PROE圆柱凸轮参数化建模

合集下载

proe参数化建模

proe参数化建模

proe参数化建模简介(1)本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。

第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。

(后一部分要等一段时间了,呵呵)参数化设计是proe重点强调的设计理念。

参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。

参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。

关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。

所以,首先要了解proe中参数和关系的相关理论。

一、什么是参数?参数有两个含义:●一是提供设计对象的附加信息,是参数化设计的重要要素之一。

参数和模型一起存储,参数可以标明不同模型的属性。

例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。

●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。

二、如何设置参数在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。

1.参数的组成(1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。

注意:用于关系的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。

(2)类型:指定参数的类型∙a)整数:整型数据∙b)实数:实数型数据∙c)字符型:字符型数据∙d)是否:布尔型数据。

(3)数值:为参数设置一个初始值,该值可以在随后的设计中修改(4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见(5)访问:为参数设置访问权限。

∙a)完全:无限制的访问权,用户可以随意访问参数∙b)限制:具有限制权限的参数∙c)锁定:锁定的参数,这些参数不能随意更改,通常由关系式确定。

Proe5.0柱形直齿轮建模详细图文教程

Proe5.0柱形直齿轮建模详细图文教程
/*齿宽度关系式 d8=b (8)将圆角尺寸添加到“关系”对话框,在模型树中右键单击刚刚草绘的截面,在弹 出的快捷菜单中单击“编辑”。在主菜单上单击“工具”→“关系”,系统弹出“关系”对 话框。此时系统显示截面圆角的尺寸代号。单击该尺寸代号,尺寸代号将自动显示在“关系” 对话框中,输入的关系式为: /*截面圆角半径关系式 if hax>=1 d9=0.38*m endif if hax<1 d9=0.46*m endif 完成后的“关系”对话框如图35所示,在“关系”对话框内单击【确定】完成添加关系 式。
图 1 “参数”对话框
(3)在“参数”对话框内单击 按钮,可以看到“参数”对话框增加了一行,依次输 入新参数的名称、值、和说明等。
需要输入的参数如表 1 所示。
表 1 齿轮参数设置
名称

说明
名称

说明
z
25
齿数
ha
0
齿顶高
m
3
模数
hf
0
齿根高
angle
20
压力角
da
0
齿顶圆直径
hax
1
齿顶高系数
d
0
图 17 “基准轴”对话框
图 18 “基准轴”创建完成 -8-
(5)在工具栏内单击 按钮,或者依次在主菜单上单击“插入”→“模型基准”→“平
面”,系统弹出“基准平面”对话框。 (6)在绘图区单击选取“A_1”轴作为参照,按住Ctrl键,继续单击基准点“PNT0”作
为参照,如图19所示,点击确定完成基准面“DTM1”的创建。
图 24 完成后的镜像渐开线
- 10 -
5. 创建齿根圆 (1)在工具栏内单击 按钮,或者依次在主菜单内单击“插入”→“拉伸”,弹出 “拉伸”定义操控面板,在面板内单击“放置”→“定义”,弹出“草绘”定义对话框。 (2)选择“FRONT”面作为草绘平面,选取“RIGHT”面作为参考平面,参考方向为向 “顶”,如图25所示。单击【草绘】进入草绘环境。

Proe弧面分度凸轮建模实例(附详细程序)

Proe弧面分度凸轮建模实例(附详细程序)

弧面分度凸轮三维建模已知设计条件:凸轮转速n=300r/min,连续旋转,从动转盘有8 工位,中心距C=180mm,载荷中等。

选择改进正弦运动规律为所设计弧面分度凸轮机构的运动规律。

参数如下:项目实例计算凸轮角速度ω1=πX 300=101T/s凸轮分度期转角β1=120°=2/3π凸轮停歇期转角θd=360°-120°=4/3π凸轮角位移θ凸轮和转盘的分度期时间∥s 0=(2"rr/3)/10-rr=1/15s凸轮和转盘停歇时间幻/s td=(2ar/10"rr)一1/15=2/15s凸轮分度廓线旋向及旋向系数P 选取左旋L,P=+1凸轮分度廓线头数日选取H=1转盘分度数,按设计要求的工位数,选定,=8转盘滚子数Z=1×8=8转盘分度期运动规律抛物线一直线一抛物线转盘分度期转位角盼/(。

) 妒,=360。

/8=45。

中心距C=180mm凸轮转速n=300r/min旋向系数P=+1分度数I=8凸轮头数H=1转盘滚子数Z=1*8=8凸轮宽度B=90分度期转角θf = 120°停歇期转角θd = 240°凸轮节圆半径rp1=96mm滚子宽度b=30mm滚子半径Rr=22mm凸轮顶弧半径rc=75.29mm我们将分别作出与滚子左面接触的一系列凸轮轮廓曲线,分度期1L、2R、2L、3R ,停歇期与滚子左右接触的轮廓曲线,然后将这些线生成曲面,最后生成实体。

1 凸轮定位环面内圆直径Di为直径的基础圆柱体打开Pro/ENGINEER,进入Pro/ENGINEER三维造型窗口,在“基础特征”工具栏上单击“拉伸”命令,选择“FRONT”面为草绘平面,绘制φ154.69的圆,并双向拉伸90mm.2 建立1L 轮廓曲线1)建立推程段轮廓面曲线①. 新建.prt 文件打开Pro/E Wildfire 三维绘图软件,新建->零件->实体,建立文件。

参数化圆柱凸轮的proe做法

参数化圆柱凸轮的proe做法

4.1 参数化设计原理采用Pro/ENGINEER 进行参数化设计,所谓参数化设计就是用数学运算方式建立模型各尺寸参数间的关系式,使之成为可任意调整的参数。

当改变某个尺寸参数值时,将自动改变所有与它相关的尺寸,实现了通过调整参数来修改和控制零件几何形状的功能。

采用参数化造型的优点在于它彻底克服了自由建模的无约束状态,几何形状均以尺寸参数的形式被有效的控制,再需要修改零件形状的时候,只需要修改与该形状相关的尺寸参数值,零件的形状会根据尺寸的变化自动进行相应的改变【17】。

参数化设计不同于传统的设计,它储存了设计的整个过程,能设计出一族而非单一的形状和功能上具有相似性的产品模型。

参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品【18】。

4.2 建立滚轮中心轨迹曲线方程 圆柱凸轮最小外径为:min2m D r B =⨯+ (37)由式(37)、(7)、(31)得:41m in 414100095.161080003224tan cos 100095.1610800032tan cos 200095.1610380002tan cos m h Ft h D r B h Ft h h Ft h D Dρααραααα---⎛⎫⨯⨯+ ⎪⎝⎭=⨯+=⨯+⎛⎫⨯⨯+ ⎪⎝⎭=+⎛⎫⨯⨯+ ⎪⎝⎭=+(38)圆柱周长L4200095.1610380002tan cos h Ft hD D L D ππαα-⎛⎫⎛⎫⨯⨯+ ⎪ ⎪⎝⎭ ⎪==+⎪⎪⎝⎭(39) 单个滚轮中心轨迹按周长展开,如图10所示:图10 单个滚轮中心轨迹按周长展开凸轮高度H1003H D D h=+⨯+ (40)以左下角做为作标原点,创建单个滚轮中心轨迹曲线方程。

推程位移轨迹线对应方程。

()()()()412/3200095.1610380002tan()cos /31cos 120/1/20s hphi pi h F t h D DD a x D pi ty s pi t phi z α-==*⎛⎫⨯**+ ⎪⎝⎭=+=**=*-**= (41)远休止轨迹线对应方程。

基于Creo2.0参数化设计的凸轮机构教学研究--以圆柱凸轮为例

基于Creo2.0参数化设计的凸轮机构教学研究--以圆柱凸轮为例

2021年第2期(总第145期)济南职业学院学报.r.«:Apr.2021No.2(Siri:l No.145)基于Creo2.0参数化设计的凸轮机构教学研究----以圆柱凸轮为例孙悦史建国刘晴(济南职业学院,山东济南250103)摘要:目前,在讲解凸轮机构时,均采用图解法进行教学,但对于圆柱凸轮,其从动件的导路与凸轮的运动平面垂直,属于空间凸轮机构,用图解法表达空间曲面比较困难。

通过圆柱凸轮作为实例,利用Creo2.0的参数化设计功能,分别绘制出推程角轮廓线、远休角轮廓线、回程角轮廓线、近休角轮廓线与凸轮外圆线,利用Creo2.0扫描功能,生成凸轮实体,并利用变参功能获得不同的圆柱凸轮轮廓,克服了图解法的缺点。

关键词:Creo2.0;设计;凸轮机构中图分类号:G712文献标志码:A文章编号:1673-4270(2021)02-0048-04一、弓言凸轮机构是机械中的一种常用机构,是凸轮作为主动件连续等速运动,而从动件能按任意要求的预期运动规律运行。

常用的从动件运动规律一般采用等速运动、等加速等减速运动、简谐运动等,任何一种运动规律都是一个连续的轨迹[1]。

在我们的教学中,对凸轮轮廓的设计目前都采用图解法进行教学,图解法就是做出从动件运动规律的位移线图,从中截取适当点,然后在基圆上绘制凸轮轮廓。

但是对于圆柱凸轮,其从动件的导路与凸轮的运动平面垂直,属于空间凸轮机构,用图解法表达空间曲面比较困难,因此在教学过程中,圆柱凸轮机构的教学往往是一大难点。

随着计算机软件的应用,将Creo2.0的功能与机械工程相结合,解决了原来教学中的棘手问题。

Creo2.0是美国PTC公司推出的一套博大精深的机械三维CAD/CAM/CAE参数化软件系统,能运用到工业造型设计、三维模型设计、分析计算、动态模拟与仿真、工程图输出和生产加工成产品的全过程。

在航天、汽车、机械等领域被广泛应用。

本文从这一角度出发,选择凸轮机构中难度较大的圆柱凸轮作为实例,利用Creo2.0的参数化功能,实现其设计,克服了图解法的缺点。

基于Creo的凸轮机构三维参数化设计及运动仿真

基于Creo的凸轮机构三维参数化设计及运动仿真

基于Creo的凸轮机构三维参数化设计及运动仿真刘鹏冯立艳李静卢家宣蔡保杰冷腾飞苗伟晨(华北理工大学以升创新基地河北·唐山063210)摘要本文主要介绍用Creo对凸轮机构进行参数化设计并以圆柱槽状凸轮机构为例进行运动仿真,再通过C#软件完成人机交互,即操作人只需在程序界面输入槽状凸轮相应参数即可完成凸轮的三维建模,从而绘制出相应的位移、速度、加速度曲线进入仿真和分析环节。

这样即缩短了凸轮的设计周期提高了设计质量,并且解决了凸轮教学课程存在的设备成本高、设备数量少、实验时间和空间受限等难题。

关键词凸轮Creo参数化仿真中图分类号:TP391.9文献标识码:A1基于Creo软件下的凸轮三维建模1.1Creo环境下槽状凸轮机构三维参数化造型基本思路(1)参数化过程需准备可变参数包括行程、推程角、远休角、回程角、近休角、外径、壁厚、基底高度、凸轮高度、槽深、槽宽,以上变量成为参数组。

(2)通过根据凸轮不同运动规律编写推程、远休止、回程、近休止段凸轮轮廓线方程,本例应用的凸轮推程回程为正弦加速度运动规律。

(3)分段绘制出理论轮廓曲线,将各段曲线首尾相连封闭,即为完整的凸轮理论廓线。

(4)生成凸轮实体;加入参变量,实现参数化。

1.2三维建模具体步骤Creo是如今今应用最广的三维绘图软件之一,主要用于参数化实体设计,它所提供的功能包括实体设计、曲面设计、零件装配、建立工程图、模具设计、、电路设计、装配管件设计、加工制造和逆向工程等。

其系统特性主要包含单一数据库、全参数化、全相关、基于特征的实体建模等,不仅能实现零件的参数化设计,也可以方便地建立各零部件的通用件库和标准件库,从而提高设计的效率和质量。

1.2.1槽状凸轮机构的三位参数化建模自行设定初步参数组,注意推程角、远休角、回程角、近休角之和为360,(2)运行creo软件,新建零件,进入界面。

(3)选择【工具:程序】,出现菜单管理器,选择编辑设计,出现记事本,在IN PUT和END PUT语句中间输入语句,然后存盘,确认将所做的修改体现到模型中,最后在菜单管理器中输入设定的初步参数值。

PROE参数化圆柱齿轮的建立方法

PROE参数化圆柱齿轮的建立方法

二、参数化圆柱齿轮的建立1.新建并命名零件的名称为yuanzhuchilun.prt 。

2.创建用户参数:齿轮模数-M,齿轮齿数-Z,齿轮厚度-B ,齿轮压力角-ANGLE 。

在主菜单选择“工具”→“参数”命令,打开如图2-1所示的“参数”对话框然后单击四次 按钮,在名称栏中依次输入参数名m 、z 、b 、angle ,类型栏中全部为实数,参数值分别为4、20、20、20.3.创建基准曲线:在特征工具栏单击草绘按钮,选取front 基准面为草绘平面,绘制草图,如图2-2所示(直径值可以任意给出,以后将由关系式控制),在特征工具栏单击完成 按钮退出草绘。

4.在零件模型中创建关系:在主菜单选择“工具”→“关系”命令,打开如图2-3所示的“关系”对话框,然后选择上一步所绘制的基准曲线,此时系统显示出此基准曲线的所有尺寸参数符号,如图2-4所示:在“关系”对话框的关系编辑区,键入如下关系式:d0=m*z-m*2.5d1=d2*cos (angle )d2=m*zd3=m*z+m*2说明:在以上关系中,d2代表分度圆直径,d0代表齿根圆直径,d1代表基圆直径,d3代表齿顶圆直径。

单击对话框中的确定按钮,完成关系定义,然后单击工具栏中的“再生” 按钮,再生模型。

5.创建渐开线: 在特征工具栏单击“曲线”按钮,在弹出的如图2-5所示的“菜单管理器”中,选择图2-1“参数”对话框图2-2 截面草图“从方程”→“完成”命令,此时系统弹出如图2-6所示的信息框,选取默认坐标系PRT_CSYS_DEF ,并在弹出的如图2-7所示的“菜单管理器”中选择笛卡尔命令,系统弹出如图2-8所示的记事本,在文本输入区,输入如下所示的渐开线方程:r=d1/2theta=t*90x=r*cos(theta)+r*sin(theta)* theta*(pi/180)y=r*sin(theta)-r*cos(theta)* theta*(pi/180)z=0完成后将其保存然后退出记事本,单击“曲线 从方程”信息框中的确定按钮,完成渐开线的建立,如图2-9所示。

基于Pro/E的凸轮参数化设计及ADAMS仿真

基于Pro/E的凸轮参数化设计及ADAMS仿真

基于Pro/E的凸轮参数化设计及ADAMS仿真摘要:基于Pro/ E 平台下进行凸轮的实体参数化设计,并应用ADAMS进行系统仿真,对相关产品的设计提供设计思路和借鉴作用。

关键词:Pro/E;凸轮;参数化;ADAMS1、前言Pro/ENGINEER是目前最先进的计算机辅助设计(CAD)、制造(CAM)和分析(CAE)软件,该系统是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。

该功能就是将每一个尺寸看作可变参数,而尺寸驱动是参数化设计的重要特点。

所谓尺寸驱动就是以模型的尺寸来决定模型的形状,一个模型由一组可变的尺寸进行定义。

这样只要修改这些参数尺寸,相关模型就会依照尺寸的变化重新生成,达到设计变更的一致性,从而避免或减少重复劳动。

利用虚拟样机仿真分析软件ADAMS的MECHANISM/Pro(Pro/E接口)模块进行系统运动学或动力学仿真,并进行干涉检查,确定运动锁定的位置,计算约束副的作用力等等,从而使产品开发阶段就可以帮助设计者发现设计缺陷,并提出改进的方案,提高产品的可靠性。

使用MECHANISM/Pro(Pro/E接口)模块进行运动学或动力学仿真分析时,一般遵循以下几个步骤①创建或打开Pro/ENGINEER装配模型;②定义刚体;③创建约束副;④添加驱动;⑤应用载荷和弹性连接器;⑥传送模型;⑦观察分析结果。

2、Pro/ENGINEER参数化的凸轮设计凸轮机构由于其结构简单、紧凑,而且从动件的运动规律完全取决于凸轮的轮廓曲线,所以在设计时只要设计适当的轮廓,便可使从动件获得所需的运动规律,因此在机械行业中有的广泛的应用。

设计凸轮轮廓的方法主要有作图法和解析法两种,随着计算机技术的发展,现在几乎都是采用解析法设计凸轮轮廓,同时也解决了采用作图法存在的精度问题。

而在Pro/E中可以通过建立方程式生成各段曲线,然后通过各曲线段扫描生成凸轮的实际轮廓曲面,这样设计出的凸轮模型,可以通过改变不同的参数从而获得不同的凸轮实体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,位移曲线是这样的:X轴范围为0——PI*D,也就是底面圆的周长。Y轴仍然是从动件位移。
STEP1
现在我们来输入推程段(转角0——120)的方程:
说明:X的方程中,100是半径, 是转角。由于底面圆展开成横轴X,因此X即为弧长(为半径乘以转角),即为 。
STEP2
点击记事本的【文件/保存】,然后退出。
一、新建文件
大家都很熟悉,所以就不多说了。
二、生成位移曲线
操作相同,但是位移曲线就必须注意了。
1.单击 (插入基准曲线),选择“从方程”,“完成”。
2.弹出如下对话框。选择坐标系PRT_CSYS_DEF,在新弹出的【菜单管理器】中,选择【设置坐标类型/笛卡儿】。
3.输入方程。
注意:在盘形凸轮建模中,一般以转角为X轴,范围0——360,从动件位移为Y轴。但是在此,我们将圆柱凸轮展开,可以看成一个长方体,这样凸轮的沟槽就自动呈现在我们眼前,这沟槽就是我们要的位移曲线。
点击【曲线:从方程】中的【确定】。产生如图的曲线。
同理可以输入另外三段曲线方程,这里不重复说明,例如远休止段(120——150)为:
150——300段:
300——360段:
最终生成结果如图:
4.保存为IGES格式。
确定,弹出下面的对话框,做出如图的选择,确定,完成IGES副本的保存。
三、生成凸轮凹槽
依次选择:完成——正向——自由端点——完成,绘制扫描截面。
(3)
绘制截面如图,图形对称,矩形尺寸30X40。然后退出草绘。
(4)选择”正向“——确定。
扫描结果如下:
四、环形折弯
1.属性设置:
插入——高级——环形折弯
360——曲线折弯收缩——完成
2.定义折弯对象
选择拉伸的实体和上表面作为折弯对象(实体可以在模型树选)。如下图所示。
1.拉伸出基体
大家都很熟悉,故不详述了。
(1)
(2)绘制一个矩形。
(3)工具——关系
确定,此时尺寸将发生变化。如下图所示。
确定退出草绘。
(4)设置拉伸深度。由于圆柱半径为100,因此拉深深度100。
结果如下。
2.扫描切除出沟槽
大家也很熟悉,故简略。
(1)插入——扫描ห้องสมุดไป่ตู้—切口——选取轨迹
(2)
选择位移曲线作为轨迹。如下图。
3.
选择表面A为草绘面,单击”正向“,其余默认,选择”缺省“,进入草绘。
A
草绘——参照,选择参照如图1。单击草绘器工具栏的 创建参照坐标系。绘制一条直线作为弯曲轨迹。坐标系位置和直线情况如图1。
草绘环境
参照和坐标系
直线
单击 退出草绘。
结果如图。
祝大家愉快!
%转角:0~120
h=160
phi1=2*pi/3
x=100*((2*pi/3)*t)
y=h*(1-cos(pi*120*t/phi1))/2
z=0
%转角:120~150
h=160
x=200*pi/3+100*(pi/6*t)
y=h
z=0
%转角:150~300
h=160
phi=5*pi/6
x=100*(5*pi/6)+100*(5*pi/6)*t
y=h*(1+cos(pi*150*t/phi))/2
z=0
%转角:300~360
x=100*5*pi/3+100*pi/3*t
y=0
z=0
L圆柱凸轮的建模——PROE4.0
PROESKILL
圆柱凸轮建模与盘形凸轮略有区别。但是前面的步骤是相同的。下面用一个实例来说明。
任务:
生成一个圆柱凸轮,外径D=200,长度L=240,滚子半径Rr=30.从动件运动规律:凸轮转角0——120度时,从动件以余弦运动规律向一端移动160;从120——150度时,从动件静止(远休止);从150——300度时,从动件以余弦运动规律向另一端移动160,回来;300——360度时,从动件又不动。
相关文档
最新文档