PROE-蜗轮蜗杆的参数化建模
涡轮蜗杆参数化建模

涡轮蜗杆的参数化建模主要考虑蜗轮、蜗杆和传动比等参数。
以阿基米德圆柱蜗杆为例,建模原理是将蜗杆的螺旋齿廓绕阿基米德螺旋线进行扫描切除。
具体的步骤包括:以齿顶圆为轮廓拉伸基体得到蜗杆胚体,拉伸长度即为蜗杆长度L。
建立阿基米德螺旋线。
螺旋线的基圆是蜗杆的分度圆,其高度为蜗杆的长度,螺距为蜗杆的导程,且导程P1=z1Px。
以图1所示数学模型建立蜗杆切除齿廓。
以该切除齿廓为轮廓,阿基米德螺旋线为引导曲线,扫描切除得到蜗杆三维模型。
如果是多头蜗杆,则需进行圆周阵列。
以上内容仅供参考,如果需要更多信息,建议到知识分享平台查询或请教专业人士。
涡轮蜗杆参数化建模

涡轮蜗杆参数化建模涡轮蜗杆是一种常见的动力传动机构,可以将液压力和速度转化为机械工作。
在工业生产和机械制造中,涡轮蜗杆广泛应用于泵、风机、压缩机等设备中,具有高效率、大扭矩和稳定性等优点。
本文将以涡轮蜗杆参数化建模为主题,探讨其工作原理、参数化建模过程以及在实际应用中的优势。
涡轮蜗杆是由蜗杆和蜗轮组成的,蜗杆是一种螺旋形状的旋转轴,蜗轮则是与蜗杆啮合的齿轮。
涡轮蜗杆的工作原理是通过蜗杆的旋转,带动蜗轮的转动,从而产生机械工作。
涡轮蜗杆的核心是蜗杆的螺旋形状,蜗杆的螺旋程度决定了涡轮蜗杆的传动比和效率。
因此,涡轮蜗杆的参数化建模是非常重要的。
涡轮蜗杆的参数化建模过程主要包括以下几个步骤:首先,确定涡轮蜗杆的基本参数,如蜗杆的直径、蜗杆的螺距、蜗轮的齿数等。
这些参数决定了涡轮蜗杆的几何形状和传动比。
其次,根据涡轮蜗杆的工作要求和实际应用场景,确定涡轮蜗杆的材料和加工工艺。
不同的材料和加工工艺会影响涡轮蜗杆的强度和寿命。
最后,利用参数化建模软件,将上述参数输入到软件中,进行参数化建模。
参数化建模软件可以根据输入的参数生成涡轮蜗杆的三维模型,并进行模拟分析和优化设计。
涡轮蜗杆的参数化建模具有许多优势。
首先,参数化建模可以实现涡轮蜗杆的快速设计和优化。
通过调整参数,可以快速生成不同规格的涡轮蜗杆模型,并进行性能分析和比较,从而选择最佳设计方案。
其次,参数化建模可以提高设计的精确度和一致性。
通过建立参数化模型,可以减少设计误差和重复工作,提高设计效率。
此外,参数化建模还可以方便后续工艺分析和生产操作,为实际制造提供参考。
在实际应用中,涡轮蜗杆参数化建模可以广泛应用于各个行业。
例如,在泵类设备中,通过参数化建模可以实现涡轮蜗杆与叶轮的匹配,提高泵的效率和性能。
在风机类设备中,通过参数化建模可以优化涡轮蜗杆的螺旋角度和齿轮齿形,提高风机的风量和压力。
在压缩机类设备中,通过参数化建模可以优化涡轮蜗杆的齿数和啮合角度,提高压缩机的压力比和效率。
PROE-蜗轮蜗杆的参数化建模

蜗轮蜗杆的创建蜗杆的创建:在PRO/E 中使用参数化创建蜗杆,具体操作步骤如下:1.创建新的零件文件:→【输入零件名称:wogan,取消Use default template 的选中记号,然后单击OK按钮】→【选择公制单位mmns_part_solid后单击OK按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】2.参数的输入Tools/Program…/Edit Design→【打开记事本,在INPUT和END INPUT 之间以及RELATION和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】INPUTM NUMBER ;模数Z1 NUMBER ;蜗杆头数Z2 NUMBER ;蜗轮齿数DIA1 NUMBER ;蜗杆分度圆直径(标准系列值)LEFT YES_NO ;旋向,YES表示左旋,否则为右旋END INPUTRELATIONSDIA2=M*Z2 ;蜗轮分度圆直径L=(11+0.06*Z2)*M ;蜗杆有效螺旋线长度END RELATIONS→【信息窗口出现“Do you want to incorporate your changes into the model:【YES】”,选择YES,以便输入参数值】→【Enter→Select All,根据信息窗口提示,各参数赋初值如下】M = 2.5Z1 = 1Z2 = 30DIA1 = 28旋向暂不输入,后期处理。
各参数的建立和赋值结束。
3.生成螺旋体Insert/Helical Swee.Protrusion…→【出现“螺旋扫描”对话框,接受属性子菜单中各默认选项,包括Constant(等导程)、ThruAxis(截面通过旋转轴线)、Right Handed(右旋) →Done】→【进入扫描廓型创建画面,绘制图7-2所示直线(尺寸如图),并绘制回转轴线】→【Tools/Relations→显示参数符号如图7-3所示,并出现Relationship对话框】→【在对话框内输入:sd3=L;sd4=L/2;sd1=DIA1/2→OK】→【单击图标,进入导程设定→在导程设定窗口输入导程值M*PI*Z1→点击图标】→【进入截面绘制画面,绘制图7-4所示截面图形(尺寸如图)】→【Tools/Relations→显示参数符号如图7-5所示,并出现Relations对话框】→【在对话框内输入:sd61=1.25*M;sd62=M;sd63=M*PI/2-2*M*tan(20) →OK】→【单击图标→OK,生成螺旋体如图所示,】4.导程参数化上述造型过程中,各参数除导程外均已实现参数化,下面对导程实施参数化。
PROE蜗轮蜗杆的参数化建模

PROE蜗轮蜗杆的参数化建模蜗轮蜗杆传动是一种常用的传动方式,在机械系统中有广泛的应用。
蜗轮蜗杆传动具有传递大扭矩的特点,能够将输入轴的高速运动转化为输出轴的低速高扭矩运动。
为了实现对蜗轮蜗杆传动的参数化建模,需要考虑蜗轮、蜗杆和传动比等参数。
首先,我们需要确定蜗杆的基础参数。
蜗杆是一种螺旋行星轮,具有螺旋齿。
蜗杆的主要参数包括螺旋角、导程、齿宽等。
螺旋角是蜗杆轴线上的螺旋线与轴线的夹角,导程是螺旋线的一个周期所对应的轴向长度。
齿宽是蜗杆螺旋线上的齿顶宽度。
这些参数的大小会直接影响蜗杆传动的传动效率和承载能力。
其次,我们需要确定蜗轮的基础参数。
蜗轮是与蜗杆啮合的齿轮,在蜗轮蜗杆传动中起到传递力矩和转速的作用。
蜗轮的主要参数包括齿数、模数、压力角等。
齿数是蜗轮上的齿的数量,模数是齿轮齿条上一个齿的尺寸。
压力角是齿轮齿条齿廓的斜率。
这些参数决定了蜗轮的几何形状和传动性能。
最后,我们需要确定蜗轮蜗杆传动的传动比。
传动比是指输入轴转速与输出轴转速之间的比值。
在蜗轮蜗杆传动中,传动比与蜗杆的导程和蜗轮的齿数之间有直接的关系。
传动比越大,输出轴的转速越低,扭矩越大。
传动比的选择需要考虑到机械系统的要求和设计要素。
了解了蜗轮、蜗杆和传动比等参数后,我们可以进行蜗轮蜗杆传动的参数化建模。
首先,确定蜗杆和蜗轮的基本参数,根据设计要求和传动比确定具体数值。
然后,根据蜗杆和蜗轮的参数,计算出蜗杆周速度、蜗轮周速度和传动比。
根据计算结果,可以进一步确定蜗轮蜗杆传动的传动效率、承载能力和传动精度。
在参数化建模的过程中,可以利用现代计算机辅助设计软件,通过数学模型和三维图形表示等方法,对蜗轮蜗杆传动进行仿真和分析。
通过仿真和分析,可以对蜗轮蜗杆传动的性能进行优化和改进。
通过参数化建模,可以实现对蜗轮蜗杆传动的快速设计和优化,提高传动效率和工作性能。
通过以上建模过程,可以实现对蜗轮蜗杆传动参数化建模。
这种建模方法可以提高设计效率,优化设计结果,满足机械系统对传动性能要求。
蜗轮蜗杆副的三维参数化建模及有限元分析

第34卷第2期机电产品开发与创新Vol.34,No.2 2021年3月Development&Innovation of M achinery&E lectrical P roducts Ma&.,2021文章编号:1002-6673(2021)02-070-03蜗轮蜗杆副的三维参数化建模及有限元分析王洋洋(许昌职业技术学院,河南许昌461000)摘要:随着机械制造技术的快速发展,由于蜗杆传动机构具有传动比大,传动平稳和具有自锁性等一系列优点,被广泛的应用在机械传动中$ZA蜗杆传动由于具有加工和测量方便等独特的优势,因此应用更为广泛$所以,ZA蜗轮蜗杆参数化建模的研究,对于蜗杆传动机构的理论研究和产品开发具有重要意义$本文以精密板式过滤机中减速器的蜗轮蜗杆为研究对象,探讨了ZA蜗轮蜗杆参数化建模和有限元分析等相关问题。
关键词:ZA蜗轮蜗杆&三维建模&参数化&有限元分析中图分类号:TH132文献标识码:A doi:10.3969/j.iss2.1002-6673.2021.02.022Worm and Worm Gear3D Parametric Modeling and Finite Element AnalysisWA'NG Yang-Yang(Xuchang Vocational Technical College,Xu.chang Henan461000,China)Abstract:With the rapid development of manufacturing technology,worm gear and worm drive mechanism is widely used in mechanical transmission because of its high transmission ration,compact structure,reliable transmission stability,self-lock and so on.Especially,the ZA worm drive mechanism is used more widely with its advantage of easy machining and measuring.Therefore,parametiic model building and study which based on ZA worm drive mechanism is greatly meaningful to research the theory and develop the product.In this paper,I will take ZA worm gearing to research parametric design and Finite element analysis.Keywords:ZA worm and worm gear;3D modeling;parameterized;0引言蜗杆传动属于机械传动中的一种重要的传动方法,它是一种在空间交错轴间传递运动和动力的机构,它的轴线相错角可以为任何角度,但在绝大多数情况下,轴交角选为90叫蜗杆传动的主要特点有:①结构紧凑,传动比大,采用一级蜗杆传动就可以实现很大的传动比。
proe如何画蜗轮蜗杆+prt+视屏

Proe如何画蜗轮蜗杆设计思路1.确定减速比i=Z2/Z1(本设计Z1=2,Z1=40)=40/2=20 . 22.选定模数-确定蜗杆直径系数和蜗杆尺寸 (3)3.计算中心距 (5)4.涡轮尺寸表 (6)5蜗轮蜗杆主要参数与尺寸计算 (7)6.蜗轮蜗杆的画法 (9)7.proe图中数据详解 (9)8.prt附件和视频附件 (11)Proe 如何画蜗轮蜗杆设计思路 (注,下载后可以打开prt 文件和视屏) 1.确定减速比i=Z2/Z1(本设计Z1=2,Z1=40)=40/2=20(1) 头数Z1 从蜗杆的端面看有几条出来的螺旋线就是几头了蜗杆上只有一条螺旋线的称为单头蜗杆,即蜗杆转一周,蜗轮转过一齿,若蜗蜗杆头数杆上有两条螺旋线,就称为双头蜗杆,即蜗杆转一周,蜗轮转过两个齿。
依此类推,设蜗杆头数用Z1表示(一般Z1=1、2、4),蜗轮齿数用Z2表示。
从传动比公式可以看出,当 Z1=1,即蜗杆为单头,蜗杆须转一转蜗轮才转一齿,因而可得到很大传动比,一般在动力传动中,取传动比I=10-80;在分度机构中,I 可达1000。
这样大的传动比如用齿轮传动,则需要采取多级传动才行,所以蜗杆传动结构紧凑,体积小、重量轻。
一般来说,蜗杆头数越多,传动效率越高,但加工会更加困难。
蜗杆的头数又可以叫做蜗杆的条数。
i=蜗杆转速n1蜗轮转速n2 =蜗轮齿数z2蜗杆头数z1(2)齿数Z2 利用减速比和查表得出(具体表格详见涡轮尺寸表)2.选定模数-确定蜗杆直径系数和蜗杆尺寸(1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt 为标准模数。
对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。
标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。
表A选取模数m=4(也可以根据需要选取其他值)分度圆直径d1=40.蜗杆直径系数q=103.计算中心距得a=40+160/2=1004.涡轮尺寸表特性系数:蜗杆的分度圆直径与模数的比值称为蜗杆特性系数。
PROE_蜗轮蜗杆的参数化建模

PROE_蜗轮蜗杆的参数化建模蜗轮蜗杆是一种常见的传动机构,常用于工业机械设备中。
在进行参数化建模时,首先需要确定蜗轮蜗杆的几何形状,并根据其几何参数进行建模。
蜗轮蜗杆的几何形状可以通过以下几个参数进行描述:1.蜗杆的螺旋角:蜗杆是一种螺旋线形状的圆柱体,螺旋角是指螺旋线与轴线的夹角。
可以通过设置螺旋角大小来改变蜗杆的高低程度。
2.蜗杆的螺距:螺距是指螺旋线在轴线上的走过的距离与螺旋线的圈数之比。
可以通过设置螺距来改变螺旋线的紧密程度。
3.蜗杆的螺纹方向:蜗杆的螺纹可以是向上螺旋或向下螺旋。
蜗轮的传动性质与蜗杆螺纹方向有关,需要根据实际需求来确定。
4.蜗轮的齿数:蜗轮是一种圆盘形状,上面有一定数量的齿。
蜗轮的齿数决定了每转一圈蜗杆,蜗轮旋转的角度。
在进行参数化建模时,可以通过以上几个参数来描述蜗轮蜗杆的几何形状。
可以使用计算机辅助设计软件,比如SolidWorks等,来进行建模。
首先,可以通过设置螺旋角和螺距来创建蜗杆的螺旋线。
选择绘制螺旋线命令,根据设定的参数来创建螺旋线的起点、结束点和升高程度。
根据螺杆的螺旋角和螺距可以确定其几何形状。
然后,可以通过创建蜗轮的圆盘形状,并设置其齿数。
选择绘制圆盘命令,根据设定的齿数来创建蜗轮的圆盘形状。
根据蜗轮的齿数可以确定每转一圈蜗杆,蜗轮旋转的角度。
最后,通过将蜗杆和蜗轮进行组装,将蜗杆的螺旋线与蜗轮的齿相匹配,完成蜗轮蜗杆的参数化建模。
除了以上几个基本参数,还可以根据实际需求添加其他参数,比如蜗轮蜗杆的尺寸、材料等。
通过参数化建模,可以方便地调整蜗轮蜗杆的几何形状,从而满足不同的传动要求。
PROE_蜗轮蜗杆的参数化建模

蜗轮蜗杆的创建蜗杆的创建:在PRO/E 中使用参数化创建蜗杆,具体操作步骤如下:1.创建新的零件文件:File/New →【输入零件名称:wogan,取消Use default template 的选中记号,然后单击OK 按钮】→【选择公制单位mmns_part_solid后单击OK按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】2.参数的输入Tools/Program…/Edit Design→【打开记事本,在INPUT和END INPUT 之间以及RELATION和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】INPUTM NUMBER ;模数Z1 NUMBER ;蜗杆头数Z2 NUMBER ;蜗轮齿数DIA1 NUMBER ;蜗杆分度圆直径(标准系列值)LEFT YES_NO ;旋向,YES表示左旋,否则为右旋END INPUTRELATIONSDIA2=M*Z2 ;蜗轮分度圆直径L=(11+0.06*Z2)*M ;蜗杆有效螺旋线长度END RELATIONS→【信息窗口出现“Do you want to incorporate your changes into the model:【YES】”,选择YES,以便输入参数值】→【Enter→Select All,根据信息窗口提示,各参数赋初值如下】M = 2.5Z1 = 1Z2 = 30DIA1 = 28旋向暂不输入,后期处理。
各参数的建立和赋值结束。
3.生成螺旋体Insert/Helical Swee.Protrusion…→【出现“螺旋扫描”对话框,接受属性子菜单中各默认选项,包括Constant(等导程)、ThruAxis(截面通过旋转轴线)、Right Handed(右旋) →Done】→【进入扫描廓型创建画面,绘制图7-2所示直线(尺寸如图),并绘制回转轴线】→【Tools/Relations→显示参数符号如图7-3所示,并出现Relationship对话框】→【在对话框内输入:sd3=L;sd4=L/2;sd1=DIA1/2→OK】→【单击图标,进入导程设定→在导程设定窗口输入导程值M*PI*Z1→点击图标】→【进入截面绘制画面,绘制图7-4所示截面图形(尺寸如图)】→【Tools/Relations→显示参数符号如图7-5所示,并出现Relations对话框】→【在对话框内输入:sd61=1.25*M;sd62=M;sd63=M*PI/2-2*M*tan(20) →OK】→【单击图标→OK,生成螺旋体如图所示,】4.导程参数化上述造型过程中,各参数除导程外均已实现参数化,下面对导程实施参数化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PROE-蜗轮蜗杆的参数化建模蜗轮蜗杆的创建蜗杆的创建:在PRO/E 中使用参数化创建蜗杆,具体操作步骤如下:1.创建新的零件文件:File/New →【输入零件名称:wogan,取消Use default template 的选中记号,然后单击OK按钮】→【选择公制单位mmns_part_solid后单击OK按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】2.参数的输入Tools/Program…/Edit Design→【打开记事本,在INPUT和END INPUT 之间以及RELATION和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】INPUTMNUMBER;模数Z1NUMBER;蜗杆头数Z2NUMBER;蜗轮齿数DIA1NUMBER;蜗杆分度圆直径(标准系列值)LEFTYES_NO;旋向,YES表示左旋,否则为右旋END INPUTRELATIONSDIA2=M*Z2 ;蜗轮分度圆直径L=(11+0.06*Z2)*M ;蜗杆有效螺旋线长度END RELATIONS→【信息窗口出现“Do you want to incorporate your changes into the model:【YES】”,选择YES,以便输入参数值】→【Enter→Select All,根据信息窗口提示,各参数赋初值如下】M = 2.5 Z1 = 1Z2 = 30DIA1 = 28旋向暂不输入,后期处理。
各参数的建立和赋值结束。
3.生成螺旋体Insert/Helical Swee.Protrusion…→【出现“螺旋扫描”对话框,接受属性子菜单中各默认选项,包括Constant(等导程)、ThruAxis(截面通过旋转轴线)、Right Handed(右旋) →Done】→【进入扫描廓型创建画面,绘制图7-2所示直线(尺寸如图),并绘制回转轴线】→【Tools/Relations→显示参数符号如图7-3所示,并出现Relationship对话框】sd3=L;sd4=L/2;sd1=DIA1/2→OK】→【单击图标,进入导程设定→在导程设定窗口输入导程值M*PI*Z1→点击图标】形(尺寸如图)】→【Tools/Relations→显示参数符号如图7-5所示,并出现Relations对话框】→【在对话框内输入:sd61=1.25*M;sd62=M;sd63=M*PI/2-2*M*tan(2 0) →OK】→【单击图标→OK,生成螺旋体如图所示,】4.导程参数化上述造型过程中,各参数除导程外均已实现参数化,下面对导程实施参数化。
Tools/Program…/Edit Design→【打开记事本,找到记录扫描螺旋实体的如下段落:PROTRUSION:Helical Sweep……FEATURE’S DIMENSIONS:其中d33=7.85PITCH为描述导程的参数】→【在RELATION和END RELATION 之间添加:d33=M*PI*Z1→存盘退出。
】→【信息窗口出现“Do you want to incorporate your changes into the model: [Yes]”,选择Yes,以便检验参数化是否成功】→【Enter→Z1→Don Sel→输入Z1为2→点击图标→生成如下图形,变参数成功】5.实现多头蜗杆通过对现有的螺旋体进行阵列,就可以实现多头螺杆。
6.创建蜗杆轴实体点击图标→【在弹出的工具面板上点击图标,以设置减材料创建实体方式→Placement→Define】→【弹出Sketch 对话框,选择绘图平面:RIGHT平面,参照平面:TOP,方向:LEFT →Sketch】→【绘制如图所示的圆】→【Tools/Relations→上述尺寸值将变为参数符号,如图所示,并弹出Relations对话框,对照图,参数符号sd0对应直径,输入sd0=DIA1-1.25*2*M→OK】→【点击图标→设定深度为:表示双向对称→填入尺寸100→点击图标,完成的的特征如图所示】→【Tools/Relations→尺寸值100将变为参数符号→输入d21=L+40→OK→点击图标→Current Values→结果如图所示】蜗轮的创建:1.创建新的零件文件File/New →【输入零件名称:wolun取消Use default template 的选中记号,然后单击OK按钮】→【选择公制单位mmns_part_solid后单击OK按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】2.参数的输入Tools/Program…/Edit Design→【打开记事本,在INPUT和END INPUT 之间以及RELATION和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】INPUTM NUMBER ;模数Z1 NUMBER ;蜗杆头数Z2NUMBER ;蜗轮齿数DIA1NUMBER ;蜗杆分度圆直径(标准系列值)LEFTYES_NO ;旋向,YES表示左旋,否则为右旋BNUMBER ;蜗轮宽度ZXKJNUMBER ;中心孔径END INPUTRELATIONSDIA2=M*Z2;蜗轮分度圆直径A=(DIA1+DIA2)/2;中心距HA=1;齿顶高系数DA1=DIA1+2*HA*M;蜗杆齿顶圆直径DF1=DIA1-2.5*HA*M;蜗杆齿根圆直径DA2=M*(Z2+2*HA);蜗轮齿顶圆直径DA2A=DA2+0.5*M ;该变量是为切制齿槽时不留下切不掉的薄片痕迹而设DF2=DIA2-2.5*M*HA;蜗轮齿根圆直径IF Z1==1|Z1==2|Z1==3 B1=0.75*DA1;确定齿宽ELSEIF Z1==4B1=0.67*DA1ENDIFENDIFIF B>B1B=B1END IFPA1=M*PI;蜗杆轴面齿距LL=Z1*PA1;蜗杆导程HA1=HA*M;蜗杆齿顶高HF1=1.25*M;蜗杆齿根高IF Z1==1WLWJ=DA2+2*M;确定蜗轮外圆直径ENDIFIF Z1==2|Z1==3WLWJ=DA2+1.5*MENDIFIF Z1==4WLWJ=DA2+MENDIFGAMA=ASIN(B/(DA1-0.5*M));包角γR1=DA1/2+0.25*M;齿根圆弧面半径R2=DF1/2+0.25*M;齿顶圆弧面半径DB=M*Z2*COS(20);基圆直径ALFAA=ACOS(DB/DA2) ;齿顶圆压力角ALFAF=ACOS(DB/DF2) ;齿根圆压力角INV A=TAN(20)-20/180*PI ;分度圆渐开线函数INV AA=TAN(ALFAA) -ALFAA/180*PI ;齿顶圆渐开线函数INV AF=TAN(ALFAF) -ALFAF/180*PI ;齿根圆渐开线函数S=M*PI/2 ;分度圆齿厚FAIB=(S*2/DIA2+2*INV A)/PI*180 ;基圆齿厚角FAIA=S/DIA2*DA2-2*(INV AA-INV A) ;顶圆齿厚角IF DF2>DB ;如果根圆直径大于基圆直径FAIF=S/DIA2*DF2-2*(INV AF-INV A) 根圆齿厚角ENDIFIF DF2<=DB 否则FAIF=FAIB 根圆齿厚角等于基圆齿厚角ENDIFEND RELATIONS→【信息窗口出现“Do you want to incorporate your changes into the model:【YES】”,选择YES,以便输入参数值】→【Enter→Select All,根据信息窗口提示,各参数赋初值如下】M=2.5Z1=1Z2=30DIA1=28LEFT=NOB=24ZXKJ=30至此,各参数的建立和赋值结束。
2.创建蜗轮轮胚点击“创建回转体”图标。
→【默认弹出的工具面板各项设置→Placement→Define】→【弹出Sketch对话框后,选择绘图平面:RIGHT,参照平面:TOP,方向:LEFT→Sketch】→【进入绘图平面】→【绘制如图所示的截面图形(尺寸及各种约束关系如图),要注意图中的两条虚线均为基准参考线,其绘制方式为首先绘制出直线→高亮显示→右键点击空白处→Construction即可,其中水平虚线为蜗杆中心位置线,斜虚线是为了建立倒角线的基准】→【实施参数化:Tools/Relations→弹出Relations对话框】→【图中各尺寸分别对应参数符号如图所示】→【在对话框中输入:sd18=WLWJ/2sd20=ZXKJ/2sd17=Bsd14=Asd19=R2sd16=GAMA→OK 】→【连续点击图标→,所形成的齿轮胚实体如图所示】3.创建单个轮齿(1)创建参考面点击图标。
→【弹出参考面创建对话框→点选基准面FRONT→在偏距栏内填入51.5,表示蜗轮蜗杆的中心距→生成参考面DTM1如图所示】→【实施参数化:模型特征树对应项呈高亮显示→右键单击该项→Edit→图中将显示偏置距离51.5】→【Tools/Relations→上述尺寸值将变为参数符号,如图所示,并弹出Relations对话框,对应参数符号d10输入:d10=A→OK 结束】(2).创建蜗杆坐标系点击图标。
→【弹出坐标系创建对话框→按住Ctrl键,点选基准面TOP、RIGHT、DTM1→OK生成坐标系CS0,如图所示,】(2)创建蜗轮坐标系点击图标。
→【弹出坐标系创建对话框→按住Ctrl键,点选基准面TOP、RIGHT、FRONT→点选对话框中Orientation并设置各选项,如图所示→OK】(4)绘制线段ad点击“曲线绘制”图标。
→【From Equation→Done】→【选择刚创建的蜗轮坐标系CS1】→【选择坐标类型为柱面坐标Cylindrical】→【进入方程编辑器。
输入曲线方程表达式如下,然后保存文件,退出编辑器】r=DF2/2+t*(DA2A/2-DF2/2)ALFAI=acos(DB/2/r)theta=(tan(ALFAI)*180/pi-ALFAI)z=0→【点击OK,第一段曲线完成,如图所示,其中ALFAI的表达式表示压力角随r从齿根变化到齿顶。
】(5)绘制线段bc点击“曲线绘制”图标。
→【From Equation→Done】→【选择刚创建的蜗轮坐标系CS1】→【选择坐标类型为柱面坐标Cylindrical】→【进入方程编辑器。
输入曲线方程表达式如下,然后保存文件,退出编辑器】r=DF2/2+t*(DA2A/2-DF2/2)ALFAI=acos(DB/2 /r)theta=-(tan(ALFAI)*180/pi-ALFAI)-(360/Z2-FAIF)z=0→【点击OK,第二段曲线完成,如图所示】(6)绘制图中线段点击“草图绘制”图标,→【出现草图绘制对话框→绘图平面选TOP,参考面选RIGHT,定向平面选RIGHT →Sketch→进入绘图环境】→【绘制图所示两段圆弧,注意必须通过已有曲线端点】→【点击图标→OK 结束】(7)绘制图中螺旋线段→【From Equation→Done】→【选择蜗杆坐标系CS0】→【选择坐标类型为直角坐标系Cartesian】→【进入方程编辑器。