①②④ D.②③④20.(•湖州)已知抛物线y=x2+bx+c(c<0)经过点(c,0),以该抛物线与坐标轴的三个交点为极点的三角形面积为S,则S可暗示为()A.|2+b||b+1| B.c(1﹣c)C.(b+1)2 D.21.(•茂名)下列四个函数:①y=kx(k为常数,k>0)②y=kx+b(k,b为常数,k>0)③y=(k为常数,k>0,x>0)④y=ax2(a为常数,a>0)其中,函数y的值随着x值得增年夜而减少的是()A.①B.②C.③D.④22.(•碑林区校级一模)已知函数y=﹣(x﹣m)(x﹣n)+3,而且a,b是方程(x﹣m)(x﹣n)=3的两个根,则实数m,n,a,b的年夜小关系可能是()A.m<a<b<n B.m<a<n<b C.a<m<b<n D.a<m<n<b二.解答题(共8小题)23.(•本溪)如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)点P从点C动身,沿线段CA由C向A运动,同时点Q从点B 动身,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单元长度,当Q点达到C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为极点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.24.(•黔南州)如图,在平面直角坐标系中,极点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最年夜?并求出此时P点的坐标和△PAC的最年夜面积.25.(•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A (3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点动身,都以每秒1个单元长度的速度分别沿AB,AC边运动,其中一点达到端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为极点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.26.(•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最年夜?求出四边形CDBF的最年夜面积及此时E点的坐标.27.(•义乌市)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C 三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为极点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.28.(•黄冈模拟)已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y 轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最年夜值,其最年夜值是几多?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.29.(•武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积即是5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最年夜距离.30.(•六盘水)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的极点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.庞圣洁(二次函数难题)参考谜底与试题解析一.选择题(共22小题)1.(•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M (﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④ C.①②④ D.①②③【考点】二次函数综合题.【专题】压轴题;数形结合.【分析】①二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),因而将M、N两点坐标代入即可消去a、c解得b值.②根据图象的特点及与直线MN比力,可知当﹣1<x<1时,二次函数图象在直线MN的下方.③同②理.④当y=0时利用根与系数的关系,可获得OA•OB的值,当x=0时,可获得OC的值.通过c建立等量关系求证.【解答】解:①∵二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点肯定是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不成能在同一条直线上.故该选项毛病.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的图象性质及特点、一元二次方程根与系数的关系、直线解析式简直定.2.(•泰安模拟)如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点动身,先达到抛物线的对称轴上的某点E,再达到x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为()A.B.C. D.【考点】二次函数综合题.【专题】压轴题.【分析】首先根据题意求得点A与B的坐标,求得抛物线的对称轴,然后作点A关于抛物线的对称轴x=的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与直线x=的交点是E,与x轴的交点是F,而且易得A′B′即是所求的长度.【解答】解:如图∵抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点,∴x2﹣x﹣=x﹣2,解得:x=1或x=,当x=1时,y=x﹣2=﹣1,当x=时,y=x﹣2=﹣,∴点A的坐标为(,﹣),点B的坐标为(1,﹣1),∵抛物线对称轴方程为:x=﹣=作点A关于抛物线的对称轴x=的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与对称轴(直线x=)的交点是E,与x轴的交点是F,∴BF=B′F,AE=A′E,∴点P运动的最短总路径是AE+EF+FB=A′E+EF+FB′=A′B′,延长BB′,AA′相交于C,∴A′C=++(1﹣)=1,B′C=1+=,∴A′B′==.∴点P运动的总路径的长为.故选A.【点评】此题考查了二次函数与一次函数的综合应用.注意找到点P运动的最短路径是解此题的关键,还要注意数形结合与方程思想的应用.3.(•潍坊模拟)若函数y=的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1 B.c=1 C.c>1 D.c≤1【考点】二次函数的性质;分式有意义的条件;函数自变量的取值范围.【专题】计算题;压轴题.【分析】先根据分式的意义,分母不即是0,得出x2﹣2x+c≠0,再根据二次函数y=ax2+bx+c(a≠0)的图象性质,可知当二次项系数a>0,△<0时,有y>0,此时自变量x的取值范围是全体实数.【解答】解:由题意,得△=(﹣2)2﹣4c<0,解得c>1.故选C.【点评】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必需满足分母不即是0.难点在于分母是关于自变量x的二次函数,要使自变量x的取值范围是全体实数,必需满足△<0.4.(•天桥区一模)如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的极点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增年夜而增年夜;③AB的长度可以即是5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④ B.①②⑤ C.②③④ D.③④⑤【考点】二次函数综合题.【专题】综合题;压轴题.【分析】①由极点坐标公式判断即可;②根据图象获得一次函数y=kx+b为增函数,抛物线当x年夜于0时为增函数,本选项正确;③AB长不成能为5,由A、B的横坐标求出AB为5时,直线AB与x 轴平行,即k=0,与已知矛盾;④三角形OAB不成能为等边三角形,因为OA与OB不成能相等;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,作出对称后的图象,故y=﹣kx+b与抛物线交点横坐标分别为﹣3与2,找出一次函数图象在抛物线上方时x的范围判断即可.【解答】解:①抛物线y=ax2,利用极点坐标公式得:极点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时为增函数,则x>0时,直线与抛物线函数值都随着x的增年夜而增年夜,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不成能为5,本选项毛病;④若OA=OB,获得直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不成能为等边三角形,本选项毛病;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选B.【点评】此题考查了二次函数综合题,涉及的知识有:抛物线极点坐标公式,一次函数与二次函数的增减性,关于y轴对称点的性质,利用了数形结合的思想,熟练对称性质及数形结合思想是判毕命题⑤的关键.5.(•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】根据图象获得x=﹣2时对应的函数值小于0,获得N=4a﹣2b+c的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下获得a小于0,变形即可对P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.【解答】解:∵图象开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∵a<0,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.【点评】此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c的符号是解题关键.6.(•杭州模拟)关于x的方程2x2+ax+b=0有两个不相等的实数根,且较小的根为2,则下列结论:①2a+b<0;②ab<0;③关于x的方程2x2+ax+b+2=0有两个不相等的实数根;④抛物线y=2x2+ax+b﹣2的极点在第四象限.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】把方程的根x=2代入计算即可求出2a+b=﹣8,判定①正确;利用根与系数的关系求出a<﹣8,b>8,从而判定②正确;根据二次函数y=2x2+ax+b与x轴有两个交点,且极点坐标在第四象限,向上平移2个单元,与x轴纷歧定有交点,判定③毛病,向下平移2个单元,极点一定在第四象限,判定④正确.【解答】解:∵x=2是方程2x2+ax+b=0的根,∴2×4+2a+b=0,∴2a+b=﹣8<0,故①正确;∵x=2是方程2x2+ax+b=0的两个根中较小的根,∴﹣>2+2,>2×2,∴a<﹣8,b>8,∴ab<0,故②正确;∵方程2x2+ax+b=0有两个不相等的实数根,且较小的根为2,∴二次函数y=2x2+ax+b与x轴有两个交点,且对称轴在直线x=2的右边,∴二次函数y=2x2+ax+b极点坐标在第四象限,向上平移2个单元获得二次函数y=2x2+ax+b+2,与x轴纷歧定有交点,∴关于x的方程2x2+ax+b+2=0有两个不相等的实数根毛病,故③毛病;向下平移2个单元获得二次函数y=2x2+ax+b﹣2,极点坐标一定在第四象限,故④正确;综上所述,正确的结论有①②④共3个.故选C.【点评】本题考查了二次函数图象与系数的关系,主要利用了一元二次方程的根的界说,根与系数的关系,二次函数图象与几何变换,③④两题考虑用二次函数的平移求解是解题的关键.7.(•无锡校级三模)已知抛物线y=﹣x2+1的极点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD与△PEA相似吗?()A.始终不相似B.始终相似C.只有AB=AD时相似 D.无法确定【考点】二次函数综合题.【专题】压轴题.【分析】先求出点P的坐标,从而获得OP的长,再设点A的横坐标为m,暗示出AD,再暗示出OD、OF、PF、AF,然后根据△PEF和△PDO相似,根据相似三角形对应边成比例列式求出EF,然后利用勾股定理暗示出PA2、PE、PD,从而获得=,再根据两边对应成比例且夹角相等,两三角形相似解答.【解答】解:令x=0,则y=1,∴OP=1,设点A的横坐标为m,则AD=﹣m2+1,∵AB⊥y轴,AD⊥x轴,∴AF=OD=m,OF=﹣m2+1,PF=1﹣(﹣m2+1)=m2,在Rt△PAF中,PA2=PF2+AF2=(m2)2+m2=m4+m2,在Rt△POD中,PD===,由AB∥x轴得,△PEF∽△PDO,∴=,即=,解得,PE=m2,∴PA2=PD•PE=m4+m2,∴=,∵∠APE=∠DPA,∴△PAD∽△PEA,即,△PAD与△PEA始终相似.故选B.【点评】本题是二次函数综合题,主要考查了二次函数图象上点的坐标特征,相似三角形的判定与性质,勾股定理的应用,暗示出两个三角形的公共角的夹边成比例是解题的关键.8.(•杭州模拟)下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个【考点】抛物线与x轴的交点.【专题】压轴题.【分析】令y=0,可得出(m2﹣1)x2﹣(3m﹣1)x+2=0,得出判别式的表达式,然后根据m的取值进行判断,另外要注意m的取值决定函数是一次函数还是二次函数,不要忘了考虑一次函数的情况.【解答】解:令y=0,可得出(m2﹣1)x2﹣(3m﹣1)x+2=0,△=(3m﹣1)2﹣8(m2﹣1)=(m﹣3)2,①当m≠3,m=±1时,函数是一次函数,与坐标轴有两个交点,故毛病;②当m=3时,△=0,与x轴有一个公共点,与y轴有一个公共点,总共两个,故正确;③若只有两个公共点,m=3或m=±1,故毛病;④若有三个公共点,则m≠3且m≠±1,故正确;综上可得只有②④正确,共2个.故选B.【点评】此题考查了抛物线与x轴交点的知识,同学们容易忽略m=±1时,函数是一次函数的情况,这是我们要注意的处所.9.(•黄石)设一元二次方程(x﹣1)(x﹣2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()A.1<α<β<2 B.1<α<2<βC.α<1<β<2 D.α<1且β>2【考点】抛物线与x轴的交点;根与系数的关系.【专题】压轴题;数形结合.【分析】先令m=0求出函数y=(x﹣1)(x﹣2)的图象与x轴的交点,画出函数图象,利用数形结合即可求出α,β的取值范围.【解答】解:令m=0,则函数y=(x﹣1)(x﹣2)的图象与x轴的交点分别为(1,0),(2,0),故此函数的图象为:∵m>0,∴原极点沿抛物线对称轴向下移动,两个根沿对称轴向两边逐步增年夜,∴α<1,β>2.故选D.【点评】本题考查的是抛物线与x轴的交点,能根据x轴上点的坐标特点求出函数y=(x﹣1)(x﹣2)与x轴的交点,画出函数图象,利用数形结合解答是解答此题的关键.10.(•盐城模拟)如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则的值为()A.B.2 C.D.【考点】二次函数综合题.【专题】压轴题;规律型.【分析】根据Ai的纵坐标与Bi纵坐标的绝对值之和为AiBi的长,分别暗示出所求式子的各项,拆项后抵消即可获得结果.【解答】解:根据题意得:AiBi=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A【点评】此题考查了二次函数综合题,属于规律型试题,找出题中的规律是解本题的关键.11.(•西湖区校级模拟)已知二次函数y=ax2﹣2ax+1(a<0)图象上三点A(﹣1,y1),B(2,y2)C(4,y3),则y1、y2、y3的年夜小关系为()A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y1<y2【考点】二次函数图象上点的坐标特征.【专题】压轴题;推理填空题.【分析】求出抛物线的对称轴,求出A关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出谜底.【解答】解:y=ax2﹣2ax+1(a<0),对称轴是直线x=﹣=1,即二次函数的开口向下,对称轴是直线x=1,即在对称轴的右侧y随x的增年夜而减小,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y2>y1>y3,故选D.【点评】本题考查了学生对二次函数图象上点的坐标特征的理解和运用,主要考查学生的观察能力和分析能力,本题比力典范,可是一道比力容易犯错的题目.12.(•乐山)已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A.M>0 B.M<0C.M=0 D.M的符号不能确定【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】根据图象特征,首先判断出M中的各代数式的符号,然后去绝对值.【解答】解:因为开口向下,故a<0;当x=﹣2时,y>0,则4a﹣2b+c>0;当x=1时,y<0,则a+b+c<0;因为对称轴为x=<0,又a<0,则b<0,故2a+b<0;又因为对称轴x=﹣>﹣1,则b>2a∴2a﹣b<0;∴M=4a﹣2b+c﹣a﹣b﹣c+2a+b+b﹣2a=3a﹣b,因为2a﹣b<0,a<0,∴3a﹣b<0,即M<0,故选B.【点评】考查二次函数y=ax2+bx+c系数符号简直定.13.(•包头)已知二次函数y=ax2+2x+c(a≠0)有最年夜值,且ac=4,则二次函数的极点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【专题】压轴题.【分析】已知二次函数y=ax2+2x+c(a≠0)有最年夜值,即抛物线的开口向下,因而a<0.求抛物线的极点坐标利用公式法:y=ax2+bx+c的极点坐标为(,),对称轴是x=;代入就可以求召盘点坐标,从而确定极点所在象限.【解答】解:极点横坐标x==,纵坐标y==;∵二次函数有最年夜值,即抛物线的开口向下,a<0,∴,,即:横坐标x>0,纵坐标y<0,极点在第四象限.故选D.【点评】考查求抛物线的极点坐标、对称轴及最值的方法:14.(•蚌埠自主招生)二次函数y=ax2+bx+c的图象如图所示,Q (n,2)是图象上的一点,且AQ⊥BQ,则a的值为()A.﹣B.﹣C.﹣1 D.﹣2【考点】抛物线与x轴的交点;勾股定理.【专题】压轴题.【分析】由勾股定理,及根与系数的关系可得.【解答】解:设ax2+bx+c=0的两根分别为x1与x2.依题意有AQ2+BQ2=AB2.(x1﹣n)2+4+(x2﹣n)2+4=(x1﹣x2)2,化简得:n2﹣n(x1+x2)+4+x1x2=0.有n2+n+4+=0,∴an2+bn+c=﹣4a.∵(n,2)是图象上的一点,∴an2+bn+c=2,∴﹣4a=2,∴a=﹣.故选B.【点评】此题考查了二次函数的性质和图象,解题的关键是注意数形结合思想.15.(•秀洲区一模)已知点A(x1,y1),B(x2,y2)均在抛物线y=ax2+2ax+4(0<a<3)上,若x1<x2,x1+x2=1﹣a,则()A.y1>y2 B.y1<y2C.y1=y2 D.y1与y2年夜小不能确定【考点】二次函数图象上点的坐标特征.【专题】压轴题.【分析】将点A(x1,y1),B(x2,y2)分别代入y=ax2+2ax+4(0<a<3)中得y1=ax12+2ax1+4﹣﹣﹣﹣①;y2=ax22+2ax2+4﹣﹣﹣﹣②;利用作差法求出y2﹣y1>0,即可获得y1>y2.【解答】解:将点A(x1,y1),B(x2,y2)分别代入y=ax2+2ax+4(0<a<3)中,得:y1=ax12+2ax1+4﹣﹣﹣﹣①,y2=ax22+2ax2+4﹣﹣﹣﹣②,②﹣①得:y2﹣y1=(x2﹣x1)[a(3﹣a)],因为x1<x2,3﹣a>0,则y2﹣y1>0,即y1<y2.故选B.【点评】本题难度较年夜,要充沛利用数据特点,进行计算.16.(•天河区一模)如图,二次函数y1=ax2+bx+c与一次函数y2=kx+b的交点A,B的坐标分别为(1,﹣3),(6,1),当y1>y2时,x的取值范围是()A.1<x<6 B.x<1或x>6 C.﹣3<x<1 D.x<﹣3或x>1【考点】二次函数的图象;一次函数的图象.【专题】压轴题;数形结合.【分析】根据函数图象,找出抛物线在直线上方的部份的自变量x 的取值范围即可.【解答】解:由图可知,当x<1或x>6时,抛物线在直线的上方,所以,当y1>y2时,x的取值范围是x<1或x>6.故选B.【点评】本题考查了二次函数的图象,利用数形结合的思想解答即可,比力简单.17.已知关于x的二次函数y=ax2+2ax+7a﹣3在﹣2≤x≤5上的函数值始终是正的,则a的取值范围()A.a>B.a<0或a>C.D.【考点】二次函数的性质.【专题】压轴题.【分析】依照a>0和a<0两种情况讨论:当a>0时,图象开口向上,只要极点纵坐标为正即可;当a<0时,抛物线对称轴为x=﹣1,根据对称性,只要x=5时,y>0即可.【解答】解:当a>0时,图象开口向上,极点纵坐标为=6a﹣3,当6a﹣3>0,即a>时,y>0;当a<0时,抛物线对称轴为x=﹣1,根据对称性,只要x=5时,y>0即可,此时y=25a+10a+7a﹣3>0,解得a>,不符合题意,舍去.故选A.【点评】本题考查了二次函数开口方向,极点坐标,对称轴在实际问题中的运用,还考查了分类讨论的数学思想.18.(•荣县校级二模)已知直线经过点A(0,2),B(2,0),点C 在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.A.4 B.3 C.2 D.1【考点】二次函数的性质.【专题】计算题;压轴题.【分析】解:通过计算发现,当O与C重合时,S△ABC=2,据此推断出以AB为底边的三角形的高,从图上找到点C1、C2,再作CC3∥AB,使得C3与C到AB的距离相等,若求出C的坐标,则存在C3点,使得以AB为底的三角形面积为2.【解答】解:∵S△ABC=×2×2=2,可见,当O与C重合时,S△ABC=2,作CD⊥AB,∵AO=BO=2,可见,△ACB为等腰直角三角形,CD=2×cos45°=2×=.由图易得,到AB距离为的点有C、C1、C2,作CC3∥AB,则CC3的解析式为y=﹣x,将y=﹣x和y=x2组成方程组得,,解得,,,则C3坐标为(﹣1,1),可见,有四个点,使得S△ABC=2.故选A.【点评】本题考查了二次函数的性质,知道平行线间的距离相等以及知道同底等高的三角形面积相等是解题的关键.19.(•下城区校级模拟)关于二次函数y=2x2﹣mx+m﹣2,以下结论:①抛物线交x轴有交点;②不论m取何值,抛物线总经过点(1,0);③若m>6,抛物线交x轴于A、B两点,则AB>1;④抛物线的极点在y=﹣2(x﹣1)2图象上.其中正确的序号是()A.①②③④B.①②③ C.①②④ D.②③④【考点】抛物线与x轴的交点;二次函数的性质.【专题】计算题;压轴题.【分析】由二次函数的解析式,找出二次项系数a,一次项系数b及常数项c,将a,b及c的值代入b2﹣4ac,利用完全平方公式化简后,根据完全平方式恒年夜于即是0,可得出b2﹣4ac年夜于即是0,进而确定出该抛物线与x轴有交点,故①正确;将x=1代入抛物线解析式,求出y=0,可得出此抛物线恒过(1,0),故②正确;令抛物线解析式中y=0,获得关于x的一元二次方程,设方程的两个解分别为x1,x2,利用根与系数的关系暗示出x1+x2,x1x2,AB的长可以用|x1﹣x2|暗示,利用二次根式的化简根式=|a|变形后,再利用完全平方公式化简,将暗示出的x1+x2及x1x2代入,化简后根据m年夜于6,可得出AB的长年夜于1,故③正确;利用极点坐标公式暗示出抛物线的极点坐标,代入y=﹣2(x﹣1)2中经验,可得出抛物线的极点在y=﹣2(x﹣1)2图象上,故④正确,综上,获得正确的序号.【解答】解:二次函数y=2x2﹣mx+m﹣2,∵a=2,b=﹣m,c=m﹣2,∴b2﹣4ac=(﹣m)2﹣8(m﹣2)=(m﹣4)2≥0,则抛物线与x轴有交点,故①正确;∵当x=1时,y=2﹣m+m﹣2=0,∴不论m取何值,抛物线总经过点(1,0),故②正确;设A的坐标为(x1,0),B(x2,0),令y=0,获得2x2﹣mx+m﹣2=0,∴x1+x2=,x1x2=,∴AB=|x1﹣x2|===||,当m>6时,可得m﹣4>2,即>1,∴AB>1,故③正确;∵抛物线的极点坐标为(,),∴将x=代入得:y=﹣2(﹣1)2=﹣2(﹣+1)=,∴抛物线的极点坐标在y=﹣2(x﹣1)2图象上,故④正确,综上,正确的序号有①②③④.故选A【点评】此题考查了抛物线与x轴的交点,以及二次函数的性质,涉及的知识有:抛物线与x轴交点的判断方法,根与系数的关系,极点坐标公式,以及判断一个点是否在抛物线上,熟练掌握二次函数的性质是解本题的关键.。

二次函数综合试题及答案

二次函数综合试题及答案

二次函数综合试题及答案一、选择题1. 若二次函数y=ax^2+bx+c的图象开口向下,则a的取值范围是()。

A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:B2. 已知二次函数y=2x^2-4x+3,其顶点坐标为()。

A. (1, 1)B. (2, -1)C. (1, 3)D. (2, 3)答案:A二、填空题3. 写出二次函数y=-2x^2+4x-1的顶点坐标为______。

答案:(1, 1)4. 若二次函数y=x^2-6x+k的图象与x轴有两个交点,则k的取值范围是______。

答案:k < 9三、解答题5. 已知二次函数y=ax^2+bx+c(a≠0),且该函数图象与x轴有两个交点,求证:b^2-4ac>0。

证明:已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴有两个交点,即方程ax^2+bx+c=0有两个实数根。

根据判别式的性质,当Δ=b^2-4ac>0时,方程有两个不相等的实数根。

因此,b^2-4ac>0。

6. 已知二次函数y=-x^2+6x-5,求该函数的对称轴方程。

解:二次函数y=-x^2+6x-5的对称轴方程为x=-b/2a=-6/(2*(-1))=3。

四、计算题7. 已知抛物线y=-2x^2+4x+1与x轴交于点A、B,求A、B两点的坐标。

解:令y=0,得-2x^2+4x+1=0。

解得x1=-1/2,x2=3/2。

因此,A点坐标为(-1/2, 0),B点坐标为(3/2, 0)。

8. 已知二次函数y=2x^2-4x+3的顶点坐标为(1, 1),求该函数的对称轴方程。

解:已知二次函数y=2x^2-4x+3的顶点坐标为(1, 1),根据顶点式y=a(x-h)^2+k,对称轴方程为x=h。

因此,对称轴方程为x=1。

二次函数综合练习题(含答案)

二次函数综合练习题(含答案)

二次函数综合练习题一、选择题1.〔2013,6,3分〕二次函数y =x 2-3x +m 〔m 为常数〕的图象与x 轴的一个交点为(1,0),那么关于x 的一元二次方程x 2-3x +m =0的两实数根是〔 〕. A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=3 【答案】B .【解析】∵二次函数y =x 2-3x +m 的图象与x 轴的一个交点为〔1,0〕,∴0=12-3+m ,解得m =2,∴二次函数为y =x 2-3x +2.设y =0,那么x 2-3x +2=0.解得x 2=1,x 2=2,这就是一元二次方程x 2-3x +m =0的两实数根.所以应选B .【方法指导】考察一元二次方程的根、二次函数图象与x 轴交点的关系.当b 2-4ac ≥0时,二次函数y =ax 2+bx+c 的图象与x 轴的两个交点的横坐标是一元二次方程ax 2+bx+c =0的两个根.【易错警示】因审题不严,容易错选;或因解方程出错而错选.2.〔2013,8,3分〕方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么方程3210x x +-=的实根0x 所在的围是〔 〕. A .4100<<x B .31410<<x C .21310<<x D .1210<<x 【答案】C .【解析】首先根据题意推断方程x 3+2x -1=0的实根是函数y =x 2+3与xy 1=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x -1=0的实根x 0所在围.解:依题意得方程x 3+2x -1=0的实根是函数y =x 2+2与xy 1=的图象交点的横坐标,这两个函数的图象如下图,它们的交点在第一象限.当x =14时,y =x 2+2=2116,1y x ==4,此时抛物线的图象在反比例函数下方; 当x =13时,y =x 2+2=219,1y x ==3,此时抛物线的图象在反比例函数下方;当x =12时,y =x 2+2=214,1y x==2,此时抛物线的图象在反比例函数上方;当x =1时,y =x 2+2=3,1y x==1,此时抛物线的图象在反比例函数上方.所以方程3210x x +-=的实根0x 所在的围是21310<<x .所以应选C .【方法指导】此题考察了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点〞,还要善于分析各图象的变化趋势.【易错警示】不会得出函数解析式,不会观察图象而出错.3. 〔2013市(A ),12,4分〕一次函数y =ax +b 〔a ≠0〕、二次函数y =ax 2+bx 和反比例函数y =kx(k ≠0)在同一直角坐标系中的图象如下图,A 点的坐标为(-2,0).那么以下结论中,正确的选项是〔〕A .b =2a +kB .a =b +kC .a >b >0D .a >k >0 【答案】D .【解析】∵一次函数与二次函数的图象交点A 的坐标为〔-2,0〕,∴-2a +b =0,∴b =2a . 又∵抛物线开口向上,∴a >0,那么b >0.而反比例函数图象经过第一、三象限,∴k >0. ∴2a +k >2a ,即b <2a +k .故A 选项错误. 假设B 选项正确,那么将b =2a 代入a =b +k ,得a =2a +k ,a =-k .又∵a >0,∴-k >0,即k <0,这与k >0相矛盾,∴a =b +k 不成立.故B 选项错误.再由a >0,b =2a ,知a ,b 两数均是正数,且a <b ,∴b >a >0.故C 选项错误. 这样,就只有D 选项正确.【方法指导】此题考察一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象与性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D 为何正确,可由二次函数y =ax 2+bx 与反比例函数y =k x (k ≠0)的图象,知当x =-2b a =-22aa=-1时,y =-k >-24b a =-244a a =-a ,即k <a .又因为a >0,k >0,所以a >k >0.【易错警示】二次函数a 、b 、c 的符号确实定与函数图象的关系混淆不清. 4. 〔2013,7,4分〕抛物线1)3(22+-=x y 的顶点坐标是〔 〕 A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)【答案】:A【解析】抛物线2()y a x h k =-+的顶点是〔h ,k 〕【方法指导】求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶点公式24(,)24b ac b a a--求顶点坐标。

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。

1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。

2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。

1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。

①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。

二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。

1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。

二次函数综合试题及答案

二次函数综合试题及答案

二次函数综合试题及答案一、选择题1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = 3x^2 + 5C. y = 2x + 1D. y = -x^2 + 3答案:C2. 二次函数y = ax^2 + bx + c的顶点坐标为:A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2 / 4a)D. (b, -c)答案:C二、填空题1. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, -4),则a的值为______。

答案:a > 02. 二次函数y = x^2 - 2x + 3的最小值为______。

答案:2三、解答题1. 已知二次函数y = 2x^2 - 4x + 3,求该函数与x轴的交点。

解:令y = 0,得到方程2x^2 - 4x + 3 = 0。

使用求根公式,得到x1 = (2 + √10) / 2,x2 = (2 - √10) / 2。

因此,与x轴的交点坐标为((2 + √10) / 2, 0)和((2 - √10) / 2, 0)。

2. 某抛物线经过点(1, 1)和(2, 4),且对称轴为直线x = 2。

求该抛物线的解析式。

解:设抛物线解析式为y = a(x - 2)^2 + k。

将点(1, 1)代入,得到a(1 - 2)^2 + k = 1,即a + k = 1。

将点(2, 4)代入,得到a(2 - 2)^2 + k = 4,即k = 4。

解得a = -3,k = 4。

因此,抛物线的解析式为y = -3(x - 2)^2 + 4。

四、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 5000,其中x为生产数量。

求该工厂生产多少件产品时,成本最低。

解:成本函数C(x) = 0.5x^2 - 100x + 5000是一个开口向上的二次函数,其顶点即为成本最低点。

二次函数综合练习题

二次函数综合练习题

二次函数综合练习题1. 已知二次函数的图像经过点A(-1,0)和B(3,0),且顶点在x轴上,求该二次函数的解析式。

2. 抛物线y=ax^2+bx+c与x轴交于点(-2,0)和(1,0),求证:抛物线的对称轴是直线x=-1/2。

3. 已知二次函数y=ax^2+bx+c的图像开口向上,且经过点(1,0)和(0,1),求证:a+b+c=1。

4. 抛物线y=x^2-2x-3与x轴的交点坐标为(-1,0)和(3,0),求抛物线的顶点坐标。

5. 已知抛物线y=-2x^2+4x+1与x轴的交点坐标为(-1,0)和(3,0),求抛物线的顶点坐标。

6. 抛物线y=x^2-6x+9的图像与x轴交于点A和点B,求线段AB的长度。

7. 已知二次函数y=ax^2+bx+c的图像与x轴有两个交点,且交点的横坐标分别为1和3,求证:该函数图像与x轴的交点一定在区间(1,3)内。

8. 抛物线y=x^2-4x+3与y轴交于点C,求点C的坐标。

9. 已知二次函数y=ax^2+bx+c的图像经过点(2,5),且a>0,求证:当x>2时,y随x的增大而增大。

10. 抛物线y=-x^2+2x+3与x轴的交点坐标为(-1,0)和(3,0),求抛物线的顶点坐标。

11. 已知二次函数y=ax^2+bx+c的图像经过点(0,2)和(1,5),求证:该函数图像与x轴必有一个交点。

12. 抛物线y=2x^2-4x+1的图像与x轴交于点A和点B,求线段AB的长度。

13. 已知二次函数y=ax^2+bx+c的图像经过点(-2,0)和(2,0),求证:该函数图像的对称轴是直线x=0。

14. 抛物线y=x^2-2x-3与y轴交于点D,求点D的坐标。

15. 已知二次函数y=ax^2+bx+c的图像经过点(1,0)和(0,1),求证:该函数图像与x轴的交点一定在区间(0,1)内。

16. 抛物线y=-2x^2+4x+1与y轴交于点E,求点E的坐标。

中考数学考点17二次函数综合题总复习(解析版)

中考数学考点17二次函数综合题总复习(解析版)

二次函数综合题【命题趋势】在中考中.二次函数综合题每年必考点.特别是跟几何结合.经常在压轴题中出现。

【中考考查重点】一、线段问题二、面积问题三、等腰、直角三角形问题四、特殊四边形问题五、相似三角形问题六、与角度有关问题考点一:线段问题1.(2021秋•龙沙区期末)如图.抛物线y=ax2+bx+c与x轴交于A(﹣1.0).B(3.0)两点.与y轴交于点C(0.3).抛物线的顶点为D.连接BC.P为线段BC上的一个动点(P不与B、C重合).过点P作PF∥y轴.交抛物线于点F.交x轴于点G.(1)求抛物线的解析式;(2)当PG=2PF时.求点P的坐标;【答案】(1)y=﹣x2+2x+3 (2)P(.)【解答】解:(1)将A(﹣1.0).B(3.0).C(0.3)代入y=ax2+bx+c.∴.∴.∴y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b'.∴.∴.∴y=﹣x+3.设P(t.﹣t+3).则F(t.﹣t2+2t+3).G(t.0).∴PG=﹣t+3.PF=﹣t2+2t+3+t﹣3=﹣t2+3t.∵PG=2PF.∴﹣t+3=﹣2t2+6t.∴t=或t=3(舍).∴P(.);考点二:面积问题2.(2021秋•梅里斯区期末节选)如图.在平面直角坐标系中.已知直线y=x﹣2与x轴交于点A.与y轴交于点B.过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1.0).(1)求抛物线的解析式和顶点坐标;(2)探究:在抛物线上直线AB下方是否存在一点P.使△ABP面积最大?若存在.请求出点P的坐标.若不存在.请说明理由;【答案】(1)y=x2﹣x﹣2 .(.﹣)(2)P(2.﹣3)【解答】解:(1)直线y=x﹣2与x轴交于点A.与y轴交于点B.∴A(4.0)、B(0.﹣2).将A、B、C点坐标分别代入二次函数解析式y=ax2+bx+c.∴.∴.∴二次函数解析式为:y=x2﹣x﹣2.化成顶点式为:y=(x﹣)2﹣.∴抛物线的顶点坐标为(.﹣);(2)存在.理由如下:设P点坐标为(x.x2﹣x﹣2)(0<x<4).过点P作PD⊥AC于点D.交AB于点E.则E的坐标表示为(x.x﹣2).∴S△ABP==×4×(x﹣2﹣x2+x+2)=﹣x2+4x=﹣(x﹣2)2+4.∵a=﹣1<0.∴当x=2时S△ABP有最大值.求得P(2.﹣3);考点三:等腰、直角三角形问题3.(2021秋•龙凤区校级期末)如图.已知抛物线y=ax2+bx﹣8的图象与x轴交于A(2.0)和B(﹣8.0).与y轴交于点C.(1)求该抛物线的解析式;(2)点F是直线BC下方抛物线上的一点.当△BCF的面积最大时.在抛物线的对称轴上找一点P.使得△BFP的周长最小.请求出点F的坐标和点P的坐标;(3)在(2)的条件下.是否存在这样的点Q(0.m).使得△BFQ为等腰三角形?如果有.请直接写出点Q的坐标;如果没有.请说明理由.【答案】(1)(2)F(﹣4.﹣12).P(﹣3.﹣10)(3)Q1(0.﹣4)或或或Q4(0.0).【解答】解:(1)将A(2.0)、B(﹣8.0)代入解析式.得.解得:.∴.(2)当x=0时.y=﹣8.∴C(0.﹣8).设直线BC的解析式为y=kx+b.则.解得:.∴直线BC的解析式为y=﹣x﹣8.设.如图1.作FG垂直于x轴交BC于G.则G(n.﹣n﹣8).∴.∵=4FG.∴当FG取得最大值时.S△BCF取得最大值.∴当时.FG取得最大值8.S△BCF取得最大值32.∴F(﹣4.﹣12).作F关于对称轴对称的点F'.∴F'(﹣2.﹣12).当F'、B、P共线时.PB+PF有最小值.此时C△BFP有最小值.设y BF'=ax+b.则.解得:.∴y BF'=﹣2x﹣16.又∵x p=﹣3.∴P(﹣3.﹣10).综上所述.F(﹣4.﹣12).P(﹣3.﹣10).(3)存在.理由如下.①如图2.以BF为底边时.点Q1在BF的中垂线上.∴BF的中垂线与y轴交点即为所求.连接BQ1.FQ1.作FN垂直于y轴.∵Q1B=Q1F.设OQ1=t.则Q1N=12﹣t.∵FN=4.BO=8..∴42+(12﹣t)2=82+t2.解得:t=4.∴Q1(0.﹣4);②以BF为腰时..(i)当BF=BQ2时.设OQ2=s.则.∴160=82+s2.解得:.当时..当时.;(ii)当BF=FQ4时:∵B(﹣8.0).F(﹣4.﹣12).O(0.0).∴F在线段BO的中垂线上.∴FB=FO.∴Q4(0.0);由Q4关于N点对称得Q5(0.﹣24).∵FN⊥y轴.∴FO=BF=FQ5.但此时B、F、Q5三点共线.不合题意;综上所述.点Q的坐标为Q1(0.﹣4)或或或Q4(0.0).4.(2021秋•黄埔区期末)如图.抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A、B两点.与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示).A.B两点的坐标;(2)是否存在使△BCM为直角三角形的抛物线?若存在.请求出;若不存在.请说明理由.【答案】(1)A.B两点的坐标为(﹣1.0)、(5.0)(2)和【解答】解:(1)∵y=m(x﹣2)2﹣9m.∴抛物线顶点M的坐标为(2.﹣9m).∵抛物线与x轴交于A、B两点.∴当y=0时.mx2﹣4mx﹣5m=0.∵m>0.∴x2﹣4x﹣5=0.解得x1=﹣1.x2=5.∴A.B两点的坐标为(﹣1.0)、(5.0).(2)存在使△BCM为直角三角形的抛物线.过点C作CN⊥DM于点N.则△CMN为直角三角形.CN=OD=2.DN=OC=5m.∴MN=DM﹣DN=4m.∴CM2=CN2+MN2=4+16m2.在Rt△OBC中.BC2=OB2+OC2=25+25m2.在Rt△BDM中.BM2=BD2+DM2=9+81m2.①如果△BCM是直角三角形.且∠BMC=90°时.CM2+BM2=BC2.即4+16m2+9+81m2=25+25m2.解得.∵m>0.∴.∴存在抛物线使得△BCM是直角三角形;②如果△BCM是直角三角形.且∠BCM=90°时.BC2+CM2=BM2.即25+25m2+4+16m2=9+81m2.解得.∵m>0.∴.∴存在抛物线使得△BCM是Rt△;③∵25+25m2>4+16m2.9+81m2>4+16m2.∴以∠CBM为直角的直角三角形不存在.综上.存在抛物线和使△BCM是直角三角形.特考点四:特殊四边形问题5.(2021秋•龙江县期末节选)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1.0).与y轴交于点C.连接AC.有一动点D在线段AC上运动.过点D作x轴的垂线.交抛物线于点E.交x轴于点F.AB=4.设点D的横坐标为m.(1)求抛物线的解析式;(2)当m=﹣2时.在平面内是否存在点Q.使以B.C.E.Q为顶点的四边形为平行四边形?若存在.请直接写出点Q的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2﹣2x+3 (2)Q点为(3.0)或(﹣1.0)或(﹣3.6)【解答】解:(1)∵点B(1.0).AB=4.∴A(﹣3.0).将B(1.0).A(﹣3.0)代入y=ax2+bx+3.∴.∴.∴y=﹣x2﹣2x+3;(2)存在.理由如下:∵m=﹣2.∴E(﹣2.3).设Q(n.t).①当BC为平行四边形的对角线时..解得.∴Q(3.0);②当BE为平行四边形的对角线时..解得.∴Q(﹣1.0);③当BQ为平行四边形的对角线时..解得.∴Q(﹣3.6);综上所述:当Q点为(3.0)或(﹣1.0)或(﹣3.6)时.以B.C.E.Q为顶点的四边形为平行四边形.6.(2021秋•江西月考)如图.抛物线y=﹣x2+3x+m与x轴的一个交点为A(4.0).另一交点为B.且与y轴交于点C.连接AC.(1)求m的值及该抛物线的对称轴;(2)若点P在直线AC上.点Q是平面内一点.是否存在点Q.使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在.请直接写出Q点的坐标;若不存在.请说明理由.【答案】(1)m=4 y=﹣(x﹣)2+(2)(4.5)或(.﹣).【解答】解:(1)把A(4.0)代入二次函数y=﹣x2+3x+m得:∴﹣16+12+m=0.解得:m=4.∴二次函数的解析式为:y=﹣x2+3x+4=﹣(x﹣)2+.∴二次函数对称轴为直线x=;(2)存在.理由:①当AB是正方形的边时.此时.对应的正方形为ABP′Q′.∵A(4.0).AB=5.∴点Q′的坐标为(4.5);②当AB是正方形的对角线时.此时.对应的矩形为APBQ.∵AB、PQ是正方形对角线.∴线段AB和线段PQ互相垂直平分.∴点Q在抛物线对称轴上.且到x轴的距离为.∴点Q的坐标为(.﹣).故点Q的坐标为(4.5)或(.﹣).考点五:相似三角形问题7.(2021秋•建华区期末节选)抛物线y=x2+bx+c经过A、B(1.0)、C(0.﹣3)三点.点D 为抛物线的顶点.连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在线段AC上找一点M.使△AOM∽△ABC.请你直接写出点M的坐标;【答案】(1)y=x2+2x﹣3 (2)(.)【解答】解(1)∵抛物线y=x2+bx+c经过B(1.0)、C(0.﹣3).∴.解得.∴抛物线的解析式为:y=x2+2x﹣3.(2)∵△AOM∽△ABC.∴∠AOM=∠ABC.∴OM∥BC.设直线BC的解析式为y=mx+n.直线OM的解析式为y=mx.∴.解得.∴直线BC的解析式为y=3x﹣3.直线OM的解析式为y=3x.联立.解得.∴点M的坐标为(.);考点六:与角度有关的问题8.(2021秋•郧西县期末)如图.抛物线y=ax2+bx﹣3与x轴交于点A(1.0)、B(3.0).与y 轴交于点C.连接AC.BC.(1)求抛物线的函数解析式;(2)Q为抛物线上一点.若∠ACQ=45°.求点Q的坐标.【答案】(1)y=﹣x2+4x﹣3 (2)Q(.)【解答】(1)把A(1.0)、B(3.0)代入y=ax2+bx﹣3.得.解得.∴抛物线的解析式是y=﹣x2+4x﹣3.(2)如图2.点Q在抛物线上.且∠ACQ=45°.过点A作AD⊥CQ于点D.过点D作DF⊥x轴于点F.过点C作CE⊥DF于点E.∵∠ADC=90°.∴∠DAC=∠DCA=45°.∴CD=AD.∵∠E=∠AFD=90°.∴∠ADF=90°﹣∠CDE=∠DCE.∴△CDE≌△DAF(AAS).∴DE=AF.CE=DF.∵∠E=∠OFE=∠COF=90°.∴四边形OCEF是矩形.∴OF=CE.EF=OC=3.设DE=AF=n.∵OA=1.∴CE=DF=OF=n+1.∵DF=3﹣n.∴n+1=3﹣n.解得n=1.∴DE=AF=1.∴CE=DF=OF=2.∴D(2.﹣2).设直线CQ的函数解析式为y=px﹣3.则2p﹣3=﹣2.解得p=.∴直线CD的函数解析式为y=x﹣3.由.得.(不符合题意.舍去).∴点Q的坐标为(.)3.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位.再向上平移4个单位后.得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A.B.与y轴交于点C.已知A(﹣3.0).点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1.点P在线段AC上方的抛物线H上运动(不与A.C重合).过点P作PD⊥AB.垂足为D.PD交AC于点E.作PF⊥AC.垂足为F.求△PEF的面积的最大值;(3)如图2.点Q是抛物线H的对称轴l上的一个动点.在抛物线H上.是否存在点P.使得以点A.P.C.Q为顶点的四边形是平行四边形?若存在.求出所有符合条件的点P的坐标;若不存在.说明理由.【答案】(1)y=﹣(x+1)2+4 (2)m=﹣时.S△PEF最大值=×()2=(3)P的坐标为(2.﹣5)或(﹣4.﹣5)或(﹣2.3)【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1.4).∴抛物线H:y=a(x+1)2+4.将A(﹣3.0)代入.得:a(﹣3+1)2+4=0.解得:a=﹣1.∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1.由(1)知:y=﹣x2﹣2x+3.令x=0.得y=3.∴C(0.3).设直线AC的解析式为y=mx+n.∵A(﹣3.0).C(0.3).∴.解得:.∴直线AC的解析式为y=x+3.设P(m.﹣m2﹣2m+3).则E(m.m+3).∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+.∵﹣1<0.∴当m=﹣时.PE有最大值.∵OA=OC=3.∠AOC=90°.∴△AOC是等腰直角三角形.∴∠ACO=45°.∵PD⊥AB.∴∠ADP=90°.∴∠ADP=∠AOC.∴PD∥OC.∴∠PEF=∠ACO=45°.∵PF⊥AC.∴△PEF是等腰直角三角形.∴PF=EF=PE.∴S△PEF=PF•EF=PE2.∴当m=﹣时.S△PEF最大值=×()2=;(3)①当AC为平行四边形的边时.则有PQ∥AC.且PQ=AC.如图2.过点P作对称轴的垂线.垂足为G.设AC交对称轴于点H.则∠AHG=∠ACO=∠PQG.在△PQG和△ACO中..∴△PQG≌△ACO(AAS).∴PG=AO=3.∴点P到对称轴的距离为3.又∵y=﹣(x+1)2+4.∴抛物线对称轴为直线x=﹣1.设点P(x.y).则|x+1|=3.解得:x=2或x=﹣4.当x=2时.y=﹣5.当x=﹣4时.y=﹣5.∴点P坐标为(2.﹣5)或(﹣4.﹣5);②当AC为平行四边形的对角线时.如图3.设AC的中点为M.∵A(﹣3.0).C(0.3).∴M(﹣.).∵点Q在对称轴上.∴点Q的横坐标为﹣1.设点P的横坐标为x.根据中点公式得:x+(﹣1)=2×(﹣)=﹣3.∴x=﹣2.此时y=3.∴P(﹣2.3);综上所述.点P的坐标为(2.﹣5)或(﹣4.﹣5)或(﹣2.3).1.(2021秋•长兴县月考)如图.在平面直角坐标系xOy中.抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).点D为线段BC上一点.过点D作y轴的平行线交抛物线于点E.连结BE.(1)求抛物线的解析式;(2)当△BDE为直角三角形时.求线段DE的长度;(3)在抛物线上是否存在这样的点P.使得∠ACP=45°.若存在.求出点P的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+4x﹣3 (2)DE的长度为2 (3)P(.﹣)【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).∴.解得:.∴抛物线的解析式为y=﹣x2+4x﹣3.(2)令x=0.则y=﹣3.∴C(0.﹣3).设直线BC的解析式为y=kx+n.∴.解得:.∴直线BC的解析式为y=x﹣3.∵点D为线段BC上一点.∴设D(m.m﹣3).则点E(m.﹣m2+4m﹣3).∴DE=(﹣m2+4m﹣3)﹣(m﹣3)=﹣m2+3m.∵B(3.0).C(0.﹣3).∴OB=OC=3.∴∠OBC=∠OCB=45°.∵DE∥y轴.∴∠EDB=∠OCB=45°.∴点D不可能是直角的顶点.①当点B为直角的顶点时.设DE交x轴于点F.∵∠BDE=45°.∠EBD=90°.∴∠DEB=45°.∴△BED为等腰直角三角形.∴EF=FD=DE.∵DF=3﹣m.∴3﹣m=(﹣m2+3m).解得:m=2或3(m=3不合题意.舍去).∴m=2.∴DE=﹣22+3×2=﹣4+6=2.②当点E为直角顶点时.此时边EB在x轴上.点E与点A重合.∴m=1.∴DE=﹣12+3×1=﹣1+3=2.综上.当△BDE为直角三角形时.线段DE的长度为2.(3)在抛物线上存在点P.使得∠ACP=45°.理由:∵A(1.0).∴OA=1.∴ABOB﹣OA=2.∴AC==.延长CP交x轴于点F.如图.由(2)知:∠OBC=∠OCB=45°.∴∠AFC+∠FCB=45°.∵∠ACP=45°.∴∠ACB+∠FCB=∠ACP=45°.∴∠AFC=∠ACB.∵∠F AC=∠CAB.∴△AFC∽△ACB.∴.∴.∴AF=5.∴OF=OA+AF=6.∴F(6.0).设直线CF的解析式为y=dx+e.∴.解得:.∴直线FC的解析式为y=x﹣3.∴.解得:..∴点P的坐标为(.﹣).2.(2021秋•新荣区月考)如图1.在平面直角坐标系中.二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1.0).B(4.0).与y轴交于C(0.4).(1)求该二次函数的解析式.(2)二次函数位于x轴上方的图象上是否存在点P.使得S△BOP=6S△AOC?如果存在.请求出点P的坐标;若不存在.请说明理由.(3)如图2.D为线段BC上的一个动点.过点D作DE∥y轴.交二次函数的图象于点E.求线段DE长度的最大值.【答案】(1)y=﹣x2+3x+4 (2)P(1.6)或P(2.6)(3)当m=2时.ED有最大值4【解答】解:(1)将点A(﹣1.0).B(4.0).C(0.4)代入y=ax2+bx+c.得.解得.∴y=﹣x2+3x+4;(2)存在.理由如下:∵A(﹣1.0).B(4.0).C(0.4).∴OB=4.AO=1.CO=4.∴S△ACO=×1×4=2.∵S△BOP=6S△AOC.∴S△BOP=12.设P(t.﹣t2+3t+4).∴S△BOP=12=×4×(﹣t2+3t+4).解得t=1或t=2.∴P(1.6)或P(2.6);(3)设直线BC的解析式为y=kx+b.∴.解得.∴y=﹣x+4.设D(m.﹣m+4).则E(m.﹣m2+3m+4).∴ED=﹣m2+3m+4+m﹣4=﹣m2+4m=﹣(m﹣2)2+4.∵D为线段BC上的一个动点.∴0≤m≤4.∴当m=2时.ED有最大值41.(2021•内江)如图.抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.与y轴交于点C.直线l与抛物线交于A、D两点.与y轴交于点E.点D的坐标为(4.3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方.连接P A、PD.求当△P AD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.【答案】(1)y=﹣x2+x+3,y=x+1 (2)△P AD的面积的最大值为.P(1.)(3)Q的坐标为(0.)或(0.﹣9)【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.∴设抛物线的解析式为y=a(x+2)(x﹣6).∵D(4.3)在抛物线上.∴3=a(4+2)×(4﹣6).解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣6)=﹣x2+x+3.∵直线l经过A(﹣2.0)、D(4.3).设直线l的解析式为y=kx+m(k≠0).则.解得..∴直线l的解析式为y=x+1;(2)如图1中.过点P作PK∥y轴交AD于点K.设P(m.﹣m2+m+3).则K(m.m+1).∵S△P AD=•(x D﹣x A)•PK=3PK.∴PK的值最大值时.△P AD的面积最大.∵PK=﹣m2+m+3﹣m﹣1=﹣m2+m+2=﹣(m﹣1)2+.∵﹣<0.∴m=1时.PK的值最大.最大值为.此时△P AD的面积的最大值为.P(1.).(3)如图2中.将线段AD绕点A逆时针旋转90°得到AT.则T(﹣5.6).设DT交y轴于点Q.则∠ADQ=45°.∵D(4.3).∴直线DT的解析式为y=﹣x+.∴Q(0.).作点T关于AD的对称点T′(1.﹣6).则直线DT′的解析式为y=3x﹣9.设DQ′交y轴于点Q′.则∠ADQ′=45°.∴Q′(0.﹣9).综上所述.满足条件的点Q的坐标为(0.)或(0.﹣9).2.(2021•西藏)在平面直角坐标系中.抛物线y=﹣x2+bx+c与x轴交于A.B两点.与y轴交于点C.且点A的坐标为(﹣1.0).点C的坐标为(0.5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时.求点P的坐标;(3)图(乙)中.若点M是抛物线上一点.点N是抛物线对称轴上一点.是否存在点M使得以B.C.M.N为顶点的四边形是平行四边形?若存在.请求出点M的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+4x+5 (2)P(.)(3)M的坐标为:(3.8)或(﹣3.﹣16)或(7.﹣16)【解答】解:(1)将A的坐标(﹣1.0).点C的坐(0.5)代入y=﹣x2+bx+c得:.解得.∴抛物线的解析式为y=﹣x2+4x+5;(2)过P作PD⊥x轴于D.交BC于Q.过P作PH⊥BC于H.如图:在y=﹣x2+4x+5中.令y=0得﹣x2+4x+5=0.解得x=5或x=﹣1.∴B(5.0).∴OB=OC.△BOC是等腰直角三角形.∴∠CBO=45°.∵PD⊥x轴.∴∠BQD=45°=∠PQH.∴△PHQ是等腰直角三角形.∴PH=.∴当PQ最大时.PH最大.设直线BC解析式为y=kx+5.将B(5.0)代入得0=5k+5.∴k=﹣1.∴直线BC解析式为y=﹣x+5.设P(m.﹣m2+4m+5).(0<m<5).则Q(m.﹣m+5).∴PQ=(﹣m2+4m+5)﹣(﹣m+5)=﹣m2+5m=﹣(m﹣)2+.∵a=﹣1<0.∴当m=时.PQ最大为.∴m=时.PH最大.即点P到直线BC的距离最大.此时P(.);(3)存在.理由如下:抛物线y=﹣x2+4x+5对称轴为直线x=2.设M(s.﹣s2+4s+5).N(2.t).而B(5.0).C(0.5).①以MN、BC为对角线.则MN、BC的中点重合.如图:∴.解得.∴M(3.8).②以MB、NC为对角线.则MB、NC的中点重合.如图:∴.解得.∴M(﹣3.﹣16).③以MC、NB为对角线.则MC、NB中点重合.如图:.解得.综上所述.M的坐标为:(3.8)或(﹣3.﹣16)或(7.﹣16).3.(2021•湘潭)如图.一次函数y=x﹣图象与坐标轴交于点A、B.二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C.点P是对称轴上一动点.在抛物线上是否存在点Q.使得以B、C、P、Q为顶点的四边形是菱形?若存在.求出Q点坐标;若不存在.请说明理由.【答案】(1)y=x2﹣x﹣(2)Q的坐标为:(1.﹣)或(﹣1.0)或(3.0)【解答】解:(1)在y=x﹣中.令x=0得y=﹣.令y=0得x=3.∴A(3.0).B(0.﹣).∵二次函数y=x2+bx+c图象过A、B两点.∴.解得.∴二次函数解析式为y=x2﹣x﹣;(2)存在.理由如下:由二次函数y=x2﹣x﹣可得其对称轴为直线x==1.设P(1.m).Q(n.n2﹣n﹣).而B(0.﹣).∵C与B关于直线x=1对称.①当BC、PQ为对角线时.如图:此时BC的中点即是PQ的中点.即.解得.∴当P(1.﹣).Q(1.﹣)时.四边形BQCP是平行四边形.由P(1.﹣).B(0.﹣).C(2.﹣)可得PB2==PC2.∴PB=PC.∴四边形BQCP是菱形.∴此时Q(1.﹣);②BP、CQ为对角线时.如图:同理BP、CQ中点重合.可得.解得.∴当P(1.0).Q(﹣1.0)时.四边形BCPQ是平行四边形.由P(1.0).B(0.﹣).C(2.﹣)可得BC2=4=PC2.∴四边形BCPQ是菱形.∴此时Q(﹣1.0);③以BQ、CP为对角线.如图:BQ、CP中点重合.可得.解得.∴P(1.0).Q(3.0)时.四边形BCQP是平行四边形.由P(1.0).B(0.﹣).C(2.﹣)可得BC2=4=PC2.∴四边形BCQP是菱形.∴此时Q(3.0);综上所述.Q的坐标为:(1.﹣)或(﹣1.0)或(3.0).4.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1.0).点B(3.0).顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1.点P在抛物线上.连接CP并延长交x轴于点D.连接AC.若△DAC是以AC为底的等腰三角形.求点P的坐标;(3)如图2.在(2)的条件下.点E是线段AC上(与点A.C不重合)的动点.连接PE.作∠PEF=∠CAB.边EF交x轴于点F.设点F的横坐标为m.求m的取值范围.【答案】(1)y= ﹣(x﹣1)2+4 ,C(1.4)(2)P()(3)﹣1<m≤【解答】解:(1)将点A(﹣1.0).点B(3.0)代入y=ax2+bx+3得:.解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴顶点C(1.4).(2)设AC交y轴于点F.连接DF.过点C作CE⊥x轴于点E.如图.∵A(﹣1.0).C(1.4).∴OA=1.OE=1.CE=4.∴OA=OE.AC==2.∵FO⊥AB.CE⊥AB.∴FO∥CE.∴OF=CE=2.F为AC的中点.∵△DAC是以AC为底的等腰三角形.∴DF⊥AC.∵FO⊥AD.∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4.0).设直线CD的解析式为y=kx+m.∴.解得:.∴直线CD的解析式为y=﹣.∴.解得:..∴P().(3)过点P作PH⊥AB于点H.如下图.则OH=.PH=.∵OD=4.∴HD=OD﹣OH=.∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x.AE=y.则CE=2﹣y.∵DA=DC.∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°.∠AEF+∠PEF+∠CEP=180°.又∵∠PEF=∠CAB.∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时.x即AF有最大值.∵OA=1.∴OF的最大值为﹣1=.∵点F在线段AD上.∴点F的横坐标m的取值范围为﹣1<m≤.1.(2021•宝鸡模拟)如图.已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1.0)和B.与y轴交于点C(0.3).(1)求此抛物线的解析式及点B的坐标;(2)设抛物线的顶点为D.连接CD、DB、CB、AC.①求证:△AOC∽△DCB;②在坐标轴上是否存在与原点O不重合的点P.使以P、A、C为顶点的三角形与△DCB 相似?若存在.请直接写出点P的坐标;若不存在.请说明理由.【答案】(1)B(3.0)(2)①略.②点P的坐标为(9.0)或(0.﹣).【解答】解:(1)把A(﹣1.0)、C(0.3)代入y=﹣x2+bx+c.得.解得.∴此抛物线的解析式为y=﹣x2+2x+3.当y=0时.则﹣x2+2x+3=0.解得x1=﹣1.x2=3.∴B(3.0).(2)①如图1.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴抛物线的顶点D的坐标为(1.4).∵B(3.0).C(0.3).∴CD2=12+(4﹣3)2=2.CB2=32+32=18.BD2=(3﹣1)2+42=20.∴CD2+CB2=BD2=20.∴△DCB是直角三角形.且∠DCB=90°.∴∠AOC=∠DCB=90°.∵CD=.CB==3.OA=1.OC=3.∴==.==.∴=.∴△AOC∽△DCB.②存在.如图2.点P在x轴上.△COP∽△DCB.且∠COP=∠DCB=90°.∠OPC=∠CBD.∴=.∴OP===9.∴P(9.0);如图3.点P在y轴上.△P AC∽△DCB.且∠P AC=∠DCB=90°.∠ACP=∠CBD.∴.∵AC===.BD==.∴CP===.∴OP=﹣3=.∴P(0.﹣).综上所述.点P的坐标为(9.0)或(0.﹣).2.(2021•中山市模拟)如图.抛物线y=﹣x﹣3与x轴交于A.B两点(点A在点B的左侧).与y轴交于点C.直线l与抛物线交于A.D两点.与y轴交于点E.点D的坐标为(4.﹣3).(1)请直接写出A.B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点.点P的横坐标为m(m≥0).过点P作PM⊥x轴.垂足为M.PM 与直线l交于点N.当点N是线段PM的三等分点时.求点P的坐标;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.【答案】(1)y=﹣x﹣1 (2)P的坐标为(3.﹣)或(0.﹣3)(3)点Q的坐标为(0.9)或(0.﹣)【解答】解:(1)令y=0.得y=x2﹣x﹣3=0.解得.x=﹣2.或x=6.∴A(﹣2.0).B(6.0).设直线l的解析式为y=kx+b(k≠0).则.解得..∴直线l的解析式为y=﹣x﹣1;(2)如图1.根据题意可知.点P与点N的坐标分别为P(m.m2﹣m﹣3).N(m.﹣m ﹣1).∴PM=﹣m2+m+3.MN=m+1.NP=﹣m2+m+2.分两种情况:①当PM=3MN时.得﹣m2+m+3=3(m+1).解得.m=0.或m=﹣2(舍).∴P(0.﹣3);②当PM=3NP时.得﹣m2+m+3=3(﹣m2+m+2).解得.m=3.或m=﹣2(舍).∴P(3.﹣);∴综上所述:P的坐标为(3.﹣)或(0.﹣3);(3)∵直线l:y=﹣x﹣1与y轴交于点E.∴点E的坐标为(0.﹣1).分两种情况:①如图2.当点Q在y轴的正半轴上时.记为点Q1.过Q1作Q1H⊥AD于点H.则∠Q1HE=∠AOE=90°.∵∠Q1EH=∠AEO.∴△Q1EH∽△AEO.∴.即.∴Q1H=2HE.∵∠Q1DH=45°.∠Q1HD=90°.∴Q1H=DH.∴DH=2EH.∴HE=ED.连接CD.∵C(0.﹣3).D(4.﹣3).∴CD⊥y轴.∴ED===2.∴HE=ED=2.Q1H=2EG=4.∴Q1E==10.∴Q1O=Q1E﹣OE=9.∴Q1(0.9);②如图3.当点Q在y轴的负半轴上时.记为点Q2.过Q2作Q2G⊥AD于G.则∠Q2GE=∠AOE=90°.∵∠Q2EG=∠AEO.∴△Q2GE∽△AOE.∴.即.∴Q2G=2EG.∵∠Q2DG=45°.∠Q2GD=90°.∴∠DQ2G=∠Q2DG=45°.∴DG=Q2G=2EG.∴ED=EG+DG=3EG.由①可知.ED=2.∴3EG=2.∴EG=.∴Q2G=.∴EQ2==.∴OQ2=OE+EQ2=.∴Q2(0.﹣).综上.点Q的坐标为(0.9)或(0.﹣).3.(2020•长春模拟)如图.抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0)(点A在点B的左边).与y轴交于点C.过点C作CD∥x轴.交抛物线于点D.过点D作DE∥y轴.交直线BC于点E.点P在抛物线上.过点P作PQ∥y轴交直线CE于点Q.连接PB.设点P 的横坐标为m.PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时.求d关于m的函数关系式;(4)当△PQB是等腰三角形时.直接写出m的值.【答案】(1)y=﹣x2+4x﹣3 (2)y=x﹣3(3)当0<m<3时.PQ=﹣m2+3m.当3≤m<4时.PQ=m2﹣3m;(4)m=1或2或±【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0).∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C.∴点C(0.﹣3)设直线BC解析式为:y=kx﹣3.∴0=3k﹣3∴k=1.∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m.PQ∥y轴.∴点P(m.﹣m2+4m﹣3).点Q(m.m﹣3).当0<m<3时.PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m.当3≤m<4时.PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3.0).点C(0.﹣3).∴OB=OC=3.∴∠OCB=∠OBC=45°.∵PQ∥OC.∴∠PQB=45°.若BP=PQ.∴∠PQB=∠PBQ=45°.∴∠BPQ=90°.即点P与点A重合.∴m=1.若BP=QB.∴∠BQP=∠BPQ=45°.∴∠QBP=90°.∴BP解析式为:y=﹣x+3.∴解得:.∴m=2;若PQ=QB.∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2.或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2.∴m=±.综上所述:m=1或2或±4.(2021•黄冈二模)如图.抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1.0)和点B(2.0).与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1.连接BC.点D是直线BC上方抛物线上的点.连接OD、CD.OD交BC于点F.当S△COF:S△CDF=2:1时.求点D的坐标;(3)如图2.点E的坐标为(0.﹣1).在抛物线上是否存在点P.使∠OBP=2∠OBE?若存在.请直接写出符合条件的点P的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+x+2 (2)D(1.2)(3)点P的坐标为()或(﹣)【解答】解:(1)∵A(﹣1.0).B(2.0).∴把A(﹣1.0).B(2.0)代入y=ax2+bx+2得..解得..∴该抛物线的函数解析式为y=﹣x2+x+2;(2)如图1.过点D作DH∥y轴交BC于点H.交x轴于点G.∵抛物线y=﹣x2+x+2与y轴交于点C.设直线BC解析式为y=kx+b.则.解得.∴直线BC解析式为y=﹣x+2.∵S△COF:S△CDF=2:1.∴OF:DF=2:1.∵DH∥OC.∴△OFC∽△DFH.∴=2.∴OC=2DH.设D(a.﹣a2+a+2).则H(a.﹣a+2).∴DH=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a.∴2=2(﹣a2+2a).解得a=1.∴D(1.2).(3)①当点P在x轴上方时.在y轴上取点G(0.1).连接BG.则∠OBG=∠OBE.过点B作直线PB交抛物线于点P.交y轴于点M.使∠GBM=∠GBO.则∠OBP=2∠OBE.过点G作GH⊥BM.∵E(0.﹣1).∴OE=OG=GH=1.设MH=x.则MG=.在Rt△OBM中.OB2+OM2=MB2.∴(+1)2+4=(x+2)2.解得:x=.故MG===.∴OM=OG+MG=1+=.∴点M(0.).将点B(2.0)、M(0.)的坐标代入一次函数表达式y=mx+n..解得:.∴直线BM的表达式为:y=﹣x+.∴.解得:x=或x=2(舍去).∴点P(.);②当点P在x轴下方时.作点M(0.)关于x轴的对称点N(0.﹣).求得直线BN的解析式为y=x﹣.∴.解得.x=﹣或x=2(舍去).∴点P(﹣.﹣);综合以上可得.点P的坐标为()或(﹣).5.(2021•阳东区模拟)如图.已知抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1.0).与y轴相交于点N(0.3).抛物线的顶点为D.经过点A的直线y=kx+1与抛物线y=﹣x2+bx+c 相交于点C.(1)求抛物线的解析式;(2)若P是抛物线上位于直线AC上方的一个动点.设点P的横坐标为t.过点P作y轴的平行线交AC于M.当t为何值时.线段PM的长最大.并求其最大值;(3)若抛物线的对称轴与直线AC相交于点B.E为直线AC上的任意一点.过点E作EF ∥BD交抛物线于点F.以B.D.E.F为顶点的四边形能否为平行四边形?若能.请直接写出点E的坐标;若不能.请说明理由.【答案】(1)y=﹣x2+2x+3 (2)t=时.线段PM的长最大.PM最大值=(3)E的坐标为(0.1)或(.)或(.).【解答】解:(1)∵抛物线y=﹣x2+bx+c与直线相交于A(﹣1.0).N(0.3)两点.∴.解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图1.将A(﹣1.0)代入直线AC的解析式为y=kx+1.得﹣k+1=0.解得k=1.∴直线AC:y=x+1.∵点P的横坐标为t.且PM∥y轴.∴P(t.﹣t2+2t+3).M(t.t+1).∵点P在直线AC上方的抛物线上.∴﹣1<t<3.∴PM=﹣t2+2t+3﹣(t+1)=﹣t2+t+2=﹣(t﹣)2+.∵﹣1<0.且﹣1<<3.∴当t=时.线段PM的长最大.PM最大值=;(3)能.设点E的横坐标为t.则点F的横坐标为t.当﹣1<t<3.如图2.由(2)得.EF=﹣t2+t+2;∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴该抛物线的对称轴为直线x=1.顶点D的坐标为(1.4).直线AC:y=x+1.当x=1时.y=2.∴B(1.2).∴BD=4﹣2=2.∵EF∥BD.∴当EF=BD=2时.四边形BDNG是平行四边形.∴﹣t2+t+2=2.解得t1=0.t2=1(不符合题意.舍去).对于直线y=x+1.当x=0时.y=1.∴E(0.1);当x<﹣1或x>3时.如图3.EF∥BD或E′F′∥BD.则EF=(t+1)﹣(﹣t2+2t+3)=t2﹣t﹣2.∴t2﹣t﹣2=2.解得t1=.t2=.直线y=x+1.当x=时.y=;当x=时.y=.∴E(.).E′(.).综上所述.点E的坐标为(0.1)或(.)或(.).。

二次函数综合题解题方法

二次函数综合题解题方法

二次函数综合题解题方法二次函数是高中数学中的重要内容,掌握二次函数的解题方法对于学生来说至关重要。

下面将从不同角度对二次函数的综合题解题方法进行详细介绍,希望能够帮助大家更好地理解和掌握这一知识点。

首先,我们来看一下二次函数的基本形式:y=ax^2+bx+c,其中a、b、c为常数且a≠0。

在解题时,我们通常会遇到以下几种情况:1. 求二次函数的顶点坐标,二次函数的顶点坐标可以通过公式(-b/2a, f(-b/2a))来求得,其中f(x)=ax^2+bx+c。

这个公式的推导可以通过配方法或者求导数来得到,根据具体题目的要求,我们可以选择合适的方法来求解顶点坐标。

2. 求二次函数与坐标轴的交点,当我们需要求二次函数与x轴或y轴的交点时,可以通过令y=0或x=0来解方程,从而得到交点的坐标。

这个方法在解题过程中经常会被用到,需要我们熟练掌握。

3. 求二次函数的图像,通过化简二次函数的标准形式,我们可以得到二次函数的图像特征,包括开口方向、顶点坐标、对称轴方程等。

这些信息对于绘制二次函数的图像非常重要,也是解题过程中的关键一步。

4. 求二次函数的最值,通过求解二次函数的导数,我们可以得到二次函数的增减性和极值点的信息,从而求得二次函数的最值。

这个方法在优化问题中经常会被用到,需要我们熟练掌握求导数和解方程的技巧。

5. 求二次函数的零点,通过利用一元二次方程的求根公式或者配方法,我们可以求得二次函数的零点,也就是方程y=ax^2+bx+c=0的解。

这个方法在解题过程中经常会被用到,需要我们熟练掌握求根公式和配方法的运用。

以上就是关于二次函数综合题解题方法的详细介绍,希望能够帮助大家更好地理解和掌握这一知识点。

在解题过程中,我们需要根据具体题目的要求灵活选择合适的方法,同时也需要多加练习,提高解题的能力和水平。

希望大家能够在学习中取得更好的成绩,加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解∵抛物线y=ax2+bx+c过点A,B
0=a+b+3 ∴
0=9a-3b+3
解之得
a=-1 b=-2
y x2 2x 3
解:存在∵当x=0时,y=3 ∴C(0,3)
∵y=-x2-2x+3=-(x+1)2+4
∴抛物线对称轴是x=-1
连接BC与直线x=-1的交点就是 所求的点Q
设直线BC的解析式为y=mx+n
1, 10 , 1, 10
(0,3)
(-1,6)
1, 5 3
(-3,0)
(1,0)
解设E (m,-m²-2m+3 ) (m﹤0) 四边形BOCE面积为s
则 s 1 m m2 2m 3 3 1 3 m m2 2m 3
∵-
3
23 2
m2
9 2
m
9 2
2
3 m 2
2
2
∴C(0,4)
∵抛物线 y ax2 bx c
abc 0
∴ 9a 3b c 0 解之得
c4
过点A,B,C
a4 3
b8 3
c4
y 4 x2 8 x 4 33

b 1, 4ac b2 16
2a
4a 3
∴D点坐标是
设直线CD解析式y=kx+n,∴
4=n
k n 16
解之得
S△ABC为8. (1)求这个二次函数的解析式;(2)若抛 物线的顶点为D,直线CD交 x 轴于E. 则x 轴 上方的抛
物线上是否存在点P ,使 S△PBE=15 ?
yD
C
E
AO
Bx
解(1)∵ A1,0, B3,0
∴OA=1,OB=3,AB=OA+OB=4
∵S△ABC ∴OC=4
1 AB• OC 1 4OC 8
3 2
2
63 8
— ﹤0
2
∴当 m 3 , s有最大值 63
2
8
E (0,3)
又 m2 2m 3 9 3 3 15
4
4
∴ E( 3 ,15) 24
(-3,0)
F
(1,0)
例4 已知抛物线 y ax2 bx c 与 x 轴交于点
A(-1, 0)和B(3,0),与 y 轴交于点C ,C在 y 轴的正半轴上,
2
2
: ∴S△ABC:S△ACD=1
1
(2)设对称轴交x轴于F,则AF=3,DF=9a
在Rt△ADF中,AD2=AF2+DF2=9+81a2 在Rt△AOC中,AC2=OA2+OC2=25+25a2
在Rt△CDE中。CD2=DE2+CE2=4+16a2
∵∠ADC=900,∴AC2=AD2+CD2
25 25a2 9 81a2 4 16a2
15 、如图①, 已知抛物线 y=ax²+bx+3
(a≠0)与 x轴交于点A(1,0)和点B (-3,0),与 y轴交于点C.
(1) 求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点Q,使得 △QAC的周长最小?若存在,求出Q点的坐标;若不存在, 请说明理由. (3) 设抛物线的对称轴与 x轴交于点M, 问在对称轴上是否 存在点P,使△CMP为等腰三角形?若存在,请直接写出 所有符合条件的点P的坐标;若不存在,请说明理由. (4) 如图②,若点E为第二象限抛物线上一动点,连接BE、 CE,求四边形BOCE面积的最大值,并求此时E点的坐 标.
(0,3) Q

3=n

m=1
(-3,0)
0=-3m+n
n=3
(1,0)
∴y=x+3
∴当x=-1时,y=2 ∴Q(-1,2)
(3) 设抛物线的对称轴与 x轴交于点M ,问在对称 轴上是否存在点P,使△CMP为等腰三角形?若 存在,请直接写出所有符合条件的点P的坐标; 若不存在,请说明理由.
X=-1
2 2
∴存在点P
1 2
,5,

3 2
,5
使得△PBE面积等于15
已知二次函数 y ax2 bx c (a﹥0) 的图像
x 与x轴交于A
x1,0 ,B x2 ,0
(

1
x2
)
x , x 两点,与y轴交于点C, 1 2 是方程
x2 4x 5 0 的两根
(1)若抛物线的顶点为D,求S△ABC:S△ACD的值
依题意画出图形,则OA=5,OC=1,AB=6,OC=5a
过D作DE⊥y轴于E,则DE=2,OE=9a,CE=OE-OC=4a
∴S△ACD=S梯形ABED-S△AOC-S△CDE
1 DE OA BE 1 OA OC 1 CE DE
2
2
2
=15a
又S△ABC= 1 AB OC 1 6 5a =15a
a2 1
∵a﹥0
6
a
6
6
y 6 x 5x 1 6 x2 2 6 5 6
6
6
36
(2)∠ADC=900,求二次函数解析式
解(1)由 x2 4x 5 0 得
x 5或x 1
由题意得: A(-5,0),B(1,0)
可设抛物线解析式为
y ax 5x 1
= ax2 4ax 5a ax 22 9a
∴顶点D(-2,-9a)
又当x=0时,y=-5a,∴C(0,-5a)
k4 3
∴ y 4x4
3
n4
3
1, 16 3
当y=0时,x=-3 ∴E(-3,0∴) ∴BE=OE+OB=3+3=6
设P点坐标为(h,k)由题可知
S△PBE=1∕2BE×K=15,∴K=5
∵点P在抛物线上
∴ 5 4 h2 8 h 4 33
h1
1 2
Hale Waihona Puke .,h23 2
∴点P坐标为 1 ,5, 或 3 ,5
相关文档
最新文档