考点10 圆周运动-2020年 新高三一轮复习物理(原卷版)

合集下载

2020届人教版高考物理一轮复习测试专题《平抛运动与圆周运动》(含解析)

2020届人教版高考物理一轮复习测试专题《平抛运动与圆周运动》(含解析)

2020届人教版高三物理一轮复习测试专题《平抛运动与圆周运动》一、单选题(共20小题,每小题3.0分,共60分)1.如图,可视为质点的小球位于半圆体左端点A的正上方某处,以初速度v0水平抛出,其运动轨迹恰好能与半圆柱体相切于B点.过B点的半圆柱体半径与水平方向的夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g)()A.B.C.D.2.如图所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A,B两处.不计空气阻力,则落到B处的石块()A.初速度大,运动时间短B.初速度大,运动时间长C.初速度小,运动时间短D.初速度小,运动时间长3.质量为2kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图甲、乙所示。

下列说法正确的是()A.前2 s内质点处于超重状态B. 2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小4.如图所示,位于同一高度的小球A,B分别以v1和v2的速度水平抛出,都落在了倾角为30°的斜面上的C点,小球B恰好垂直打到斜面上,则v1,v2之比为()A. 1 ∶1B. 2 ∶1C. 3 ∶2D. 2 ∶35.公交车是人们出行的重要交通工具,如图所示是公交车内部座位示意图,其中座位A和B的边线和车前进的方向垂直,当车在某一站台由静止开始匀加速启动的同时,一个乘客从A座位沿AB连线相对车以 2m/s 的速度匀速运动到B,则站在站台上的人看到该乘客()A.运动轨迹为直线B.运动轨迹为抛物线C.因该乘客在车上匀速运动,所以乘客处于平衡状态D.当车速度为 5m/s 时,该乘客对地速度为 7m/s6.“套圈圈”是小孩和大人都喜爱的一种游戏。

某小孩和大人直立在界外,在同一竖直线上不同高度分别水平抛出小圆环,并恰好套中前方同一物体。

假设小圆环的运动可以视为平抛运动,则()A.大人抛出的圆环运动时间较短B.大人应以较小的速度抛出圆环C.小孩抛出的圆环运动发生的位移较大D.小孩抛出的圆环单位时间内速度变化量较小7.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。

2020高考物理一轮总复习课时冲关十三圆周运动含解析新人教版

2020高考物理一轮总复习课时冲关十三圆周运动含解析新人教版

第3讲 圆周运动[A 级-基础练]1.科技馆的科普器材中常有如图所示的匀速率的传动装置:在大齿轮盘内嵌有三个等大的小齿轮.若齿轮的齿很小,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮顺时针匀速转动时,下列说法正确的是( )A .小齿轮逆时针转动B .小齿轮每个齿的线速度均相同C .小齿轮的角速度是大齿轮角速度的3倍D .大齿轮每个齿的向心加速度大小是小齿轮的3倍解析:C [大齿轮、小齿轮在转动过程中,两者的齿的线速度大小相等,当大齿轮顺时针转动时,小齿轮也顺时针转动,选项A 错误;速度是矢量,具有方向,所以小齿轮每个齿的线速度不同,选项B 错误;根据v =ωr ,且线速度大小相等,角速度与半径成反比,选项C 正确;根据向心加速度a =v 2r,线速度大小相等,向心加速度与半径成反比,选项D 错误.]2.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同解析:A [同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度大小不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度大小不同,C 错误;根据公式F =ma ,质量相同,但是加速度大小不同,所以向心力大小不同,D 错误.]3.2018年11月7日,首届FAI 世界无人机锦标赛在深圳圆满落幕.无人机携带货物正在空中水平面内转弯,其运动可看做匀速圆周运动,若其转弯半径为r ,转弯速度为v ,货物质量为m ,此时无人机对货物的作用力大小为( )A .m v 2rB .mgC .m v 2r+mgD .mg 2+v 4r2解析:D [根据牛顿第二定律有:F 合=m v 2r,根据平行四边形定则,如图.无人机对货物的作用力F = mg2+⎝ ⎛⎭⎪⎫m v 2r 2=m g 2+v 4r2,选项D 正确.]4.如图是摩托车比赛转弯时的情形,转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.若摩托车发生滑动,则下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受合外力提供的向心力小于所需要的向心力C .摩托车将沿其线速度的方向沿直线滑出去D .摩托车将沿其半径方向沿直线滑出去解析:B [摩托车做圆周运动需要向心力,不受到沿半径方向向外的离心力作用,故A 错误;若摩托车发生滑动,摩托车做离心运动是因为所受外力的合力小于所需的向心力,故B 正确;摩托车受到与速度方向垂直的摩擦力的作用,即使该摩擦力小于需要的向心力,但仍然能够改变车的运动的方向,使车不会沿其线速度的方向沿直线滑出去,故C 错误;摩托车做圆周运动的线速度沿半径的切线方向,不可能会沿其半径方向沿直线滑出去,故D 错误.]5.(2019·吉安模拟)如图所示,一根细线下端拴一个金属小球P ,细线的上端固定在金属块Q 上,Q 放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图中P ′位置),两次金属块Q 都静止在桌面上的同一点,则后一种情况与原来相比较,下面的判断正确的是( )A.细线所受的拉力变小B.小球P运动的角速度变大C.Q受到桌面的静摩擦力变小D.Q受到桌面的支持力变小解析:B [设OP长度为l,与水平面的夹角为θ,竖直方向平衡,有F sin θ=mg,水平方向由牛顿第二定律得F cos θ=mω2l cos θ,由以上方程分析可得,随θ角减小,F增大,A错误;结合Q的受力平衡得Q受到桌面的静摩擦力变大,受到的桌面的支持力不变,C、D错误;F=mω2l,ω随F的增大而增大,B正确.] 6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小解析:D [在转动过程中,A、B两座椅的角速度相等,但由于B座椅的半径比较大,故B座椅的速度比较大,向心加速度也比较大,A、B项错误;A、B两座椅所需向心力不等,而重力相同,故缆绳与竖直方向的夹角不等,C 项错误;根据F=mω2r判断A座椅的向心力较小,所受拉力也较小,D项正确.]7.(2019·衡阳模拟)轻杆一端固定有质量为m=1 kg的小球,另一端安装在水平轴上,转轴到小球的距离为50 cm,转轴固定在三角形的带电动机(电动机没画出来)的支架上,在电动机作用下,轻杆在竖直面内做匀速圆周运动,如图所示.若转轴达到某一恒定转速n时,在最高点,杆受到小球的压力为2 N,重力加速度g取10 m/s2.则( )A.小球运动到最高点时,小球需要的向心力为12 NB.小球运动到最高点时,线速度v=1 m/sC.小球运动到图示水平位置时,地面对支架的摩擦力为8 ND.把杆换成轻绳,同样转速的情况下,小球仍能通过图示的最高点解析:C [小球运动到最高点时,杆受到小球的压力为2 N ,由牛顿第三定律可知杆对小球的支持力F N =2 N ,在最高点,小球需要的向心力由重力和杆的支持力的合力提供,为F =mg -F N =8 N ,故A 错误;在最高点,由F =m v 2r 得,v =Fr m =8×0.51m/s =2 m/s ,故B 错误;小球运动到图示水平位置时,设杆对小球的拉力为F T ,则有F T =m v 2r =F =8 N ,则小球对杆的拉力F T ′=F T =8 N ,据题意知支架处于静止状态,由平衡条件可知地面对支架的摩擦力F f =F T ′=8 N ,故C 正确;把杆换成轻绳,设小球通过最高点的最小速度为v 0,由mg =m v 20r得,v 0=gr =10×0.5 m/s = 5 m/s >v ,所以在同样转速的情况下,小球不能通过图示的最高点,故D 错误.]8.如图所示的杂技演员在表演“水流星”的节目时,盛水的杯子经过最高点杯口向下时水也不洒出来,对于杯子经过最高点时水的受力情况,下列说法正确的是( )A .水处于失重状态,不受重力的作用B .水受平衡力的作用,合力为零C .由于水做圆周运动,因此必然受到重力和向心力的作用D .杯底对水的作用力可能为零解析:D [失重状态是物体对支持物(或绳)的弹力小于重力,但物体所受重力不变,选项A 错误;水受力不平衡,有向心加速度,选项B 错误;向心力不是性质力,本题中向心力由重力和弹力的合力提供,选项C 错误;当重力恰好提供水做圆周运动的向心力时,杯底对水的作用力为零,选项D 正确.]9.(2019·浙江模拟)有关圆周运动的基本模型,下列说法不正确的是( )A .如图甲,汽车通过拱桥的最高点处于失重状态B .如图乙所示是一圆锥摆,增大θ,若保持圆锥的高不变,则圆锥摆的角速度不变C .如图丙,同一小球在光滑而固定的圆锥筒内的A 、B 位置先后分别做匀速圆周运动,则在A 、B 两位置小球的角速度及所受筒壁的支持力大小相等D .火车转弯超过规定速度行驶时,外轨对火车轮缘会有挤压作用解析:C [A 项,汽车在最高点mg -F N =mv 2r知F N <mg ,故处于失重状态,故A 项正确;B 项,如题图乙所示是一圆锥摆,重力和拉力的合力F =mg tan θ=m ω2r ;r =h tan θ,知ω=gh,故增大θ,但保持圆锥的高不变,角速度仍不变,故B 项正确;C 项,根据受力分析知两球受力情况相同,即向心力相同,由F =m ω2r 知r 不同,角速度不同,故C 项错误;D 项,火车转弯超过规定速度行驶时,重力和支持力的合力不足以提供向心力,则外轨对轮缘会有挤压作用,故D 项正确.][B 级—能力练]10.(2019·杭州四中统测)有一长度为L =0.50 m 的轻质细杆OA ,A 端有一质量为m =3.0 kg 的小球,如图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速度是2.0 m/s ,g 取10 m/s 2,则此时细杆OA 受到( )A .6.0 N 的拉力B .6.0 N 的压力C .24 N 的拉力D .24 N 的压力解析:B [设杆对小球的作用力为F N ,方向竖直向下,如图所示,由向心力公式得F N +mg =m v 2L,则F N =m v 2L -mg =⎝ ⎛⎭⎪⎫3.0×2.020.50-3.0×10N =-6 N. 负号说明F N 的方向与假设方向相反,即竖直向上. 由牛顿第三定律知应选B.]11.(多选)如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:CD [解决本题的关键是全面理解“小球不脱离圆轨道运动”所包含的两种情况: (1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.对于第(1)种情况,当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤mv 2r,又根据机械能守恒定律有mv 22+2mgr =mv 202,可求得v 0≥2 5 m/s ,故选项C 正确;对于第(2)种情况,当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr =mv 202,可求得v 0≤2 2 m/s ,故选项D 正确.]12.(2016·全国卷Ⅱ)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:C [A.小球摆动至最低点由动能定理:mgL =12mv 2,可得:v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;B.由E k =mgL ,而m P >m Q ,则动能无法比较,选项B 错误;C.在最低点,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;D.a =v 2L=2g ,两球的向心加速度相等,选项D 错误,故选C.]13.(2019·定州市模拟)如图所示,圆筒的内壁光滑,一端B 固定在竖直转轴OO ′上,圆筒可随轴转动,它与水平面的夹角始终为30°,在筒内有一个用轻质弹簧连接的小球A (小球直径略小于圆筒内径),A 的质量为m ,弹簧的另一端固定在圆筒的B 端,弹簧原长为32L ,当圆筒静止时A 、B 之间的距离为L (L 远大于小球直径).现让圆筒开始转动,其角速度从0开始缓慢增大,当角速度增大到某一值时保持匀速转动,此时小球A 、B 之间的距离为2L ,重力加速度大小为g ,求圆筒保持匀速转动时的角速度ω0.解析:当圆筒静止时A 、B 之间的距离为L ,可知弹簧的形变量Δx =L2,根据平衡有mg sin 30°=k ·L2.当圆筒转动,AB 间距离为2L 时,受力如图,在竖直方向上,有N cos 30°=k L2sin 30°+mg ,水平方向上,有k L2cos 30°+N sin 30°=m ·2L sin 60°ω20, 联立解得ω0=2g 3L. 答案:2g 3L14.(2019·河南洛阳一中月考)某实验小组做了如下实验,装置如图甲所示.竖直平面内的光滑轨道由倾角为θ的斜面轨道AB 和圆弧轨道BCD 组成,将质量m =0.1 kg 的小球,从轨道AB 上高H 处的某点静止滑下,用压力传感器测出小球经过圆弧最高点D 时对轨道的压力F ,改变H 的大小,可测出相应的F 大小,F 随H 的变化关系如图乙所示.g =10 m/s 2.求:(1)圆轨道的半径R ;(2)若小球从D 点水平飞出后又落到斜面上,其中最低的位置与圆心O 等高,求θ值.解析:(1)小球经过D 点时,满足竖直方向的合力提供圆周运动向心力即:F +mg =m v 2R从A 到D 的过程中只有重力做功,根据动能定理有:mg (H -2R )=12mv 2 联立解得:F =m v 2R-mg=2mg H -2RR-mg =2mgRH -5mg由题图乙中给出的F -H 图象知斜率k =5-01.0-0.5 N/m =10 N/m 即2mgR=10 N/m所以可得R =0.2 m.(2)小球离开D 点做平抛运动,根据几何关系知,小球落地点越低平抛的射程越小,即题设中小球落地点位置最低对应小球离开D 点时的速度最小.根据临界条件知,小球能通过D 点时的最小速度为v = gR小球落地点在斜面上与圆心等高,故可知小球平抛时下落的距离为R ,所以小球平抛的射程s =vt =v2Rg=gR ×2Rg=2R由几何关系可知,角θ=45°. 答案:(1)0.2 m (2)45°。

2020高考物理一轮总复习第四章第3讲圆周运动讲义含解析新人教版

2020高考物理一轮总复习第四章第3讲圆周运动讲义含解析新人教版

圆周运动[基础知识·填一填][知识点1] 描述圆周运动的物理量 1.匀速圆周运动(1)定义:线速度大小 不变 的圆周运动.(2)性质:加速度大小 不变 ,方向总是指向 圆心 的变加速曲线运动.(3)条件:有初速度,受到一个大小不变,方向始终与速度方向 垂直 且指向圆心的合外力.2.描述圆周运动的物理量判断正误,正确的划“√”,错误的划“×”.(1)匀速圆周运动是匀变速曲线运动.(×)(2)做匀速圆周运动的物体所受合外力大小、方向都保持不变.(×)(3)做匀速圆周运动的物体角速度与转速成正比.(√)[知识点2] 匀速圆周运动与非匀速圆周运动 匀速圆周运动非匀速圆周运动运动特点线速度的大小 不变 ,角速度、周期和频率都 不变 ,向心加速度的大小 不变 线速度的大小、方向都 变 ,角速度 变 ,向心加速度的大小、方向都变,周期可能变也 可能不变 受力特点所受到的 合力 为向心力,大小不变,方向变,其方向时刻 指向圆心 所受到的合力 不指向圆心 ,合力产生两个效果:①沿半径方向的分力 F n ,即向心力,它改变速度的 方向 ;②沿切线方向的分力F τ,它改变速度的 大小 运动性质变加速曲线运动(加速度大小不变,方向变化)变加速曲线运动(加速度大小、方向都变化)判断正误,正确的划“√”,错误的划“×”.(1)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.(×)(2)做圆周运动的物体所受到的合外力不一定等于向心力.(√)[知识点3] 离心现象 1.离心运动(1)定义:做 圆周运动 的物体,在所受合外力突然消失或不足以提供圆周运动所需 向心力 的情况下,所做的逐渐远离圆心的运动.(2)本质:做圆周运动的物体,由于本身的 惯性 ,总有沿着圆周 切线方向 飞出去的倾向.(3)受力特点:F n 为提供的向心力.①当F n =mω2r 时,物体做 匀速圆周 运动;②当F n =0时,物体沿 切线 方向飞出;③当F n <mω2r 时,物体逐渐 远离 圆心,做离心运动.2.近心运动:当F n >mω2r 时,物体将逐渐 靠近 圆心,做近心运动.判断正误,正确的划“√”,错误的划“×”.(1)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.(×)(2)在绝对光滑的水平路面上汽车可以转弯.(×)(3)火车转弯速率小于规定的数值时,内轨受到的压力会增大.(√)(4)飞机在空中沿半径为R 的水平圆周盘旋时,飞机机翼一定处于倾斜状态.(√)[教材挖掘·做一做]1.(人教版必修2 P19第2题、3题改编)如图所示,两个啮合齿轮,小齿轮半径为10 cm ,大齿轮半径为20 cm ,大齿轮上C 点到圆心O 2的距离为10 cm ,A 、B 分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比为1∶1∶1B .角速度之比为1∶1∶1C .线速度之比为2∶2∶1D .转动周期之比为2∶1∶1解析:C [同缘转动时,边缘各点的线速度大小相等,故v A =v B ;同轴转动时,角速度相等,故ωB =ωC ;根据题意,有r A ∶r B ∶r C =1∶2∶1;根据v =ωr ,由于ωB =ωC ,故v B ∶v C =r B ∶r C =2∶1;故v A ∶v B ∶v C =2∶2∶1,故选项A 错误,C 正确;根据v =ωr ,由于v A =v B ,故ωA ∶ωB =r B ∶r A =2∶1;故ωA ∶ωB ∶ωC =2∶1∶1,故选项B 错误;由T =,得转动周期之比为T A ∶T B ∶T C =∶∶=1∶2∶2,故选项D 错误.]2πω1ωA 1ωB 1ωC 2.(人教版必修2 P19第4题改编)如图是自行车传动装置的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )A.B.πnr 1r 3r 2πnr 2r 3r 1C.D.2πnr 2r 3r 12πnr 1r 3r 2答案:D3.(人教版必修2 P25第3题改编)如图所示,小物体A 与水平圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A 的受力情况是( )A .重力、支持力B .重力、向心力C .重力、支持力、指向圆心的摩擦力D .重力、支持力、向心力、摩擦力答案:C4.(人教版必修2 P25第2题改编)如图所示,—个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是( )A .A 球的角速度等于B 球的角速度B .A 球的线速度大于B 球的线速度C .A 球的运动周期小于B 球的运动周期D .A 球对筒壁的压力大于B 球对筒壁的压力解析:B [先对小球受力分析,如图所示,由图可知,两球的向心力都来源于重力mg 和支持力F N 的合力,建立如图所示的坐标系,则有:F N sin θ=mg ①F N cos θ=mrω2②由①得F N =,小球A 和B 受到的支持力F N 相等,由牛顿第三定律知,选项D 错mgsin θ误.由于支持力F N 相等,结合②式知,A 球运动的半径大于B 球运动的半径,故A 球的角速度小于B 球的角速度,A 球的运动周期大于B 球的运动周期,选项A 、C 错误.又根据F N cos θ=m 可知:A 球的线速度大于B 球的线速度,选项B 正确.]v 2r考点一 圆周运动的运动学分析[考点解读]1.圆周运动各物理量间的关系2.对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比.3.对a n ==ω2r 的理解v 2r当v 一定时,a n 与r 成反比;当ω一定时,a n 与r 成正比.4.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴传动:如图丁所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB .[典例赏析][典例1] (2018·江苏卷)(多选)火车以60 m/s 的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s 内匀速转过了约10°.在此10 s 时间内,火车( )A .运动路程为600 mB .加速度为零C .角速度约为1 rad/sD .转弯半径约为3.4 km[审题指导] 解答本题的突破口为“指南针在10 s 内匀速转过了约10°”,从中求出火车做匀速圆周运动的角速度.[解析] AD [火车的角速度ω== rad/s = rad/s ,选项C 错误;θt 2π×1036010π180火车做匀速圆周运动,其受到的合外力等于向心力,加速度不为零,选项B 错误;火车在10 s 内运动的路程s =vt =600 m ,选项A 正确;火车转弯半径R == m≈3.4 km ,v ω60π180选项D 正确.][题组巩固]1.如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点( )A .角速度之比ωA ∶ωB =∶12B .角速度之比ωA ∶ωB =1∶2C .线速度之比v A ∶v B =∶12D .线速度之比v A ∶v B =1∶2解析:D [板上A 、B 两点的角速度相等,角速度之比ωA ∶ωB =1∶1,选项A 、B 错误;线速度v =ωr ,线速度之比v A ∶v B =1∶,选项C 错误,D 正确.]22.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A 、B 、C 三齿轮半径的大小关系如图,则( )A .齿轮A 的角速度比C 的大B .齿轮A 与B 角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比C 边缘的大解析:D [齿轮A 与齿轮B 是同缘传动,边缘点线速度相等,根据公式v =ωr 可知,半径比较大的A 的角速度小于B 的角速度.而B 与C 是同轴转动,角速度相等,所以齿轮A 的角速度比C 的小,选项A 、B 错误.B 与C 两轮属于同轴传动,故角速度相等,根据公式v =ωr 可知,半径比较大的齿轮B 比C 边缘的线速度大,选项C 错误.齿轮A 与B 边缘的线速度相等,因为齿轮B 比C 边缘的线速度大,所以齿轮A 边缘的线速度比C 边缘的线速度大,选项D 正确.]3.(多选)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的,其中一个玻璃盘通过从动轮与手摇主动轮连接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .P 、Q 的线速度相同B .玻璃盘的转动方向与摇把转动方向相反C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min解析:BC [由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故A 错误;若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故B 正确;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度v =ωr =2n πr =2××π× m/s 100600.32=0.5π m/s≈1.6 m/s ,故C 正确;从动轮边缘的线速度v c =ω·r c =2××π×0.02 10060m/s =π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,115即v z =v c ,所以主动轮的转速n z === r/s =25 r/min ,故D 错误.]ω2πv z r z2π115π2π×0.08考点二 圆周运动的动力学分析[考点解读]向心力公式是牛顿第二定律对圆周运动的应用,求解圆周运动的动力学问题与应用牛顿第二定律的解题思路相同,但要注意几个特点:(1)向心力是沿半径方向的合力,是效果力,不是实际受力.(2)向心力公式有多种形式:F =m =mω2r =m r ,要根据已知条件选用.v 2r 4π2T 2(3)正交分解时,要注意圆心的位置,沿半径方向和切线方向分解.(4)对涉及圆周运动的系统,要用隔离法分析,不要用整体法.[典例赏析][典例2] (2017·江苏卷)如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上.物块质量为M ,到小环的距离为L ,其两侧面与夹子间的最大静摩擦力均为F .小环和物块以速度v 向右匀速运动,小环碰到杆上的钉子P 后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为g .下列说法正确的是( )eA .物块向右匀速运动时,绳中的张力等于2FB .小环碰到钉子P 时,绳中的张力大于2FC .物块上升的最大高度为2v 2g D .速度v 不能超过 (2F -Mg )LM[解题关键] 静摩擦力变化的判断分析夹子与物块间的静摩擦力随着物块运动情况的变化而变化.在匀速阶段,静摩擦力与物块重力平衡,碰到钉子后,由于向心力的需要,摩擦力会突然变大,当摩擦力达到最大值后,仍无法满足向心力的需要,物块就会从夹子中滑落.[解析] D [设夹子与物块间静摩擦力为f ,匀速运动时,绳中张力T =Mg =2f .摆动时,物块没有在夹子中滑动,说明匀速运动过程中,夹子与物块间的静摩擦力没有达到最大值,A 错误;碰到钉子后,物块开始在竖直面内做圆周运动,在最低点,对整体T ′-Mg=M ,对物块2f -Mg =M ,所以T ′=2f ,由于f ≤F ,所以选项B 错;由机械能守恒得,v 2L v 2LMgH max =Mv 2,所以H max =,选项C 错;若保证物块不从夹子中滑落,应保证速度为最大12v 22g值v m 时,在最低点满足关系式2F -Mg =M ,所以v m = ,选项D 正确.]v 2m L (2F -Mg )L M 解决圆周运动问题的主要步骤1.审清题意,确定研究对象;明确物体做圆周运动的平面是至关重要的一环.2.分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等.3.分析物体的受力情况,画出受力分析图,确定向心力的来源.4.根据牛顿运动定律及向心力公式列方程.[母题探究]探究1.圆锥摆问题探究2.转台上的圆周运动母题典例2探究3.车辆转弯问题[探究1] 圆锥摆问题 (2019·枣庄模拟)质量分别为M 和m 的两个小球,分别用长2l 和l 的轻绳拴在同一转轴上,当转轴稳定转动时,拴质量为M 和m 小球的悬线与竖直方向夹角分别为α和β,如图所示,则( )A .cos α=B .cos α=2cos βcos β2C .tan α=D .tan α=tan βtan β2解析:A [以M 为研究对象受力分析,由牛顿第二定律得:Mg tan α=M2l sin α4π2T 21得:T 1=2π 2l cos αg同理:以m 为研究对象:T 2=2π l cos βg因T 1=T 2,所以2cos α=cos β,故A 正确.][探究2] 转台上的圆周运动 (2019·沧州模拟)如图所示,在一个水平圆盘上有一个木块P 随圆盘一起绕过O 点的竖直轴匀速转动,下面说法中错误的是( )A.圆盘匀速转动的过程中,P受到的静摩擦力的方向指向O点B.圆盘匀速转动的过程中,P受到的静摩擦力为零C.在转速一定的条件下,P受到的静摩擦力的大小跟P到O点的距离成正比D.在P到O点的距离一定的条件下,P受到的静摩擦力的大小跟圆盘匀速转动的角速度平方成正比解析:B [圆盘在匀速转动的过程中,P靠静摩擦力提供向心力,方向指向O点,故A正确,B错误;在转速一定的条件下,角速度不变,根据F f=mω2r知,静摩擦力的大小跟P到O点的距离成正比,故C正确;在P到O点的距离一定的条件下,根据F f=mω2r 知,静摩擦力的大小与圆盘转动的角速度平方成正比,故D正确.][探究3] 车辆转弯问题 (多选)在设计水平面内的火车轨道的转弯处时,要设计为外轨高、内轨低的结构,即路基形成一外高、内低的斜坡(如图所示),内、外两铁轨间的高度差在设计上应考虑到铁轨转弯的半径和火车的行驶速度大小.若某转弯处设计为当火车以速率v通过时,内、外两侧铁轨所受轮缘对它们的压力均恰好为零.车轮与铁轨间的摩擦可忽略不计,则下列说法中正确的是( )A.当火车以速率v通过此弯路时,火车所受各力的合力沿路基向下方向B.当火车以速率v通过此弯路时,火车所受重力与铁轨对其支持力的合力提供向心力C.当火车行驶的速率大于v时,外侧铁轨对车轮的轮缘施加压力D.当火车行驶的速率小于v时,外侧铁轨对车轮的轮缘施加压力解析:BC [火车转弯时,内、外两侧铁轨所受轮缘对它们的压力均恰好为零,靠重力和支持力的合力提供向心力,方向水平指向圆心,故A错误,B正确;当速度大于v时,重力和支持力的合力小于所需向心力,此时外轨对车轮轮缘施加压力,故C正确;当速度小于v时,重力和支持力的合力大于向心力,此时内轨对车轮轮缘施加压力,故D错误.]考点三 圆周运动中的多解问题[考点解读]1.多解原因:因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这将造成多解.2.多解问题模型:常涉及两个物体的两种不同的运动,其中一个物体做匀速圆周运动,另一个物体做其他形式的运动.由于涉及两个物体的运动是同时进行的,因此求解的基本思路是依据等时性,建立等式,求出待求量.[题组巩固]1.(多选)如图所示,直径为d 的竖直圆筒绕中心轴线以恒定的转速匀速转动.一子弹以水平速度沿圆筒直径方向从左侧射入圆筒,从右侧射穿圆筒后发现两弹孔在同一竖直线上且相距为h ,则( )A .子弹在圆筒中的水平速度为v 0=dg 2h B .子弹在圆筒中的水平速度为v 0=2d g 2hC .圆筒转动的角速度可能为ω=πg 2hD .圆筒转动的角速度可能为ω=3πg2h解析:ACD [子弹从左侧射入圆筒后做平抛运动,通过的水平位移等于圆筒直径,到达圆筒右侧打下第二个弹孔,由于两弹孔在同一竖直线上,说明在子弹这段运动时间内圆筒必转过半圈的奇数倍,即d =v 0t 、h =gt 2、(2n +1)π=ωt (n =0,1,2,3…),联立可得12v 0=d,ω=(2n +1)π(n =0,1,2,3…),故A 、C 、D 正确,B 错误.]g 2h g2h2.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h = ________ ,圆盘转动的角速度大小ω= ________ .解析:小球做平抛运动:h =gt 2、R =vt ,解得h =.由题意知ωt =2π×n (n ∈N *),12gR 22v 2故联立R =vt 可得ω=(n =1,2,3,…).2n πvR答案: (n =1,2,3,…)gR 22v 22n πvR3.如图所示,在水平放置的圆盘上,其边缘C 点固定一个小桶,桶的高度不计,圆盘半径为R =1 m ,在圆盘直径CD 的正上方,与CD 平行放置一条水平滑道AB ,滑道右端B 与圆盘圆心O 在同一竖直线上,且B 点距离圆盘圆心的竖直高度h =1.25 m ,在滑道左端静止放置质量为m =0.4 kg 的物块(可视为质点),物块与滑道的动摩擦因数为μ=0.2,现用力F =4 N 的水平作用力拉动物块,同时圆盘从图示位置,以角速度ω=2π rad/s ,绕通过圆心O 的竖直轴匀速转动,拉力作用在物块一段时间后撤掉,最终物块由B 点水平抛出,恰好落入圆盘边缘的小桶内.重力加速度g 取10 m/s 2.(1)若拉力作用时间为0.5 s ,求所需滑道的长度;(2)求拉力作用的最短时间.解析:物块平抛:h =gt 2;t ==0.5 s122hg 物块离开滑道时的速度:v ==2 m/sRt拉动物块的加速度,由牛顿第二定律:F -μmg =ma 1得:a 1=8 m/s 2撤去外力后,由牛顿第二定律:-μmg =ma 2得:a 2=-2 m/s 2(1)物块加速获得速度:v 1=a 1t 1=4 m/s则板长L =x 1+x 2=a 1t +=4 m1221v 2-v 212a 2(2)盘转过一圈时落入,拉力作用时间最短盘转过一圈时间:T ==1 s2πω物块在滑道上先加速后减速,最终获得:v =a 1t 1+a 2t 2物块滑行时间、抛出在空中时间与圆盘周期关系:t 1+t 2+t =T由以上两式得:t 1=0.3 s 答案:(1)4 m (2)0.3 s物理模型(五) 竖直平面内圆周运动绳、杆模型[模型阐述]1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由mg =mv 2r得v 临=gr由小球恰能做圆周运动得v 临=0讨论分析(1)过最高点时,v ≥,F Ngr +mg =m ,绳、圆轨道v 2r对球产生弹力F N ;(2)不能过最高点时,v <gr,在到达最高点前小球已经脱离了圆轨道(1)当v =0时,F N =mg ,F N 为支持力,沿半径背离圆心;(2)当0<v <时,gr -F N +mg =,F N 背离圆mv 2r心,随v 的增大而减小;(3)当v =时,F N =0;gr (4)当v >时,F N +mg =gr mv 2r,F N 指向圆心并随v 的增大而增大[典例赏析][典例] (2019·新乡模拟)如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力,则球B 在最高点时( )A .球B 的速度为零B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg [审题指导](1)杆和球在竖直平面内转动→两球做圆周运动.(2)杆对球B 恰好无作用力→重力恰好提供向心力.[解析] C [球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =m ,解得v =,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v 22L 2gL v ′=,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供2gL 2向心力,有F -mg =m ,解得:F =1.5mg ,故C 正确,D 错误.]v ′2L 解决“轻绳、轻杆”模型问题的思路1.定模型:首先判断是轻绳模型还是轻杆模型,两种模型在最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.2.确定临界点:v 临=,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模gr 型来说是F N 表现为支持力还是拉力的临界点.3.受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F 向.4.过程分析:应用动能定理或机械能守恒定律列式,将初、末两个状态联系起来.[题组巩固]1.(多选)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为am bB .当地的重力加速度为a mC .当v 2=c时,轻质绳的拉力大小为+aacbD .只要v 2≥b ,小球在最低点和最高点时绳的拉力差均为6a解析:BD [最高点由牛顿第二定律得:F T +mg =,则F T =-mg .对应图象有:mv 2L mv 2L mg =a ,得g =,故B 正确.=得:L =,故A 错误.当v 2=c 时,F T =·c -mg =·ca m m L ab mb a m L ab-a ,故C 错误.只要v 2≥b ,绳子的拉力大于0,根据牛顿第二定律得:最高点:T 1+mg =m ①v 21L最低点:T 2-mg =m ②v 2L从最高点到最低点的过程中,根据机械能守恒定律得:mv -mv =2mgL ③1221221联立①②③式得:T 2-T 1=6mg ,即小球在最低点和最高点时绳的拉力差为6a ,故D 正确.]2.(2019·晋城模拟)如图所示,一内壁光滑、质量为m 、半径为r 的环形细圆管,用硬杆竖直固定在天花板上.有一质量为m 的小球(可看做质点)在圆管中运动.小球以速率v 0经过圆管最低点时,杆对圆管的作用力大小为( )A .m B .mg +mv 2r v 20r C .2mg +mD .2mg -mv 20rv 20r解析:C [小球做圆周运动,若圆管对它的作用力为F N ,根据牛顿第二定律F N -mg =m ,可得F N =mg +m ,小球对圆管的压力F N ′=F N ,以圆管为研究对象,若杆对圆管的v 20r v 20r 作用力为F ,则F =mg +mg +m ,即F =2mg +m ,选项C 正确.]v 20r v 2r3.如图所示,长度均为l =1 m 的两根轻绳,一端共同系住质量为m =0.5 kg 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为l ,重力加速度g 取10 m/s 2.现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,每根绳的拉力恰好为零,则小球在最高点速率为2v 时,每根绳的拉力大小为( )A .5 N B. N320 33C .15 ND .10 N3解析:A [小球在最高点速率为v 时,两根绳的拉力恰好均为零,由牛顿第二定律得mg =m ,当小球在最高点的速率为2v 时,由牛顿第二定律得mg +2F T cos 30°=m ,v 2r (2v )2r解得F T =mg =5 N ,故选项A 正确.]33。

高考物理一轮复习 核心考点专题13 圆周运动(含解析)-人教版高三全册物理试题

高考物理一轮复习 核心考点专题13 圆周运动(含解析)-人教版高三全册物理试题

核心考点专题13 圆周运动知识一 匀速圆周运动与描述 1.匀速圆周运动(1)定义:做圆周运动的物体,假设在任意相等的时间内通过的圆弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.运动参量1.向心力的作用效果:向心力是按效果命名的力,向心力的作用效果是产生向心加速度,向心力只改变线速度的方向,不改变线速度的大小.2.向心力的大小:F n =ma n =m v 2r =mr ω2=m 4π2T2r =m ωv =4π2mf 2r .3.向心力的方向:向心力始终沿半径方向指向圆心,时刻在改变,即向心力是变力.4.向心力的来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供. 5.两种圆周运动的处理(1)在匀速圆周运动中,物体所受的合外力提供向心力,向心力F n 大小恒定,方向始终指向圆心. (2)做变速圆周运动的物体所受的合外力并不指向圆心.合外力F 可以分解为沿半径方向的分力F n 和沿切线方向的分力F t ,其中F n 产生向心加速度改变速度的方向,F t 产生切向加速度改变速度的大小.变速圆周运动变速圆周运动的合外力和加速度并不指向圆心,而与半径有一个夹角.合外力F与速度的夹角小于90°,做加速圆周运动;合外力F与速度的夹角大于90°,做减速圆周运动.知识三生活中的圆周运动1.铁路的弯道(1)火车车轮的结构特点:火车的车轮有突出的轮缘,且火车在轨道上运行时,有突出轮缘的一边在两轨道的内侧.(2)火车轨道特点:铁轨弯道处外轨略高于内轨.(3)火车转弯时向心力来源分析:重力和支持力的合力提供向心力.弯道处火车轨道外高内低假设内外轨一样高,外轨对轮缘的水平弹力提供火车转弯的向心力.火车质量大,靠这种方法得到向心力,铁轨和车轮都极易受损.(4)火车转弯的速度当v=v0时,轮缘不受侧向压力;当v>v0时,轮缘受到外轨向内的挤压力;当v<v0时,轮缘受到内轨向外的挤压力.2.汽车过桥问题(1)过拱形桥(2)过凹形桥知识四离心运动1.离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.受力特点(如图)(1)当F=0时,物体沿切线方向飞出;(2)当F<mrω2时,物体逐渐远离圆心;(3)当F>mrω2时,物体逐渐向圆心靠近,做近心运动.3.本质:离心运动的本质并不是受到离心力的作用,而是提供的力小于做圆周运动需要的向心力.对点练习1.(多项选择)质点做匀速圆周运动,如此( )A.在任何相等的时间里,质点的位移都相等B.在任何相等的时间里,质点通过的路程都相等C.在任何相等的时间里,质点运动的平均速度都一样D .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等 【答案】BD【解析】质点做匀速圆周运动时,相等的时间内通过的圆弧长度相等,即路程相等,B 项正确;在相等的时间内连接质点和圆心的半径所转过的角度也相等,D 项正确;由于位移是矢量,在相等的时间里,质点的位移大小相等,位移方向却不一定一样,因此位移不一定一样,而平均速度也是矢量,虽然大小相等,但方向不一定一样,A 、C 项错误.2. 甲、乙两物体做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相等时间里甲转过60°,乙转过45°,如此它们所受外力的合力之比为( ) A .1∶4 B .2∶3 C .4∶9 D .9∶16【答案】C【解析】由ω=ΔθΔt 得ω甲∶ω乙=60°∶45°=4∶3,由F =m ω2r 得F 甲F 乙=m 甲ω2甲r 甲m 乙ω2乙r 乙=12×4232×12=49,C 正确.3. 如下关于向心加速度的说法中正确的答案是( ) A .向心加速度表示做圆周运动的物体速率改变的快慢 B .向心加速度表示角速度变化的快慢 C .向心加速度描述线速度方向变化的快慢 D .匀速圆周运动的向心加速度不变 【答案】C【解析】匀速圆周运动中速率不变,向心加速度只改变速度的方向,A 项错误;匀速圆周运动的角速度是不变的,B 项错误;匀速圆周运动中速度的变化只表现为速度方向的变化,作为反映速度变化快慢的物理量,向心加速度只描述速度方向变化的快慢,C 项正确;向心加速度的方向是变化的,D 项错误.4.铁路在弯道处的内外轨道高度是不同的,内外轨道平面与水平面的夹角为θ,如下列图,弯道处的圆弧半径为R ,假设质量为m 的火车转弯时速度等于gR tan θ,如此( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ【答案】C【解析】将火车在弯道处的运动看做匀速圆周运动,由牛顿第二定律F 合=m v 2R,解得F 合=mg tan θ,故此时火车只受重力和铁路轨道的支持力作用,F N cos θ=mg ,如此F N =mgcos θ,内、外轨道对车轮轮缘均无挤压,故C 正确,A 、B 、D 错误.5.如下列图,光滑水平面上,小球在拉力F 作用下做匀速圆周运动,假设小球运动到P 点时,拉力F 发生变化,关于小球运动情况的说法不正确的答案是( )A .假设拉力突然消失,小球将沿轨迹Pa 做匀速直线运动B .假设拉力突然变小,小球将沿轨迹Pa 做离心运动C .假设拉力突然变小,小球将可能沿轨迹Pb 做离心运动D .假设拉力突然变大,小球将可能沿轨迹Pc 做近心运动 【答案】B【解析】由F =mv 2R知,拉力变小,F 提供的向心力不足,R 变大,小球做离心运动;反之,F 变大,小球做近心运动;假设拉力突然消失,如此小球将沿切线方向做匀速直线运动,故B 符合题意.6. 光滑水平面上,质点P 以O 为圆心做半径为R 的匀速圆周运动,如下列图,周期为T ,当P 经过图中D 点时,有一质量为m 的另一质点Q 在水平向右的力F 的作用下从静止开始做匀加速直线运动,为使P 、Q 两质点在某时刻的速度一样,如此F 的大小应满足什么条件?【答案】F =8πmR4n +3T2(n =0,1,2…)【解析】速度一样包括大小相等和方向一样,由质点Q 做匀加速直线运动可知,只有当P 运动到圆周上的C 点时,P 、Q 速度的方向才一样,即质点P 转过n +34周(n =0,1,2…),经历的时间t =n +34T (n =0,1,2…),质点P 的速度v =2πRT.在一样时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律与速度公式得v =Fm t ,由以上三式得F =8πmR4n +3T2(n =0,1,2…).7. 有一种叫“飞椅〞的游乐项目,示意图如下列图,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.【答案】ω=g tan θr +L sin θ【解析】设转盘转动角速度为ω时,钢绳与竖直方向的夹角为θ,如此座椅到中心轴的距离R =r +L ·sinθ,对座椅应用牛顿第二定律有F n =mg tan θ=mRω2,联立两式得ω=g tan θr +L sin θ.8. 如下列图,洗衣机脱水筒在转动时,衣服贴靠在匀速转动的圆筒内壁上而不掉下来,如此衣服( )A.受到重力、弹力、静摩擦力和离心力四个力的作用B.所需的向心力由重力提供C.所需的向心力由弹力提供D.转速越快,弹力越大,摩擦力也越大 【答案】C【解析】衣服只受重力、弹力和静摩擦力三个力作用,A 错误;衣服做圆周运动的向心力为它所受的合力,由于重力与静摩擦力平衡,故弹力提供向心力,即F N =mrω2,转速越大,F N 越大,C 正确,B 、D 错误。

(新课标)2020版高考物理一轮复习第四章第3讲圆周运动

(新课标)2020版高考物理一轮复习第四章第3讲圆周运动

径为r,人与魔盘竖直壁间的动摩擦因数为μ。在人“贴”在“魔盘”竖
直壁上随“魔盘”一起运动的过程中,下列说法正确的是 ( D ) A.人随“魔盘”转动过程中,受重力、弹力、摩擦力和向心力作用
B.人贴在竖直壁上,转速变大后,人与器壁之间的摩擦力变大
C.人贴在竖直壁上,转速变大后,人与器壁之间的弹力不变
第3 讲
圆周运动
基 础 过 关
一 二 三
描述圆周运动的物理量 匀速圆周运动 离心运动
考 点 突 破
考点一 考点二
圆周运动的动力学分析 水平面内的圆周运动
考点三 竖直面内的圆周运动
基础过关
一、描述圆周运动的物理量
s 1.线速度:描述做圆周运动的物体通过弧长的快慢,v= =① t θ 2.角速度:描述物体绕圆心转动的快慢,ω= = ② t
2.匀速圆周运动与非匀速圆周运动的比较
项目 匀速圆周运动 非匀速圆周运动
定义
运动特点
线速度大小不变的圆周运动
线速度大小变化的圆周运动
Fn、an、v均大小不变,方向变化 Fn、an、v大小、方向均发生变化,ω ,ω 不变 发生变化 由F合沿半径的分力提供向心力Fn,Fn ≠F合
向心力 大小
Fn=F合
答案 B 根据题意,从题图(b)可以看出,在Δt时间内,探测器接收到光
的时间在增长,凸轮圆盘的挡光时间也在增长,可以确定凸轮圆盘的转 速在减小;从题图(b)可以看出在Δt时间内有4次挡光,即凸轮圆盘转动4 圈,则风轮叶片转动了4n圈,风轮叶片转过的弧长为l=4n×2πr,叶片转动
8 nr 的平均速率为 v= ,故选项B正确。 t
1 g D.“魔盘”的转速一定大于 2 μr
3.如图所示,自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转

高考物理2020届一轮复习习题:第4章_第3讲_圆周运动及向心力公式的应用_word版含参考答案(已纠错)

高考物理2020届一轮复习习题:第4章_第3讲_圆周运动及向心力公式的应用_word版含参考答案(已纠错)

第3讲圆周运动及向心力公式的应用A组基础题组1.(2013海南单科,8,5分)(多选)关于物体所受合外力的方向,下列说法正确的是( )A.物体做速率逐渐增加的直线运动时,其所受合外力的方向一定与速度方向相同B.物体做变速率曲线运动时,其所受合外力的方向一定改变C.物体做变速率圆周运动时,其所受合外力的方向一定指向圆心D.物体做匀速率曲线运动时,其所受合外力的方向总是与速度方向垂直2.(2016宁夏银川二中三练)(多选)如图所示,两物块A、B套在水平、粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO'转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO'轴的距离为物块A到OO'轴距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A、B物块受到的静摩擦力都是一直增大B.A受到的静摩擦力是先增大后减小,B受到的静摩擦力一直增大C.A受到的静摩擦力是先指向圆心后背离圆心,B受到的静摩擦力一直增大后保持不变D.A受到的静摩擦力是先增大后减小又增大,B受到的静摩擦力一直增大后保持不变3.(2016安徽淮北三校联考)如图所示,细绳长为L,挂一个质量为m的小球,球离地的高度h=2L,当绳受到大小为2mg的拉力时就会断裂,绳的上端系一质量不计的环,环套在光滑水平杆上,现让环与球一起以速度v=向右运动,在A处环被挡住而立即停止,A离墙的水平距离也为L,球在以后的运动过程中,球第一次碰撞点离墙角B点的距离ΔH是(不计空气阻力)( )A.ΔH=LB.ΔH=LC.ΔH=LD.ΔH=L4.(2015福建理综,17,6分)如图,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上。

若小滑块第一次由A 滑到C,所用的时间为t 1,第二次由C 滑到A,所用的时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A.t 1<t 2B.t 1=t 2C.t 1>t 2D.无法比较t 1、t 2的大小5.[2015河北名校联盟质量监测(二),19](多选)如图,三个质点a 、b 、c 质量分别为m 1、m 2、M(M ≫m 1,M ≫m 2)。

2020年高考物理一轮复习热点题型归纳与变式演练专题09 圆周运动七大常考模型(原卷版)

2020年高考物理一轮复习热点题型归纳与变式演练专题09 圆周运动七大常考模型【专题导航】目录题型一水平面内圆盘模型的临界问题 (1)热点题型二竖直面内圆周运动的临界极值问题 (3)球—绳模型或单轨道模型 (4)球—杆模型或双轨道模型 (5)热点题型三斜面上圆周运动的临界问题 (6)热点题型四圆周运动的动力学问题 (6)圆锥摆模型 (7)车辆转弯模型 (8)【题型演练】 (10)【题型归纳】题型一水平面内圆盘模型的临界问题1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=mv2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μgr D.此时烧断绳子,A仍相对盘静止,B将做离心运动热点题型二竖直面内圆周运动的临界极值问题1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”.2.竖直平面内圆周运动的两种模型特点及求解方法最高点无支撑最高点有支撑22球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L 的细绳一端拴一质量为m 小球,另 一端固定在O 点,绳的最大承受能力为11mg ,在O 点正下方O ′点有一小钉,先把绳拉至 水平再释放小球,为使绳不被拉断且小球能以O ′为轴完成竖直面完整的圆周运动,则钉的 位置到O 点的距离为( )A .最小为25LB .最小为35LC .最大为45LD .最大为910L【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mgC .3mgD .23mg【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为amC .当v 2=c 时,轻质绳最高点拉力大小为acb +a D .若v 2=b ,小球运动到最低点时绳的拉力为6a【变式2】如图所示,半径为R 的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P 时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P 点的水平距离为( )A.2RB.3RC.5RD.6R球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径 为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过0.3 s后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R=1 m,小球可看做质点且其质量为m=1 kg,g取10 m/s2.则()A.小球在斜面上的相碰点C与B点的水平距离是0.9 mB.小球在斜面上的相碰点C与B点的水平距离是1.9 mC.小球经过管道的B点时,受到管道的作用力F N B的大小是1 ND.小球经过管道的B点时,受到管道的作用力F N B的大小是2 N热点题型三斜面上圆周运动的临界问题在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2,则ω的最大值是()A. 5 rad/sB. 3 rad/s C.1.0 rad/s D.0.5 rad/s【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L的细线一端固定,另一端连接质量为m的小球,小球在斜面上做圆周运动,A、B分别是圆弧的最高点和最低点,若小球在A、B点做圆周运动的最小速度分别为v A、v B,重力加速度为g,则()A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL热点题型四 圆周运动的动力学问题 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

2020届高三高考物理复习知识点总结复习卷:圆周运动

圆周运动1.(多选)(2019·江苏高考)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动。

座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πRωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R2.(多选)铁路转弯处的弯道半径r 是根据地形决定的。

弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关。

下列说法正确的是( )A .速率v 一定时,r 越小,要求h 越大B .速率v 一定时,r 越大,要求h 越大C .半径r 一定时,v 越小,要求h 越大D .半径r 一定时,v 越大,要求h 越大3.如图所示,叠放在一起的两物块A 、B 质量相等,随水平圆盘一起做匀速圆周运动,下列说法正确的是( )A .B 做圆周运动所需向心力是A 做圆周运动所需向心力的2倍 B .盘对B 的摩擦力是B 对A 的摩擦力的2倍C .A 有沿半径向外滑动的趋势,B 有沿半径向内滑动的趋势D .若B 先滑动,则A 、B 之间的动摩擦因数μA 小于B 与盘之间的动摩擦因数μB4.小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短。

将两球拉起,使两绳均被水平拉直,如图所示。

将两球由静止释放。

在各自运动轨迹的最低点时,有( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度5.(2019·温州九校联考)环球飞车是一场将毫无改装的摩托车文化进行演绎的特技表演。

如图所示,在舞台中固定一个直径为6.5 m 的球形铁笼,其中有一辆摩托车在与球心共面的水平圆面上做匀速圆周运动,下列说法正确的是( )A.摩托车受摩擦力、重力、弹力和向心力的作用B.摩托车做圆周运动的向心力由弹力来提供C.在此圆周运动中摩托车受到的弹力不变D.摩托车受到水平圆面内与运动方向相同的摩擦力6.(2019·合肥调研)如图所示,两艘快艇在湖面上做匀速圆周运动,在相同时间内,它们通过的路程之比是3∶2,运动方向改变的角度之比是2∶1,则( )A.二者线速度大小之比为2∶3B.二者角速度大小之比为1∶2C.二者圆周运动的半径之比为1∶3D.二者向心加速度大小之比为3∶17.(2019·沈阳一模)我国高铁技术发展迅猛,目前处于世界领先水平。

2020版高考物理人教版(山东专用)一轮复习练习:第四章 第3节 圆周运动

第3节圆周运动1. 如图所示,一木块放在圆盘上,圆盘绕通过圆盘中心且垂直于盘面的竖直轴匀速转动,木块和圆盘保持相对静止,那么( B )A.木块受到圆盘对它的摩擦力,方向沿半径背离圆盘中心B.木块受到圆盘对它的摩擦力,方向沿半径指向圆盘中心C.木块受到圆盘对它的摩擦力,方向与木块运动的方向相反D.因为木块与圆盘一起做匀速转动,所以它们之间没有摩擦力解析:木块做匀速圆周运动,其合外力提供向心力,合外力的方向一定指向圆盘中心.因为木块受到的重力和圆盘的支持力均沿竖直方向,所以水平方向上木块一定还受到圆盘对它的摩擦力,方向沿半径指向圆盘中心,选项B正确.2. 在室内自行车比赛中,运动员以速度v在倾角为θ的赛道上做匀速圆周运动.已知运动员的质量为m,做圆周运动的半径为R,重力加速度为g,则下列说法正确的是( B )A.将运动员和自行车看做一个整体,整体受重力、支持力、摩擦力和向心力的作用B.运动员受到的合力大小为m,做圆周运动的向心力大小也是mC.运动员做圆周运动的角速度为vRD.如果运动员减速,运动员将做离心运动解析:向心力是整体所受力的合力,选项A错误;做匀速圆周运动的物体,合力提供向心力,选项B正确;运动员做圆周运动的角速度为ω=,选项C错误;只有运动员加速到所受合力不足以提供做圆周运动的向心力时,运动员才做离心运动,选项D错误.3. 如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力F f的叙述正确的是( D )A.F f的方向总是指向圆心B.圆盘匀速转动时F f=0C.在物体与轴O的距离一定的条件下,F f跟圆盘转动的角速度成正比D.在转速一定的条件下,F f跟物体到轴O的距离成正比解析:物体随圆盘转动过程中,如果圆盘匀速转动,则摩擦力指向圆心,如果变速转动,则摩擦力的一个分力充当向心力,另一个分力产生切向加速度,摩擦力不指向圆心,A,B错误;根据公式F n=F f=mω2r可得在物体与轴O的距离一定的条件下,F f跟圆盘转动的角速度的平方成正比,C错误;因为ω=2πn,所以F f=m(2πn)2r,则F f跟物体到轴O的距离成正比,D正确.4. 质量为m的物体随水平传送带一起匀速运动,A为传送带的终端皮带轮.如图所示,皮带轮半径为r,要使物体通过终端时能水平抛出,皮带轮的转速至少为( A )A. B. C. D.解析:要使物体通过终端时能水平抛出,则有mg=,物体飞出时速度至少为,由v=ωr=2πnr可得皮带轮的转速至少为n=,选项A 正确.5. (2019·北京西城区模拟)(多选)如图所示,长为L的细绳一端固定,另一端系一质量为m的小球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是( BC )A.小球受重力、绳的拉力和向心力作用B.小球只受重力和绳的拉力作用C.θ越大,小球运动的速率越大D.θ越大,小球运动的周期越大解析:在运动过程中小球只受重力和绳子的拉力作用,合力提供向心力,A错误,B正确;由合力提供向心力有mgtan θ=m,可知θ越大,小球运动的速率越大,C正确;根据mgtan θ=m Lsin θ,可知θ越大,小球运动的周期越小,D错误.6. (2019·山东聊城模拟)一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图所示,则下列说法正确的是( A )A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是C.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小解析:因轻杆既可以提供拉力又可以提供支持力,所以在最高点杆所受弹力可以为零,A对;在最高点弹力也可以与重力等大反向,小球最小速度为零,B错;随着速度增大,杆对球的作用力可以增大也可以减小,C,D错.7.(多选) 如图所示,质量为m的物体,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( CD )A.受到的向心力为mg+mB.受到的摩擦力为μmC.受到的摩擦力为μ(mg+m)D.受到的合力方向斜向左上方解析:物体在最低点做圆周运动,则有F N-mg=m,解得F N=mg+m,故物体受到的滑动摩擦力F f=μF N=μ(mg+m),A,B错误,C正确;物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D正确.8. 如图所示,两段长均为L的轻质线共同系住一个质量为m的小球,另一端分别固定在等高的A,B两点,A,B两点间距也为L,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v,两段线中张力恰好均为零,若小球到达最高点时速率为2v,则此时每段线中张力大小为( A )A.mgB.2mgC.3mgD.4mg解析: 当小球到达最高点速率为v时,两段线中张力均为零,则有mg=m;当小球到达最高点速率为2v时,设每段线中张力大小为T,应有2Tcos 30°+mg=m,解得T=mg.9. (2019·湖北四地七校联考)如图所示,一竖直放置、内壁粗糙的圆锥筒绕其中心轴线旋转,角速度为ω0(ω0>0),内壁上有一小物块始终与圆锥保持相对静止,则下列说法正确的是( D )A.物块不可能受两个力作用B.物块受到的支持力一定大于重力C.当角速度从ω0增大时,物块受到的支持力可能减小D.当角速度从ω0增大时,物块受到的摩擦力可能一直增大解析:当角速度ω0为某一值,小物块所受重力与支持力的合力可能为向心力,故A错误.当ω0较小时,物体受摩擦力沿筒壁向上,如图1,正交分解列方程有Ncos θ+fsin θ=mg,Nsin θ-fcos θ=m r,由此可解得N,f,可知支持力N不一定大于重力,且ω0增大时,N增大,f 减小.当ω0较大时,物体受摩擦力沿筒壁向下,如图2,同理可知,随ω0增大,N′增大,f′增大,故B,C错误,D正确.10.如图所示,一位同学玩飞镖游戏.圆盘最上端有一点P,飞镖抛出时与P等高,且距离P点为L.当飞镖以初速度v0垂直盘面瞄准P点抛出的同时,圆盘以经过盘心O点的水平线为轴在竖直平面内匀速转动.忽略空气阻力,重力加速度为g,若飞镖恰好击中P点,则( C )A.飞镖击中P点所需的时间大于B.圆盘的半径可能为C.P点随圆盘转动的线速度可能为D.圆盘转动角速度的最小值为解析:飞镖水平位移为L,且水平方向为匀速运动,所以飞行时间一定是,A错误;竖直方向飞镖做自由落体运动,所以下落的高度为h=gt2=,要击中P点,P点一定是位于最下方,所以2R=h,R=,B 错误;P点转到最下方可能经过的圈数为,其中n=0,1,2,…,所以线速度的可能值为v==,当n=2时,v=,C正确;而ω==,当n=0时,得最小角速度ω=,D错误.11.(2019·河南洛阳质检)(多选)如图(甲)所示,将质量为M的物块A 和质量为m的物块B放在水平转盘上,两者用长为L的水平轻绳连接.物块与转盘间的最大静摩擦力均为各自重力的k倍,物块A与转轴的距离等于轻绳长度,整个装置能绕通过转盘中心的竖直轴转动.开始时,轻绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,绳中张力T与转动角速度的平方ω2的关系如图(乙)所示,当角速度的平方ω2超过3时,物块A,B开始滑动.若图(乙)中的T1,ωg均为已知,下列说法正确的是( BC )1及重力加速度A.L=B.L=C.k=D.m=M解析:当角速度的平方等于2时,绳中开始有张力,B物块所受静摩擦力达到最大值,有kmg=m·2L·2,当角速度的平方等于3时,kmg+T1=m·2L·3,可解得k=,L=,A错误,B,C正确;当角速度的平方等于3时,对A物块有kMg-T1=M·L·3,可得M=2m,D 错误.12. 如图所示,固定的水平桌面上有一水平轻弹簧,右端固定在a点,弹簧处于自然状态时其左端位于b点.桌面左侧有一竖直放置且半径R=0.5 m的光滑半圆轨道MN,MN为竖直直径.用质量m=0.2 kg的小物块(视为质点)将弹簧缓慢压缩到c点,释放后从弹簧恢复原长过b点开始小物块在水平桌面上的位移与时间的关系为x=7t-2t2(m).小物块在N点进入光滑半圆轨道,恰好能从M点飞出,飞出后落至水平桌面上的d点.取重力加速度g=10 m/s2,弹簧始终在弹性限度内,不计空气阻力,求:(1)d,N两点间的距离;(2)b,N两点间的距离;(3)物块在N点时对半圆轨道的压力.解析:(1)由物块恰好从M点飞出知,在M点物块的重力恰好完全提供向心力,设其速度为v M,则mg=mv M= m/s物块由M点水平飞出后,以初速度v M做平抛运动.水平方向:x dN=v M t竖直方向:y=2R=gt2代入数据解得x dN=1 m.(2)从N到M,由机械能守恒定律得m+2mgR=m解得v N=5 m/s物块在bN段做匀减速运动,由x=7t-2t2(m)知初速度v0=7 m/s,加速度a=-4 m/s2由-=2a,得=3 m.(3)物块在N点时,设半圆轨道对物块的支持力为F N,由牛顿第二定律得F N-mg=m解得F N=12 N由牛顿第三定律得物块在N点对半圆轨道的压力大小为12 N,方向竖直向下.答案:(1)1 m (2)3 m (3)12 N 方向竖直向下13.如图(甲)所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B,C两点,装置静止时细线AB水平,细线AC与竖直方向的夹角θ=37°.已知小球的质量m=1 kg,细线AC长l=1 m,B点距转轴的水平距离和距C点竖直距离相等(重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8).(1)若装置匀速转动的角速度为ω1时,细线AB上的张力为0,而细线AC与竖直方向的夹角仍为37°,求角速度ω1的大小;(2)若装置匀速转动的角速度为ω2时,细线AB刚好竖直,且张力为0,求此时角速度ω2的大小;(3)装置可以以不同的角速度匀速转动,试通过计算在坐标图(乙)中画出细线AC上张力F T随角速度的平方ω2变化的关系图像.解析:(1)细线AB上张力恰为零时有mgtan 37°=m lsin 37°解得ω1== rad/s.(2)细线AB恰好竖直,但张力为零时,由几何关系得cos θ′=,θ′=53°mgtan θ′=m lsin θ′此时ω2= rad/s.(3)ω≤ω1= rad/s时,细线AB水平,细线AC上张力的竖直分量等于小球的重力F T cos θ=mg,F T==12.5 Nω1≤ω≤ω2时细线AB松弛细线AC上张力的水平分量等于小球做圆周运动需要的向心力F T sin α=mω2lsin αF T=mω2lω>ω2时,细线AB在竖直方向绷直,仍然由细线AC上张力的水平分量提供小球做圆周运动需要的向心力.F T sin θ′=mω2lsin θ′,F T=mω2l综上所述ω≤ω1= rad/s时,F T=12.5 N不变, ω>ω1时,F T=mω2l=ω2(N)F T-ω2关系图像如图所示.答案:(1) rad/s(2) rad/s(3)见解析感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

2020年高考物理新课标第一轮总复习讲义:第四章 第三讲 圆周运动 Word版含答案

姓名,年级:时间:基础复习课第三讲圆周运动[小题快练]1.判断题(1)匀速圆周运动是匀变速曲线运动.(× )(2)物体做匀速圆周运动时,其角速度是不变的.( √ )(3)物体做匀速圆周运动时,其合外力是不变的.( × )(4)做匀速圆周运动的物体的向心加速度与半径成反比.(× ) (5)做匀速圆周运动的物体的向心力是产生向心加速度的原因.( √ )(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.(√ )(7)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.( × )(8)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.(× )2.质点做匀速圆周运动时,下列说法正确的是( C )A.速度的大小和方向都改变B.匀速圆周运动是匀变速曲线运动C.当物体所受合力全部用来提供向心力时,物体做匀速圆周运动D.向心加速度大小不变,方向也不改变3.如图所示,洗衣机脱水筒在转动时,衣服贴靠在匀速转动的圆筒内壁上而不掉下来,则衣服( C )A.受到重力、弹力、静摩擦力和离心力四个力的作用B.所需的向心力由重力提供C.所需的向心力由弹力提供D.转速越快,弹力越大,摩擦力也越大4.摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图所示.当列车转弯时,在电脑控制下,车厢会自动倾斜,行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一超高速摆式列车在水平面内行驶,以360 km/h的速度拐弯,拐弯半径为1 km,则质量为50 kg的乘客,在拐弯过程中所受到的列车给他的作用力为(g取10 m/s2)( C )A.500 NB.1 000 NC.500错误! ND.0考点一圆周运动中的运动学分析 (自主学习)1.对公式v=ωr的理解当r一定时,v与ω成正比;当ω一定时,v与r成正比;当v一定时,ω与r成反比.2.对a=错误!=ω2r=ωv的理解在v一定时,a与r成反比;在ω一定时,a与r成正比.3.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A=v B.(2)摩擦传动:如图所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A=v B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点10 圆周运动
一、选择题
1.多选)火车以60 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s内匀速转过了约10°.在此10 s时间内,火车()
A.运动路程为600 m
B.加速度为零
C.角速度约为1 rad/s
D.转弯半径约为3.4 km
2.(多选)如图所示,细杆的一端与一小球相连,可绕O点的水平轴自由转动.现给小球一初速度,使它在竖直平面内做圆周运动,图中a,b分别表示小球运动轨道的最低点和最高点,则杆对小球的作用力可能是()
A.a处为拉力,b处为拉力
B.a处为推力,b处为推力
C.a处为推力,b处为拉力
D.a处为拉力,b处为推力
3.甲、乙两物体均做匀速圆周运动,甲的转动半径为乙的一半,当甲转过60°时,乙在这段时间里正好转过45°,则甲、乙两物体的线速度之比为()
A.1∶4
B.2∶3
C.4∶9
D.9∶16
4.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h”上,可估算出该车车轮的转速为()
A.1 000 r/s
B.1 000 r/min
C.1 000 r/h
D.2 000 r/s
5.如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动的半径为R,角速度大小为ω,重力加速度为g,则座舱()
A.运动周期为
B.线速度的大小为ωR
C.受摩天轮作用力的大小始终为mg
D.所受合力的大小始终为mω2R
6.(多选)A,B两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A∶s B =2∶3,转过的角度之比φA∶φB=3∶2,则下列说法正确的是()
A.它们的半径之比r A∶r B=2∶3
B.它们的半径之比r A∶r B=4∶9
C.它们的周期之比T A∶T B=2∶3
D.它们的频率之比f A∶f B=2∶3
7.(多选)关于匀速圆周运动的说法,正确的是()
A.匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度
B.做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度C.做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速(曲线)运动
D.匀速圆周运动的物体加速度大小虽然不变,但加速度的方向始终指向圆心,加速度的方向时刻都在改变,所以匀速圆周运动既不是匀速运动,也不是匀变速运动
8.如图所示,A、B是两个摩擦传动的靠背轮,A是主动轮,B是从动轮,它们的半径R A=2R B,a和b两点在轮的边缘,c和d在各轮半径的中点,下列判断正确的是()
A.v a=2v b
B.ωb=2ωa
C.v c=v a
D.ωb=ωc
9.变速自行车靠变换齿轮组合来改变行驶速度.下图是某一变速车齿轮传动结构示意图,图中A 轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则下列选项正确的是()
A.当B轮与C轮组合时,两轮边缘上的点的线速度之比v B∶v C=7∶3
B.当B轮与C轮组合时,两轮的周期之比T B∶T C=3∶7
C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4
D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1
10.如图,一质量为2.0×103 kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1. 4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是()
A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力
B.汽车转弯的速度为20 m/s时所需的向心力为1.4×104 N
C.汽车转弯的速度为20 m/s时汽车会发生侧滑
D.汽车能安全转弯的向心加速度不超过7.0 m/s2
11.(多选)用细绳拴着质量为m的小球,在竖直平面内做半径为R的圆周运动,如图所示.则下列说法正确的是()
A.小球通过最高点时,绳子张力可以为0
B.小球通过最高点时的最小速度为0
C.小球刚好通过最高点时的速度是
D.小球通过最高点时,绳子对小球的作用力可以与小球所受重力方向相反
二、非选择题
12.如图所示为汽车在水平路面做半径为R的大转弯的后视图,悬吊在车顶的灯左偏了θ角,则:
(1)车正向左转弯还是向右转弯?
(2)车速是多少?
(3)若(2)中求出的速度正是汽车转弯时不打滑允许的最大速度,则车轮与地面的动摩擦因数μ是多少?
13.在用高级沥青铺设的高速公路上,汽车的最大速度为108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.4倍.(g取10 m/s2)
(1)如果汽车在这种高速公路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?
(2)如果高速公路上设计了圆弧拱桥作立交桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?
14.质量m=1 000 kg的汽车通过一拱形桥时的速率恒定,拱形桥的半径R=10 m。

(重力加速度g取10 m/s2)试求:
(1)汽车在最高点对拱形桥的压力为车重的一半时汽车的速度大小;
(2)汽车在最高点对拱形桥的压力为零时汽车的速率。

15.如图所示,质量m=2.0×104 kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为20 m.如果桥面承受的压力不得超过3.0×105 N,则:
(1)汽车允许的最大速度是多少?
(2)若以所求速度行驶,汽车对桥面的最小压力是多少?(g取10 m/s2)
16.杂技演员在做“水流星”表演时,用一根细绳两端各系一只盛水的杯子,抡起绳子,让杯子在竖直面内做半径相同的圆周运动,如图所示.杯内水的质量m=0.5 kg,绳长l=60 cm,g =10 m/s2.求:
(1)在最高点水不流出的最小速率.
(2)水在最高点速率v=3 m/s时,水对杯底的压力大小
17.如图所示,在内壁光滑的平底试管内放一个质量为1 g的小球,试管的开口端与水平轴O 连接.试管底与O相距5 cm,试管在转轴带动下在竖直平面内做匀速圆周运动.求:
(1)转轴的角速度达到多大时,试管底所受压力的最大值等于最小值的3倍?
(2)转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况?(g取10 m/s2)
18.长为L的轻杆一端固定着一质量为m的小球,使小球在竖直面内做圆周运动.(如图)
(1)当小球在最高点B的速度为v1时,求杆对球的作用力.
(2)杆拉球过最高点的最小速度为多少?
(3)试分析光滑圆管竖直轨道中,小球过最高点时受管壁的作用力与速度的关系?。

相关文档
最新文档