上海浦东新区2015届高三4月教学质量检测数学文试题(Word版无答案)

合集下载

上海市浦东新区2015届高三4月教学质量检测数学(文)试卷

上海市浦东新区2015届高三4月教学质量检测数学(文)试卷

2015年浦东新区第二次高三数学质量检测数学试卷(文科)注意:1.答卷前,考生务必在答题纸上指定位置将姓名、学校、考号填写清楚. 2.本试卷共23道试题,满分150,考试时间120分钟. 一、填空题(本大题共有14题,满分56分);考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式32x >的解为 ..2.设i 是虚数单位,复数()()31a i i +-是实数,则实数a = .3.已知一个关于,x y 的二元一次方程组的增广矩阵为112012-⎛⎫⎪⎝⎭,则x y -= .4.已知数列{}n a 的前n 项和2n S n n =+,则该数列的通项公式n a = .5.已知21nx x ⎛⎫- ⎪⎝⎭展开式中二项式系数之和为1024,则含7x 项的系数为 .6.已知直线3420x y ++=与()2221x y r -+=圆相切,则该圆的半径大小为 . 7.已知,x y 满足232300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则x y +的最大值为 .8.若对任意x R ∈,不等式2sin 22sin 0x x m --<恒成立,则m 的取值范围是 .9.已知球的表面积为264cm π,用一个平面截球,使截面球的半径为2cm ,则截面与球心的距离是 cm10.已知{},1,2,3,4,5,6a b ∈,直线1:210l x y --=,直线2:10l ax by +-=,则直线12l l ⊥的概率为 .11.若函数()2234f x x x =+-的零点(),1m a a ∈+,a 为整数,则所以满足条件a 的值为 .12.若正项数列{}n a 是以q 为公比的等比数列,已知该数列的每一项k a 的值都大于从2k a +开始的各项和,则公比q 的取值范围是 .13.已知等比数列{}n a 的首项1a 、公比q 是关于x 的方程()2220x x t -+-=的实数解,若数列{}n a 有且只有一个,则实数t 的取值集合为 .14.给定函数()f x 和()g x ,若存在实常数,k b ,使得函数()f x 和()g x 对其公共定义域D 上的任何实数x 分别满足()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为函数()f x 和()g x 的“隔离直线”.给出下列四组函数:①()()11,sin 2x f x g x x =+=;②()()31,f x x g x x==-; ③()()1,lg f x x g x x x =+=;④()()12,2x x f x g x =-=其中函数()f x 和()g x 存在“隔离直线”的序号是 .二、选择题(本大题共有4题,满分20分);每小题给出四个选项,其中有且只有一个选项是正确的,考生应在答题纸相应的位置上,选对得5分,否则一律不得分. 15.已知,a b 都是实数,那么“0a b <<”是“11a b>”的 ( )16.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系是( )A. 平行B. 相交C. 平行或重合D. 平行或相交17.若直线30ax by +-=与圆223x y +=没有公共点,设点P 的坐标(),a b ,那过点P 的一条直线与椭圆22143x y +=的公共点的个数为 ( ) A. 0 B. 1 C. 2 D. 1或218.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各项点依次为,123,,,n A A A A 则[]()12,,1,2,3,6j i A A A A i j ⋅∈的值组成的集合为( )A.{}2,1,0,1,2--B.112,1,,0,,1,222⎧⎫---⎨⎬⎩⎭C.3113,1,,0,,1,2222⎧⎫---⎨⎬⎩⎭D.31132,,1,,0,,1,,22222⎧⎫----⎨⎬⎩⎭三、解答题(本大题共有5题,满分74分):解答下列各题必须在答题纸的相应位置上,写出必要的步骤.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件1A 2A 3A 4A 5A 6A19. (本大题共有2个小题,满分12分)第(1)小题满分6分,第(2)小题满分6分.已知函数()(),0,af x x x a x =+>为实数.(1)当1a =-时,判断函数()y f x =在()1,+∞上的单调性,并加以证明; (2)根据实数a 的不同取值,讨论函数()y f x =的最小值.20. (本大题共有2个小题,满分12分)第(1)小题满分6分,第(2)小题满分6分. 如图,在四棱锥P ABCD -中,底面ABCD 为边长为2的正方形,PA ⊥底面ABCD ,2PA = (1)求异面直线PC 与BD 所成角的大小; (2)求点A 到平面PBD 的距离.21. (本大题共有2个小题,满分14分)第(1)小题满分6分,第(2)小题满分8分.一颗人造卫星在地球上空1630千米处沿着圆形轨 道匀速运行,每2小时绕地球一周,将地球近似为 一个球体,半径为6370千米,卫星轨道所在圆的圆心与地球球心重合,已知卫星与中午12点整通过卫星跟踪站A 点的正上空'A ,12:03时卫星通过C 点,(卫星接收天线发出的无线电信号所需时间忽略不计)(1)求人造卫星在12:03时与卫星跟踪站A 之间的距离.(精确到1千米) (2)求此时天线方向AC 与水平线的夹角(精确到1分).P AB C D'A A CO22. (本大题共有3个小题,满分16分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知直线l 与圆锥曲线C 相交于两点,A B ,与x 轴,y 轴分别交于D E 、两点,且满足1EA AD λ=2EB BD λ=(1)已知直线l 的方程为24y x =-,抛物线C 的方程为24y x =,求12λλ+的值;(2)已知直线():11l x my m =+>,椭圆22:12x C y +=,求1211λλ+的取值范围;(3)已知双曲线2212:1,63x C y λλ-=-=,求点D 的坐标.23. (本大题共有3个小题,满分18分)第(1)小题满分4分,第(2)小题满分6分. 第(3)小题满分8分.记无穷数列{}n a 的前n 项12,,,n a a a 的最大项为n A ,第n 项之后的各项12,,n n a a ++的最小项为n B ,令n n n b A B =-.(1)若数列{}n a 的通项公式为221n a n n =-+,写出12,b b ,并求数列{}n b 的通项公式; (2)若数列{}n a 递增,且{}1n n a a +-是等差数列,求证:{}n b 为等差数列;(3)若数列{}n b 的通项公式为12n b n =-,判断{}1n n a a +-是否为等差数列,若是,求出公差;若不是,说明理由.浦东新区2014学年第二学期高三教学质量检测数学试卷(文科)答案注意:1. 答卷前,考生务必在答题纸上指定位置将姓名、学校、考号填写清楚. 2. 本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分);考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式32x >的解为 3log 2x > .2.设i 是虚数单位,复数)1)(3(i i a -+是实数,则实数a = 3 .3.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-⎛⎫⎪⎝⎭,则x y -= 2 .4.已知数列{}n a 的前n 项和n n S n +=2,则该数列的通项公式=n a n 2 .5.已知21nx x ⎛⎫- ⎪⎝⎭展开式中二项式系数之和为1024,则含2x 项的系数为 210 .6.已知直线0243=++y x 与圆()2221r y x =+-相切,则该圆的半径大小为 1 .7.已知,x y 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+003232y x y x y x ,则x y +的最大值为 2 .8.若对任意R x ∈,不等式0sin 22sin 2<-+m x x 恒成立,则m 的取值范围是),21(+∞+.9.已知球的表面积为64π2cm ,用一个平面截球,使截面圆的半径为2cm ,则截面与球心的距离是.10.已知{},1,2,3,4,5,6a b ∈,直线1:210l x y --=,直线2:10l ax by +-=,则直线12l l ⊥的概率为12. 11.若函数223()4f x x x =+-的零点(),1,m a a a ∈+为整数.则所有满足条件a 的值为1或2-.12.若正项数列{}n a 是以q 为公比的等比数列,已知该数列的每一项k a 的值都大于从2k a +开始的各项和,则公比q 的取值范围是.13.已知等比数列{}n a 的首项1a ,公比q 是关于x 的方程22(2)0x x t -+-=的实数解,若数列{}n a 有且只有一个,则实数t 的取值集合为 {}2,3 .14.给定函数()f x 和()g x ,若存在实常数,k b ,使得函数()f x 和()g x 对其公共定义域D 上的任何实数x 分别满足()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为函数()f x 和()g x 的“隔离直线”. 给出下列四组函数;① x x g x f xsin )(,121)(=+=; ② x x g x x f 1)(,)(3-==; ③ x x g x x x f lg )(,1)(=+=; ④ x x g x f x =-=)(,212)(其中函数()f x 和()g x 存在“隔离直线”的序号是 ①③④ .二、选择题(本大题共有4题,满分20分); 每小题都给出四个选项,其中有且只有一个选项是正确的,考生应在答题纸相应位置上,选对得 5分,否则一律得零分. 15.已知,a b 都是实数,那么“0a b <<”是“11a b>”的 ( A ))(A 充分不必要条件 )(B 必要不充分条件 )(C 充分必要条件)(D 既不充分也不必要条件16.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为 ( D ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交 17.若直线30ax by +-=与圆223x y +=没有公共点,设点P 的坐标(,)a b ,则过点P 的一条直线与椭圆22143x y +=的公共点的个数为( C ))(A 0 )(B 1 )(C 2 )(D 1或218.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各顶点依次为6321,,,,A A A A ,则j i A A A A ⋅21,(}6,,3,2,1{, ∈j i )的值组成的集合为( D ))(A {}21012、、、、-- A 5A 4A 6)(B ⎭⎬⎫⎩⎨⎧---212102112、、、、、、)(C ⎭⎬⎫⎩⎨⎧---23121021123、、、、、、)(D ⎭⎬⎫⎩⎨⎧----2231210211232、、、、、、、、三、解答题(本大题共有5题,满分74分);解答下列各题必须在答题纸的相应位置上,写出必要的步骤.19.(本题共有2个小题,满分12分);第(1)小题满分6分,第(2)小题满分6分.已知函数(),(0),af x x x a x=+>为实数. (1)当1a =-时,判断函数()y f x =在()1,+∞上的单调性,并加以证明; (2)根据实数a 的不同取值,讨论函数()y f x =的最小值.解:(1)由条件:1()f x x x=-在()1,+∞上单调递增.…………………………2分任取()12,1,x x ∈+∞且12x x <1212121212111()()()(1)f x f x x x x x x x x x -=--+=-+ ……………………4分 211x x >>,∴121210,10x x x x -<+>∴ 12()()f x f x < ∴ 结论成立 …………………………………………6分 (2)当0a =时,()y f x =的最小值不存在; …………………………………7分当0a <时,()y f x =的最小值为0;………………………………………9分当0a >时,()ay f x x x==+≥,当且仅当x =()y f x =的最小值为;………………………………………………12分20.(本题共有2个小题,满分14分);第(1)小题满分7分,第(2)小题满分7分. 如图,在四棱锥ABCD P -中,底面ABCD 为边长为2的正方形,⊥PA 底面ABCD , 2=PA . (1)求异面直线PC 与BD 所成角的大小; (2)求点A 到平面PBD 的距离.解:(1)联结AC 与BD 交于点M ,取PA 的中点N ,联结MN ,则CP MN //,所以NMB ∠为异面直线PADPC 与BD 所成角或补角.……………………2分在BMN ∆中,由已知条件得,5=BN ,2=BM ,3=MN ,……………………5分所以222MN BM BN +=,2π=∠BMN ,所以异面直PC与BD 所成角为2π.…………………………………7分(或用线面垂直求异面直线PC 与BD 所成角的大小) (2)设点A 到平面PBD 的距离为h ,因为ABD P PBD A V V --=,…………………………9分所以,11113232BD PM h BC CD PA ⨯⋅⋅=⨯⋅⋅,得332=h .(或在MAN Rt ∆中求解)………14分 21.(本题共有2个小题,满分14分);第(1)小题满分6分,第(2)小题满分8分. 一颗人造地球卫星在地球表面上空1630轨道匀速运行,每2小时绕地球旋转一周.体,半径为6370千米,已知卫星于中午12点整通过卫星跟踪站A 12:03时卫星通过C 点.时间忽略不计)(1)求人造卫星在12:03时与卫星跟踪站A (精确到1千米);(2)求此时天线方向AC NPABDM解:(1)设人造卫星在12:03时位于C 点处,AOC θ∠=,33609120θ=︒⨯=︒,…2分 在ACO ∆中,222=6370+8000-263708000cos93911704.327AC ⨯⨯⨯︒=, 1977.803AC ≈(千米),……………………………………………5分 即在下午12:03时,人造卫星与卫星跟踪站相距约为1978千米.…………………6分 (2)设此时天线的瞄准方向与水平线的夹角为ϕ,则90CAO ϕ∠=+︒,sin 9sin(90)19788000ϕ︒+︒=,8000sin(90)sin 90.63271978ϕ+︒=︒≈,…………………9分即cos 0.6327ϕ≈,5045'ϕ≈︒,……………………………………………………11分 即此时天线瞄准的方向与水平线的夹角约为5045'︒.………………………………12分 22.(本题共有3个小题,满分16分);第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知直线AD EA 1λ=l 与圆锥曲线C 相交于,A B 两点,与x 轴、y 轴分别交于D 、E 两点,且满足、BD EB 2λ=.(1)已知直线l 的方程为42-=x y ,抛物线C 的方程为x y 42=,求21λλ+的值;(2)已知直线l :1+=my x (1>m ),椭圆C :1222=+y x ,求2111λλ+的取值范围;(3)已知双曲线C :1322=-y x ,621=+λλ,求点D 的坐标.解:(1)将42-=x y ,代入x y 42=,求得点()2,1-A ,()4,4B ,又因为()0,2D ,()4,0-E ,……………………………………………………2分由AD EA 1λ= 得到,()()2,12,11λ=()112,λλ=,11=λ,同理由BD 2λ=得,22-=λ.所以21λλ+=1-.………………………4分 (2)联立方程组:⎩⎨⎧=-++=022122y x my x 得()012222=-++my y m ,21,22221221+-=+-=+m y y m m y y ,又点()⎪⎭⎫ ⎝⎛-m E D 1,0,0,1, 由AD EA 1λ= 得到1111y m y λ-=+,⎪⎪⎭⎫ ⎝⎛+-=11111y m λ, 同理由BD EB 2λ= 得到2221y m y λ-=+,⎪⎪⎭⎫ ⎝⎛+-=22111y m λ,21λλ+=4212)(122121-=⎪⎭⎫⎝⎛⋅+-=⎪⎪⎭⎫ ⎝⎛++-m m y y y y m ,即21λλ+4-=,…6分2121411λλλλ-=+12144λλ+=()42421-+=λ, ………………………………8分因为1>m ,所以点A 在椭圆上位于第三象限的部分上运动,由分点的性质可知()0,221-∈λ,所以()2,1121-∞-∈+λλ.………………………………10分(3)直线l 的方程为t my x +=,代入方程1322=-y x得到:()()0323222=-++-t mty y m .33,322221221---=--=+m t y y m mty y ,3211221--=+t mty y (1) 而由AD EA 1λ=、BD EB 2λ=得到:⎪⎪⎭⎫⎝⎛++=+-2121112)(y y m t λλ (2)621=+λλ (3) …………………………………………………………………12分由(1)(2)(3)得到:63222-=⎪⎭⎫⎝⎛--+t mt m t ,2±=t , 所以点)0,2(±D ,………………………………………………………………14分 当直线l 与x 轴重合时,a t a +-=1λ,a t a -=2λ或者a t a -=1λ,at a +-=2λ, 都有6222221=-=+at a λλ也满足要求, 所以在x 轴上存在定点)0,2(±D .……………………………………………16分23.(本题共有3个小题,满分18分);第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.记无穷数列{}n a 的前n 项12,,,n a a a 的最大项为n A ,第n 项之后的各项12,,n n a a ++的最小项为n B ,令n n n b A B =-.(1)若数列{}n a 的通项公式为221n a n n =-+,写出12b b 、,并求数列{}n b 的通项公式;(2)若数列{}n a 递增,且{}1n n a a +-是等差数列,求证:{}n b 为等差数列;(3)若数列{}n b 的通项公式为12n b n =-,判断{}1n n a a +-是否等差数列,若是,求出公差;若不是,请说明理由.解:因为数列{}n a 单调递增,1232,7,16a a a ===,所以1275b =-=-;27169b =-=-;……………………………………2分当3n ≥时,141n n n b a a n +=-=--数列{}n b 的通项公式141n n n b a a n +=-=-- ………………………………4分 (2)数列{}n a 递增,即123n a a a a <<<<<,令数列{}1n n a a +-公差为d '1112,n n n n n n n n b A B a a b a a ++++=-=-=-…………………………………6分 1121()()n n n n n n b b a a a a ++++-=---[]211()()n n n n a a a a d +++'=----=-所以{}n b 为等差数列.………………………………………………………10分11 (3)数列{}n b 的通项公式为12n b n =-,∴n b 递减且0n b <.…………12分 由定义知,1,n n n n A a B a +≥≤………………………………………………14分10n n n n n b A B a a +>=-≥-∴1n n a a +>,数列{}n a 递增,即121n n a a a a +<<<<<…………16分()()21112111()()()()()12122n n n n n n n n n n n n a a a a a a a a b b b b n n ++++++++---=--+-=-+=--=-----=⎡⎤⎣⎦ ………………18分。

上海市浦东新区2015届高三4月教学质量检测语文试卷

上海市浦东新区2015届高三4月教学质量检测语文试卷

资料概述与简介 浦东新区2014学年第二学期高三教学质量检测 语文试卷 考生注意: 1.本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答案必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。

2.答题前,务必在答题纸上写准考证号和姓名,并将核对后的条形码贴在指定位置。

3.答题纸与试卷在试题编号上一一对应,答题时应特别注意,不能错位。

4.考试时间150分钟,试卷满分150分。

一阅读(80分) (一)阅读下文,完成第1—6题。

(17分) 当“你懂的”成为公共语言 人们生活世界里的禁忌和限制造成了语言交流的阻塞和暧昧,但却无法消除语言交流需要本身。

于是,许多似是而非的说法便被创造出来,“你懂的”就是这类语言创造中的一个新品种。

例如:近日,山西交城县委书记讲话稿抄袭遭网民举报。

有网友说:领导讲话哪有不抄袭的,原因嘛,你懂的……又如,据人民网的消息,一位网友给四川中江县委书记留言,称村里集资修路遭遇诈骗,现在已经集资3年,可是2公里左右公路的修建问题还是迟迟解决不了。

网友很无奈地说:“诈骗工程就该我们老百姓埋单吗?政府和承包商有没有什么?你懂的。

” 人们对“你懂的”似乎已经习以为常,也能运用自如,有人把它当作趣谈,有人称赞它是一种机智交流和应答,还有人说它不过是像英语中“you know”那样的口头禅,根本不值得大惊小怪。

但我觉得,“你懂的”在公共语言中如此广泛运用,甚至成为“两会热词”和官方语言,已经不再是一件可谈可不谈的小事。

话语有公域和私域之分,这两个领域中的教养和礼仪有一些相似之处,但也有明显的区别。

在私人交往和交谈中,私人之间有一些话语之外的彼此了解,因此,有的事情不宜说穿,也不必说穿,大家彼此心里有数,能心领神会就行。

所谓话留三分、石中藏玉,这是交谈者为了避免造成不适而保持的一种彼此默契。

这是他们自己的需要,并不是迫于外在的压制或胁迫。

但是,公共领域中陌生人之间的交谈不同。

上海市浦东新区高考数学三模试卷 文(含解析)

上海市浦东新区高考数学三模试卷 文(含解析)

上海市浦东新区2015届高考数学三模试卷(文科)一、填空题:(本大题满分56分,每小题4分)本大题共有14小题,考生应在答题纸相应的编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)若集合A={x|1≤x≤3},集合B={x|x<2},则A∩B=.2.(4分)函数f(x)=x2,(x<﹣2)的反函数是.3.(4分)过点(1,0)且与直线2x+y=0垂直的直线的方程.4.(4分)已知数列{a n}为等比数列,前n项和为S n,且a5=2S4+3,a6=2S5+3,则此数列的公比q=.5.(4分)如果复数z满足|z+i|+|z﹣i|=2(i是虚数单位),则|z|的最大值为.6.(4分)函数y=cos2x的单调增区间为.7.(4分)三阶行列式第2行第1列元素的代数余子式为﹣10,则k=.8.(4分)设F1、F2是双曲线x2﹣=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的周长.9.(4分)设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=1,球心到该平面的距离是球半径的倍,则球的体积是.10.(4分)从3名男生和4名女生中选出4人组成一个学习小组.若这4人中必须男女生都有的概率为.11.(4分)数列{a n}中,且a1=2,则数列{a n}前2015项的积等于.12.(4分)若,,均为平面单位向量,且+﹣=(,),则=.13.(4分)已知P(x,y)满足约束条件,O为坐标原点,A(3,4),则||•cos∠AOP 的最大值是.14.(4分)记符号min{c1,c2,…,c n}表示集合{c1,c2,…,c n}中最小的数.已知无穷项的正整数数列{a n}满足a i≤a i+1,(i∈N*),令b k=min{n|a n≥k},(k∈N*),若b k=2k﹣1,则数列{a n}前100项的和为.二、选择题(本大题共有4题,满分20分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.15.(5分)二元一次方程组存在唯一解的必要非充分条件是()A.系数行列式D≠0B.比例式C.向量不平行D.直线a1x+b1y=c1,a2x+b2y=c2不平行16.(5分)用符号(x]表示不小于x的最小整数,如(π]=4,(﹣1.2]=﹣1.则方程(x]﹣x=在(1,4)上实数解的个数为()A.0 B.1 C.2 D.317.(5分)已知P为椭圆+y2=1的左顶点,如果存在过点M(x0,0)(x0>0)的直线交椭圆于A、B两点,使得S△AOB=2S△AOP,则x0的取值范围是()A.(1,] B.2.(4分)函数f(x)=x2,(x<﹣2)的反函数是.考点:反函数.专题:导数的概念及应用.分析:直接利用反函数的定义求解即可.解答:解:函数f(x)=x2,(x<﹣2),则y>4.可得x=,所以函数的反函数为:.故答案为:.点评:本题考查反函数的定义的应用,考查计算能力.3.(4分)过点(1,0)且与直线2x+y=0垂直的直线的方程x﹣2y﹣1=0.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:方法一,利用两条直线互相垂直,斜率之积等于﹣1,求出垂线的斜率,再求垂线的方程;方法二,根据两条直线互相垂直的关系,设出垂线的方程,利用垂线过某点,求出垂线的方程.解答:解:方法一,直线2x+y=0的斜率是﹣2,则与这条直线垂直的直线方程的斜率是,∴过点(1,0)且与直线2x+y=0垂直的直线方程为y﹣0=(x﹣1),即x﹣2y﹣1=0;方法二,设与直线2x+y=0垂直的直线方程为x﹣2y+a=0,且该垂线过过点(1,0),∴1×1﹣2×0+a=0,解得a=﹣1,∴这条垂线的直线方程为x﹣2y﹣1=0.故答案为:x﹣2y﹣1=0.点评:本题考查了直线方程的求法与应用问题,也考查了直线垂直的应用问题,是基础题目.4.(4分)已知数列{a n}为等比数列,前n项和为S n,且a5=2S4+3,a6=2S5+3,则此数列的公比q=3.考点:等比数列的前n项和;等比数列的通项公式.专题:等差数列与等比数列.分析:已知两式相减结合等比数列的求和公式可得.解答:解:∵a5=2S4+3,a6=2S5+3,∴两式相减可得a6﹣a5=2(S5﹣S4),∴a6﹣a5=2a5,∴a6=3a5,∴公比q==3故答案为:3.点评:本题考查等比数列的求和公式和通项公式,属基础题.5.(4分)如果复数z满足|z+i|+|z﹣i|=2(i是虚数单位),则|z|的最大值为1.考点:复数的代数表示法及其几何意义;复数求模.专题:数系的扩充和复数.分析:直接利用复数的几何意义,直接求解即可.解答:解:复数z满足|z+i|+|z﹣i|=2(i是虚数单位),复数z的几何意义是到虚轴上的点到(0,1),(0,﹣1)的距离之和,|z|的最大值为:1,故答案为:1.点评:本题考查复数的几何意义,复数的模的求法,考查计算能力.6.(4分)函数y=cos2x的单调增区间为(k∈Z).考点:二倍角的余弦;余弦函数的单调性.专题:三角函数的图像与性质.分析:由二倍角的余弦函数公式可得y=cos2x+,由2kπ﹣π≤2x≤2kπ,k∈Z可解得单调增区间.解答:解:∵y=cos2x=cos2x+,∴由2kπ﹣π≤2x≤2kπ,k∈Z可解得单调增区间为:(k∈Z),故答案为:(k∈Z)点评:本题主要考查了二倍角的余弦函数公式的应用,考查了余弦函数的单调性,属于基本知识的考查.7.(4分)三阶行列式第2行第1列元素的代数余子式为﹣10,则k=﹣14.考点:三阶矩阵.专题:计算题.分析:根据余子式的定义可知,在行列式中划去第2行第1列后所余下的2阶行列式带上符号(﹣1)i+j为M21,求出其表达式列出关于k的方程解之即可.解答:解:由题意得M21=(﹣1)3=2×2+1×k=﹣10解得:k=﹣14.故答案为:﹣14.点评:此题考查学生掌握三阶行列式的余子式的定义,会进行矩阵的运算,是一道基础题.8.(4分)设F1、F2是双曲线x2﹣=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的周长24.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先由双曲线的方程求出|F1F2|=10,再由3|PF1|=4|PF2|,运用双曲线的定义,求出|PF1|=8,|PF2|=6,由此能求出△PF1F2的周长.解答:解:双曲线x2﹣=1的a=1,c==5,两个焦点F1(﹣5,0),F2(5,0),即|F1F2|=10,由3|PF1|=4|PF2|,设|PF2|=x,则|PF1|=x,由双曲线的定义知,x﹣x=2,解得x=6.∴|PF1|=8,|PF2|=6,|F1F2|=10,则△P F1F2的周长为|PF1|+|PF2|+|F1F2|=8+6+10=24.故答案为:24.点评:本题考查双曲线的定义和性质的应用,考查三角形周长的计算,属于基础题.9.(4分)设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=1,球心到该平面的距离是球半径的倍,则球的体积是.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:设出球的半径,球心到该平面的距离是球半径的倍,结合ABCD的对角线的一半,满足勾股定理,求出R即可求球的体积.解答:解:设球的半径为R,由题意可得∴R=,∴球的体积是:=.故答案为:.点评:本题考查球的体积,考查空间想象能力,计算能力,是基础题.10.(4分)从3名男生和4名女生中选出4人组成一个学习小组.若这4人中必须男女生都有的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由排列组合的知识易得总数为35,不符合的有1个,由对立事件的概率公式可得.解答:解:从7人中任选4人有==35种选法,这4人中只有女生的共有=1种,∴这4人中必须男女生都有的共34种,∴所求概率P=故答案:点评:本题考查古典概型及其概率公式,属基础题.11.(4分)数列{a n}中,且a1=2,则数列{a n}前2015项的积等于3.考点:数列的求和;数列递推式.专题:点列、递归数列与数学归纳法.分析:通过计算出数列前几项的值,判断该数列为周期数列,进而可得结论.解答:解:∵且a1=2,∴a2===﹣3,a3===﹣,a4===,a5===2,不难发现数列{a n}是周期数列,四个为一周期且最前四个乘积为=1,∵2015=503×4+3,∴数列{a n}前2015项的积为:=3,故答案为:3.点评:本题考查求数列的前n项的乘积,找出其周期是解决本题的关键,注意解题方法的积累,属于中档题.12.(4分)若,,均为平面单位向量,且+﹣=(,),则=(﹣,﹣).考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:根据,,均为平面单位向量,且+﹣=(,),则可推得==(,),=(﹣,﹣),问题得以解决.解答:解:,,均为平面单位向量,且+﹣=(,),∵()2+()2=1,∴(,)是一个单位向量,∵=+﹣(﹣),=+﹣(),∴==(,),=(﹣,﹣),故答案为:(﹣,﹣).点评:本题考查了向量的坐标运算和单位向量,属于基础题.13.(4分)已知P(x,y)满足约束条件,O为坐标原点,A(3,4),则||•cos∠AOP 的最大值是.考点:简单线性规划.专题:不等式的解法及应用.分析:先根据约束条件画出可行域,利用向量的数量积将||•cos∠AOP转化成,设z=,再利用z的几何意义求最值解答:解:在平面直角坐标系中画出不等式组所表示的可行域(如图),由于||•cos∠AOP====,令 z=(3x+4y),则3x+4y=5z,平移直线3x+4y=0,由图形可知,当直线经过可行域中的点B时,直线3x+4y=5z的截距最大,此时z取到最大值,由,解得x=1,y=2,即B(1,2),代入 z=(3x+4y)==所以||•cos∠AOP的最大值为故答案为:点评:本题主要考查了向量的数量积、简单的线性规划,以及利用几何意义求最值.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.14.(4分)记符号min{c1,c2,…,c n}表示集合{c1,c2,…,c n}中最小的数.已知无穷项的正整数数列{a n}满足a i≤a i+1,(i∈N*),令b k=min{n|a n≥k},(k∈N*),若b k=2k﹣1,则数列{a n}前100项的和为2550.考点:数列的求和.专题:点列、递归数列与数学归纳法.分析:通过分析可得a2k﹣1=a2k=k,利用等差数列的求和公式计算即得结论.解答:解:根据题意可得:a1≥1,a3≥2,…,a2k﹣1≥k,又∵无穷项的正整数数列{a n}满足a i≤a i+1,(i∈N*),∴a2k﹣1=a2k=k,∴1+1+2+2+3+3+…+49+49+50+50=2×(1+2+3+…+49+50)=2×=2550,故答案为:2550.点评:本题考查求数列的和,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.二、选择题(本大题共有4题,满分20分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.15.(5分)二元一次方程组存在唯一解的必要非充分条件是()A.系数行列式D≠0B.比例式C.向量不平行D.直线a1x+b1y=c1,a2x+b2y=c2不平行考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:利用二元一次方程组存在唯一解时,系数行列式不等于0,即可得到A,B,C为充要条件,对于选项的,直线分共面和异面两种情况.解答:解:当两直当两直线共面时,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组存在唯一解当两直线异面,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组无解,故直线a1x+b1y=c1,a2x+b2y=c2不平行是二元一次方程组存在唯一解的必要非充分条件.故选:D.点评:本题考查二元一次方程组的解,解题的关键是利用二元一次方程组存在唯一解时,系数行列式不等于0,以及空间两直线的位置关系,属于基础题.16.(5分)用符号(x]表示不小于x的最小整数,如(π]=4,(﹣1.2]=﹣1.则方程(x]﹣x=在(1,4)上实数解的个数为()A.0 B.1 C.2 D.3考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:根据定义分别讨论x的取值范围,解方程即可.解答:解:若1<x≤2,则(x]=2,由(x]﹣x=得2﹣x=,即x=,若2<x≤3,则(x]=3,由(x]﹣x=得3﹣x=,即x=,若3<x<4,则(x]=4,由(x]﹣x=得4﹣x=,即x=,故方程(x]﹣x=在(1,4)上实数解的个数为3个,故选:D.点评:本题主要考查方程根的个数的判断,根据定义利用分类讨论是解决本题的关键.17.(5分)已知P为椭圆+y2=1的左顶点,如果存在过点M(x0,0)(x0>0)的直线交椭圆于A、B两点,使得S△AOB=2S△AOP,则x0的取值范围是()A.(1,] B.分析:如图所示,设直线AB的方程为:ty=x﹣x0,A(x1,y1),B(x2,y2),与椭圆方程联立化为(4+t2)y2﹣2tx0y+﹣4=0.△>0.由于S△AOP==y1,S△AOB=.S△AOB=2S△AOP,可得2y1=.再利用根与系数的关系可得:t2=.令m=x0,f(m)=m4﹣4m3+16m﹣16,(m∈(0,2)),利用导数研究其单调性即可得出.解答:解:如图所示,设直线AB的方程为:ty=x﹣x0,A(x1,y1),B(x2,y2),(y1>y2,y1>0).联立,化为(4+t2)y2﹣2tx0y+﹣4=0.∴△=﹣4>0,∴y1+y2=,①y1y2=,②S△AOP==y1,S△AOB=.∵S△AOB=2S△AOP,∴2y1=.化为,代入①可得:y1=,∴y2=,∴•=,化为t2=.(*)令m=x0,f(m)=m4﹣4m3+16m﹣16,(m∈(0,2)),f′(m)=4m3﹣12m2+16=4(m﹣2)2(m+1),∴函数f(m)在m∈(0,2)单调递增,又f(0)=﹣16,f(1)=﹣3,f(2)=0,因此要使(*)有解,则1<m<2,即x0∈(1,2).故选:C.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、三角形面积计算公式、利用导数研究函数的单调性,考查了推理能力与计算能力,属于难题.18.(5分)在圆锥PO中,已知高PO=2,底面圆的半径为1;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,其中点M为所在母线的中点,O为底面圆的圆心,对于下面四个命题,正确的个数有()①圆的面积为;②椭圆的长轴长为;③双曲线两渐近线的夹角为arcsin;④抛物线上的点,其焦点到准线的距离为.A.1 个B.2 个C.3个D.4个考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①由点M是母线的中点,可得截面圆的半径r=,得出面积,即可判断出正误;②椭圆的长轴长=,即可判断出正误;③在与截面PAB的平面垂直且过点M的平面内建立直角坐标系,不妨设双曲线的标准方程为(a,b>0),取M(1,0),即a=1,把点代入解得b,可得=,设双曲线两渐近线的夹角为2θ,可得tan2θ,可得sin2θ,即可判断出正误;④建立直角坐标系,不妨设抛物线的标准方程为y2=2px,把点代入解出即可.解答:解:①∵点M是母线的中点,∴截面圆的半径r=,因此面积==,正确;②椭圆的长轴长==,因此不正确;③在与截面PAB的平面垂直且过点M的平面内建立直角坐标系,不妨设双曲线的标准方程为(a,b>0),取M(1,0),即a=1,把点代入可得:=1,解得b=,∴=,设双曲线两渐近线的夹角为2θ,∴tan2θ==,∴sin2θ=,因此双曲线两渐近线的夹角为arcsin;④建立直角坐标系,不妨设抛物线的标准方程为y2=2px,把点代入可得:,解得p=,∴抛物线中焦点到准线的距离p为,正确.综上可得:只有②③④正确.故选:C.点评:本题考查了圆锥曲线的原始定义、标准方程及其性质,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须写出必要的步骤.19.(12分)如图,边长为2的正方形ABCD所在平面与圆O所在平面相交于CD,CE为圆O的直径,线段CD为圆O的弦,AE垂直于圆O所在平面,且AE=1(1)求异面直线CB与DE所成角的大小;(2)将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体,求该几何体体积.考点:棱柱、棱锥、棱台的体积;异面直线及其所成的角.专题:空间位置关系与距离;空间角.分析:(1)说明∠ADE为异面直线CB与DE所成的角,在Rt△AED中,求解即可.(2)所求问题实际是将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体的体积是两圆锥的体积之差.求解即可.解答:解:(1)因为CB∥DA,AE⊥DE垂直于圆AE⊥DE所在平面,所以AE⊥DE,所以,∠ADE为异面直线CB与DE所成的角…2分在Rt△AED中,AE=1,DA=2,所以,得,即异面直线CB与DE所成的角为.…5分(2)由题意知,将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体的体积是两圆锥的体积之差.因为异面直线CB与DE所成的角为,且CB∥DA,所以,…7分又因为AE=1,所以,在Rt△AED中,,DA=2…9分因为CE为圆O的直径,所以,在Rt△CDE中,CD=DA=2,,所以…10分所以该几何体的体积…12分.点评:本题考查几何体的体积的求法,异面直线所成角的求法,考查计算能力.20.(14分)如图在半径为5cm的圆形的材料中,要截出一个“十字形”ABCDEFGHIJKL,其为一正方形的四角截掉全等的小正方形所形成的图形.(O为圆心)(1)若要使截出的“十字形”的边长相等(DE=CD)(图1),此时边长为多少?(2)若要使截出的“十字形”的面积为最大(图2),此时∠DOE为多少?(用反三角函数表示)考点:根据实际问题选择函数类型.专题:综合题;三角函数的求值.分析:(1)当“十字形”的边长相等时,过O作OM⊥DE交DE于E,作CN⊥OM交OM于N.设该“十字形”的边长为2x,则DM=x,OM=3x.在Rt△OMD中,由勾股定理得边长;(2)过O作OM⊥DE交DE于E,作CN⊥OM交OM于N,求出面积,即可得出结论.解答:解:(1)当“十字形”的边长相等时,过O作OM⊥DE交DE于E,作CN⊥OM交OM于N.设该“十字形”的边长为2x,则DM=x,OM=3x.在Rt△OMD中,由勾股定理得,…5分所以,边长…6分(2)过O作OM⊥DE交DE于E,作CN⊥OM交OM于N.设∠DOM=θ,则OM=5cosθ,DM=5sinθ.∴ON=CN=5sinθ,NM=5cosθ﹣5sinθ.…8分∴“十字形”的面积为S=(2OM)2﹣4(NM)2=100cos2θ﹣100(cosθ﹣sinθ)2=(其中或) (10)分∴当时,…12分此时,或…14分.点评:本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于中档题.21.(14分)设函数f(x)对任意x∈R,都有f(2x)=a•f(x),其中a为常数.当x∈分析:(1)根据x的范围,得到的范围,由f(2x)=a•f(x),令x=,得到f(x)=a2f (),再代入即可得到f(x)的解析式;(2)由于…6分(2)由于;且(0,1]⊇(0,a2]⊇(0,a4]⊇…⊇(0,a2k]⊇…10分当n为奇数时,f(x)在…14分.点评:本题考查了函数的解析式的求法和函数的值域的求法,由于•=0,即ax2﹣y2=4a﹣1或ax2+y2=4a+1(a>0),即有当a=时,表示两条相交直线和椭圆;当a=1时,表示双曲线和圆;当a且a≠1时,表示双曲线和椭圆.点评:本题考查轨迹方程的求法,以及方程表示的轨迹,同时考查直线和圆、椭圆和双曲线的方程,运用分类讨论的思想方法是解题的关键,。

2015年普通高中毕业班4月质量检查数学(文)试题及答案

2015年普通高中毕业班4月质量检查数学(文)试题及答案

2015年普通高中毕业班质量检查文 科 数 学 2015.04本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式V =Sh24S R =π,343V R =π 其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共60分) 一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,x y ∈R ,且1i 3i x y +=+,则i x y +等于A .2B .4CD .102.执行如图所示的程序框图,若输入的x 的值为3,则输出的y 的值为x >0?y =3xy =log 3xA .1B .3C .9D .27 3.不等式102x x -≥-的解集为 A .[1,2] B .(,1][2,)-∞+∞C .[1,2)D .(,1](2,)-∞+∞4.“2a =”是“{}{}1,1,2,3a ⊆”的A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件5.已知y x ,满足2,1,220,x y x y ≥⎧⎪≤⎨⎪--≤⎩则z x y =-的最大值为A .1B .2C .3D .46.设,a b 是两条不同的直线,,αβ是两个不同的平面,则下面命题正确的是A.若a ∥b ,b ∥α,则a ∥α B.若a ∥b ,b α⊂,则a ∥α C.若a ∥b ,b α⊥,则a α⊥ D.若αβ⊥,a β⊂,则a α⊥7.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c,若22sin sin sin A B B C -=,c =,则角A 等于A .30 B .60 C .120 D .1508.若过点(的直线l与曲线y =l 的斜率的取值范围为 A .11,22⎡⎤-⎢⎥⎣⎦ B .1,02⎡⎤-⎢⎥⎣⎦ C.⎡⎣ D .10,2⎡⎤⎢⎥⎣⎦9.函数cos(sin )y x =的图象大致是10.在等边ABC ∆中,6AB =,且D ,E 是边BC 的两个三等分点,则AD AE 等于A. 18B. 26C. 27D. 2811.已知1F 为双曲线22:11411x y C -=的左焦点,直线l 过原点且与双曲线C 相交于,P Q 两点.若110PF QF =,则△1PFQ 的周长等于A .10B .10C .22D .2412.已知()f x 是定义在R 上的函数,且满足()()f x f x -=,()()22f x f x +=-.若曲线()y f x =在1x =-处的切线方程为30x y -+=,则曲线()y f x =在5x =处的切线方程为 A .30x y --= B .70x y --= C .30x y +-= D .70x y +-=第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.已知3cos (0)5αα=<<π,则sin 2α=__________. 14.已知函数321,0,()2,0,x x f x x x ⎧+≥=⎨+<⎩若()1f x =,则x = __________.15.如图,函数cos y x x =+的图象经过矩形ABCD 的顶点,C D .若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于__________.16.A n ()n ∈N 系列的纸张规格如图,其特色在于:①A 0,A 1,A 2,…,A n 所有规格的纸张的长宽比都相同;② A 0对裁后可以得到两张A 1,A 1对裁后可以得到两张A 2,…,A n-1对裁后可以得到两张A n .现有每平方厘米重量为b 克的A 0,A 1,A 2,…,A n 纸各一张,若A 4纸的宽度为a 厘米,则这(1n +) 张纸的重量之和1n S +等于__________.(单位:克)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数()sin()f x x ωϕ=+(0,0)ωϕ><<π的最小正周期为2π,图象过点(0,1)P . (Ⅰ)求函数()f x 的解析式;(Ⅱ)若函数()y g x =的图象是由函数()y f x =的图象上所有的点向左平行移动6π个单位长度而得到,且()g x 在区间(0,)m 内是单调函数,求实数m 的最大值.18.(本小题满分12分)2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(Ⅰ)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(Ⅱ)设该城市郊区和城区的居民户数比为1:5,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一 梯次的居民用户用水价格保持不变.试根据样本估计总体的思 想,分析此方案是否符合国家“保基本”政策.19.(本小题满分12分)某几何体的三视图及直观图如图所示,其中侧视图为等边三角形. (Ⅰ)若P 为线段1AA 上的点,求四棱锥C C BB P 11-的体积;(Ⅱ)已知D 为线段1BB 的中点,试在几何体的侧面内找一条线段,使得该线段垂直于平面1ADC ,且它在该几何体的侧视图上的投影恰为线段C A '',并给予证明.20.(本小题满分12分)已知中心在原点的椭圆C 的右焦点坐标为(1,0),离心率等于12. (Ⅰ)求椭圆C 的标准方程;俯视图侧视图正视图直观图11B(Ⅱ)证明斜率为1的所有直线与椭圆C 相交得到的弦的中点共线;(Ⅲ)图中的曲线为某椭圆E 的一部分,试作出椭圆E 的中心,并写出作图步骤.21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且()415n n S a =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设5n n n b ta =-,试问:是否存在非零整数t ,使得数列{}n b 为递增数列?若存在,求出t 的值;若不存在,说明理由.22.(本小题满分14分)已知函数()e ()xf x x m m =--∈R .(Ⅰ)求()f x 的最小值;(Ⅱ)判断()f x 的零点个数,说明理由;(Ⅲ)若()f x 有两个零点12,x x ,证明:120x x +<.2015年 普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则. 二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1.C 2.A 3.D 4.A 5.C 6.C 7.A 8.D 9.B 10.B 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.2425; 14.0; 15.12; 16.2111()2n b +⎡⎤-⎢⎥⎣⎦. 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查三角函数的图象与性质、三角恒等变换等基础知识,考查运算求解能力,考查化归与转化思想、数形结合思想等.满分12分. 解法一:(Ⅰ)因为()f x 的最小正周期是2π,所以2T ωπ=,得4ω=. ………………….2分 所以()sin(4)f x x ϕ=+.又因为()f x 的图象过点(0,1)P ,所以2()2k k ϕπ=π+∈Z , 因为0ϕ<<π,所以2ϕπ=. ………………………………….5分 所以()sin(4)2f x x π=+,即()cos 4f x x =. …………………………………….6分 (Ⅱ)由(Ⅰ)知()cos 4f x x =,由题设可得2()cos(4)3g x x π=+. ………………………….…..8分因为(0,)x m ∈,所以2224(,4)333x m πππ+∈+,……………….…10分要使函数()g x 在区间(0,)m 内是单调函数,只有243m π+≤π,所以12m π≤. 因此实数m 的最大值为12π. ……………….…..12分解法二:(Ⅰ)同解法一.(Ⅱ)由(Ⅰ)知()cos 4f x x =,由题设可得()cos(4)3g x x 2π=+.……………….8分 令2423k x k 2π-π+π≤+≤π()k ∈Z ,则12262k k x 5ππππ-+≤≤-+()k ∈Z , 因此函数()g x 在[,]123ππ上单调递增, …………………………….9分令2423k x k 2ππ≤+≤π+π()k ∈Z ,则62122k k x ππππ-+≤≤+()k ∈Z , 因此函数()g x 在[,]612ππ-上单调递减, ………………………….10分要使函数()g x 在区间(0,)m 内是单调函数, 只有(0,)[,]612m ππ⊆-,因此实数m 的最大值为12π. …………………………….12分 18.本小题主要考查古典概型、茎叶图等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个. …………………………….3分 其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.…………………………….6分设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为A ,则所求的概率为3()10P A =. ………………………….8分 (Ⅱ)设该城市郊区的居民用户数为a ,则其城区的居民用户数为3a .依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:31759752080%6120a aa ⋅+⋅=>.故此方案符合国家“保基本”政策. ………………………….12分 19.本小题主要考查几何体的体积、三视图和直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想等.满分12分.解:(Ⅰ)取线段BC 的中点E ,连接AE ,则BC AE ⊥.又∵ABC BB 平面⊥1,ABC AE 平面⊂, ∴AE BB ⊥1.又∵B BC BB =⋂1 C C BB BB 111平面⊂,C C BB BC 11平面⊂,∴C C BB AE 11平面⊥, ………………………….1分 又点P 在为线段1AA 上的点,且1AA ∥平面11BB C C ,∴AE 是四棱锥C C BB P 11-的高, ………………………….2分又11224BB C C AE ==⨯=正方形, ………………………….4分 ∴33432231311111=⨯⨯⨯=⋅=-AE S V C C BB C C BB P 正方形四棱锥.………………….6分 (Ⅱ)所求的线段是C A 1. ………………………….7分首先,∵1111CC A BC ⊥平面,∴C A 1在该几何体的侧视图上的投影恰好为线段C A ''.………8分下面证明11AC ADC ⊥平面. 连接C A 1,交1AC 于点F ,则点F 为线段1AC 的中点,连接DF ,DC ,1DA , 在平面C C BB 11中,2=BC ,1=BD ,∴CD =同理,1DA =FE∴1DA CD =,∴C A DF 1⊥, ………………………….10分 又 在正方形11A ACC 中,11AC C A ⊥, ………………………….11分1DFAC F =,1ADC DF 平面⊂,11ADC AC 平面⊂,∴11AC ADC ⊥平面. ………………………….12分 20.本小题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、特殊与一般思想等.满分12分.解法一:(Ⅰ)依题意,得11,2c c a ==,所以2,a b == 所以椭圆C 的方程为22143x y +=. ……………………….4分 (Ⅱ)设直线1l :1y x b =+,2l :2y x b =+,分别交椭圆于()()111111,,,A A B BA x yB x y 及()()222222,,,A A B B A x y B x y ,弦11A B 和22A B 的中点分别为()111,Q x y 和()222,Q x y .由2211,43,x y y x b ⎧+=⎪⎨⎪=+⎩得2211784120x b x b ++-=, 令()()22118474120b b ∆=-⨯⨯->,即1b .又1118,7A B b x x +=-所以1111427A B x x bx +==-,111137b y x b =+=. 即11143,77b b Q ⎛⎫-⎪⎝⎭. ………………………….6分 同理可得22243,77b b Q ⎛⎫-⎪⎝⎭. ………………………….7分所以直线12Q Q 所在的直线方程为34y x =-. ………………………….8分 设l :3y x b =+是斜率为1且不同于12,l l 的任一条直线,它与椭圆C 相交于33,A B ,弦33A B 的中点为333(,),Q x y 同理可得33343,,77b b Q ⎛⎫-⎪⎝⎭由于33343747b b ⎛⎫=-⨯- ⎪⎝⎭,故点3Q 在直线34y x =-上. 所以斜率为1的直线与椭圆C(Ⅲ)①任作椭圆的两条组平行弦12A A ∥12B B ,12C C ∥1D 其中12A A 与12C C 不平行.②分别作平行弦1212,A A B B 的中点,A B 及平行弦12,C C 中点,C D .③连接AB ,CD ,直线AB ,CD 相交于点O ,点O 分解法二:(Ⅰ)同解法一.(Ⅱ)设直线1l :1y x b =+为斜率是1的任一条直线,它交椭圆于()(),,,,A A B B A x y B x y 弦AB 的中点()00,Q x y .由2211,43,x y y x b ⎧+=⎪⎨⎪=+⎩得2211784120x b x b ++-=, 令()()22118474120b b ∆=-⨯⨯->,即1b <147A B b x x +=-,11167A B A B by y x b x b +=+++=. 所以10104,73,7b x b y ⎧=-⎪⎪⎨⎪=⎪⎩…………………………6分所以0034y x =-. ……………….7分 即椭圆C 的斜率为1的任一条弦的中点都在直线34y x =-上,故斜率为1的直线与椭圆C 相交得到的所有弦的中点共线. ……………….9分 解法三:(Ⅰ)同解法一.(Ⅱ)设直线1l :1y x b =+为斜率是1的任一条直线,它交椭圆于()(),,,,A AB B A x y B x y弦AB 的中点()00,Q x y .则22143A A x y +=,22143B Bx y +=,所以()()()()043A B A B A B A B x x x x y y y y +-+-+=, 又02A B x x x +=,02A B y y y +=,1A BA By y x x -=-,所以0034y x =-. ……………….7分 即椭圆C 的斜率为1的任一条弦的中点都在直线34y x =-上,故斜率为1的直线与椭圆C 相交得到的所有弦的中点共线. ……………….9分 (Ⅲ)同解法一.注:本题解法一、解法二中,如果没有考虑0∆>,不扣分.21.本小题主要考查数列的通项公式及前n 项和公式、等比数列、数列的单调性等基础知识,考查运算求解能力,考查函数与方程思想、分类与整合思想、特殊与一般思想等.满分12分.解法一:(Ⅰ)因为()415n n S a =-, 所以当1n =时,()11415a a =-,解得14a =-; ……………….1分当2n ≥时,()()11441155n n n n n a S S a a --=-=---,即14n n a a -=-,……….3分由14a =-,()142n n a a n -=-≥知0n a ≠,所以{}n a 是以14,4a q =-=-的等比数列.……………………………….4分所以()4nn a =-. ……………….5分 (Ⅱ)假设存在非零整数t ,使得数列{}n b 为递增数列,即对于n *∈N ,都有1n n b b +>.由(Ⅰ)知()4nn a =-,又5n n n b ta =-,所以()54nnn b t =--, ………………6分所以只要对任意n *∈N ,恒有()()115454n nn n t t ++-->--,即只要对任意n *∈N ,恒有()1514n nt -⎛⎫->- ⎪⎝⎭.……..① ………………7分当n 为奇数时,①等价于154n t -⎛⎫< ⎪⎝⎭恒成立.又n 为奇数时,154n -⎛⎫⎪⎝⎭的最小值为1,所以1t <. ………………8分当n 为偶数时,①等价于154n t -⎛⎫>- ⎪⎝⎭恒成立.又n 为偶数时,154n -⎛⎫- ⎪⎝⎭的最大值为54-,所以54t >-.………………10分 综上,514t -<<. ………………11分 又t 为非零整数,故存在非零整数1t =-使得数列{}n b 为递增数列. ………………12分解法二:(Ⅰ)同解法一.(Ⅱ)由(Ⅰ)知()4nn a =-,又5n n n b ta =-.所以()54nnn b t =--,所以154b t =+,22516b t =-,312564b t =+.…………………………6分 若数列{}n b 为递增数列,则123b b b <<,所以542516,251612564,t t t t +<-⎧⎨-<+⎩解得514t -<<,要使数列{}n b 为递增数列,且t 为非零整数,则只有1t =-. …………………7分以下证明,当1t =-时,数列{}n b 是递增数列,即证明对于n *∈N ,都有1n n b b +>. 因为1115(4)5(4)n n n nn n b b +++⎡⎤-=+--+-⎣⎦455(4)n n=⨯-⨯-45455nn⎡⎤⎛⎫=-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. …………………………9分当n 为奇数时,444545055n n⎛⎫⎛⎫-⨯-=+⨯> ⎪ ⎪⎝⎭⎝⎭,……………………10分当n 为偶数时,444545055n n⎛⎫⎛⎫-⨯-=-⨯> ⎪ ⎪⎝⎭⎝⎭,……………………11分因此对任意n *∈N ,都有1n n b b +>. …………………………12分22.本小题主要考查函数的零点、函数的最值、导数及其应用、基本不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分14分.解:(Ⅰ)因为()e 1xf x '=-, ………………1分所以,当(),0x ∈-∞,()0f x '<,当()0,x ∈+∞,()0f x '>,所以()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞,……………2分 故当0x =时,()f x 取得最小值为()01f m =-. ………………4分 (Ⅱ)由(Ⅰ)知()f x 的最小值为()01f m =-.(1)当10m ->,即1m <时,()f x 没有零点.………………5分 (2)当10m -=,即1m =时,()f x 有一个零点.………………6分 (3)当10m -<,即1m >时,构造函数()e 2(1)xg x x x =-≥,则()e 2xg x '=-,当(1,)x ∈+∞时,()0g x '>, 所以()g x 在[1,)+∞上单调递增,所以()(1)e 20g x g ≥=->, 因为1m >,所以()e 20mg m m =->,又()e 2(1)mf m m m =->,故()0f m >. ………………8分又()e0mf m --=>,………………9分所以必存在唯一的()1,0x m ∈-,唯一的()20,x m ∈,使得12,x x 为()f x 的两个零点,故当1m >时,()f x 有两个零点.………………10分(Ⅲ)若12,x x 为()f x 的两个零点,设12x x <,则由(Ⅱ)知120,0x x <>.因为()()()()1222f x f x f x f x --=--()()2222e e x x x m x m -=---+-222e e 2x x x -=--.………………11分令()()e e 20x x x x x ϕ-=--≥,则()e e 2x x x ϕ-'=+-20≥=,………………12分所以()x ϕ在[0,)+∞上单调递增,因此,()()00x ϕϕ≥=. 又120x x <<,所以()20x ϕ>,即222e e20xx x --->,故()()12f x f x >-,………………13分又120,0x x <-<,且由(Ⅰ)知()f x 在(),0-∞单调递减,所以12x x <-,所以120x x +<.………………14分。

浦东新区2015学年第二学期高三教学质量检测数学试卷

浦东新区2015学年第二学期高三教学质量检测数学试卷

浦东新区2015学年第二学期高三教学质量检测数学试卷(文科)适用年级:高三建议时长:0分钟试卷总分:150.0分一、填空题(本大题共有14题,满分56分)1.已知全集U=R,若集合,则=____. (4.0分)2.已知复数z满足z(1-i)=2i,其中i为虚数单位,则|z|=____.(4.0分)3.双曲线的焦距为____. (4.0分)4.已知二项展开式中的第五项系数为,则正实数a= ____.(4.0分)5.方程的解为____.(4.0分)6.已知函数的图像与它的反函数的图像重合,则实数a的值为____. (4.0分)7.在△ABC中,边a,b,c所对角分别为A,B,B,若,则△AB的形状为____. (4.0分)8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是____. (4.0分)9.设x,y满足约束条件,则目标函数z=2x+y的最大值为____.(4.0分)10.已知四面体ABCD中,AB=CD=2,E,F分别为BC,AD的中点,且异面直线AB与CD所成的角为,则EF=____.(4.0分)11.设m,n分别为连续两次投掷骰子得到的点数,且向量,,则与的夹角为锐角的概率是____.(4.0分)12.已知数列的通项公式为,则这个数列的前2n项和____.(4.0分)13.已知函数,数列是公比大于0的等比数列,且,,则=____.(4.0分)14.关于x的方程在[-6,6]上解的个数是____.(4.0分)二、选择题(本大题共有4题,满分20分)1.“”是“不等式|x-1|<1成立”的()(5.0分)(单选)A. 充分非必要条件.B. 必要非充分条件.C. 充要条件.D. 既非充分亦非必要条件.2.给出下列命题,其中正确的命题为( ) (5.0分)(单选)A. 若直线a和b共面,直线b和c共面,则a和c共面;B. 直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;C. 直线a与平面α不平行,则a与平面α内的所有直线都不平行;D. 异面直线a、b不垂直,则过a的任何平面与b都不垂直.3.抛物线的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-1,0),则的最小值是()(5.0分)(单选)A.B.C.D.4.已知平面直角坐标系中两个定点E(3,2),F(-3,2),如果对于常数λ,在函数的图像上有且只有6个不同的点P,使得成立,那么λ的取值范围是( ) (5.0分)(单选)A.B.C.D. (-5,11)三、解答题(本大题共有5题,满分74分)1.如图,在圆锥SO中,AB为底面圆O的直径,点C为弧AB的中点,SO=AB. (1)证明:AB⊥平面SOC;(2)若点D为母线SC的中点,求AD与平面SOC所成的角.(结果用反三角函数表示)(12.0分)2.如图,一智能扫地机器人在A处发现位于它正西方向的B处和北偏东30°方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4m,于是选择沿A→B→C路线清扫.已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务. (1)B、C两处垃圾的距离是多少?(精确到0.1)(2)智能扫地机器人此次清扫行走路线的夹角∠B是多少?(用反三角函数表示)(14.0分)3.数列满足:,且成等差数列,其中。

2015上海杨浦区高三质检数学文试题及答案

2015上海杨浦区高三质检数学文试题及答案

2015上海杨浦区高三质检数学文试题及答案高考频道为您提供最及时的资讯,下面的2015上海杨浦区高三质检数学文试题及答案希望对您有所帮助杨浦区2014学年度第一学期高三年级学业质量调研数学学科试卷(文科) 2015.1.考生注意:1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知,则 =________________.2.设,,,则m的取值范围是________.3.已知等差数列中,,则通项公式为 ________________.4.已知直线经过点,则直线的方程是___________________.5. 函数的反函数.6.二项式的展开式中的第4项是_________________.7.不等式的解是____________________.8.已知条件;条件,若p是q的充分不必要条件,则a的取值范围是.9.向量,若与平行,则实数 =_________.10.一家5口春节回老家探亲,买到了如下图的一排5张车票:窗口 6排A座 6排B座 6排C座走廊 6排D座 6排E座窗口其中爷爷行动不便要坐靠近走廊的座位,小孙女喜欢看风景要坐靠窗的座位,则座位的安排方式一共有__________种。

11.已知一个铁球的体积为,则该铁球的表面积为______________.12.已知集合,则集合A的子集个数为_______.13.设△ 的内角 , , 所对的边分别为 , , . 若 ,则角 _________.14. 如图所示,已知函数图像上的两点 A, B 和函数上的点 C,线段 AC 平行于 y 轴,三角形 ABC 为正三角形时,点 B的坐标为 , 则实数的值为_______________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.程序框图如图所示,若其输出结果是140,则判断框中填写的是()A. B.C. D.16.给出下列命题,其中正确的命题是()A.若,则方程只有一个根B.若且,则C.若,则不成立D.若,且,那么一定是纯虚数17.圆心在抛物线上,且与x轴和抛物线的准线都相切的一个圆的方程是()A. B.C. D.18.数列,若区间满足下列条件:①;② ,则称为区间套。

上海市浦东新区高三数学4月教学质量检测(二模)试题

上海市浦东新区2017届高三数学4月教学质量检测(二模)试题注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚.2. 本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1、已知集合201x A xx ⎧-⎫=≥⎨⎬+⎩⎭,集合{}04B y y =≤<,则A B I =____________. 2、若直线l 的参数方程为44,23R x tt y t=-⎧∈⎨=-+⎩,则直线l 在y 轴上的截距是____________. 3、已知圆锥的母线长为4,母线与旋转轴的夹角为30︒,则该圆锥的侧面积为____________. 4、抛物线214y x =的焦点到准线的距离为____________. 5、已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=____________.6、若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为____________.7、已知射手甲击中A 目标的概率为0.9,射手乙击中A 目标的概率为0.8,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是____________.8、函数π3sin ,0,π62y x x ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦的单调递减区间是____________.9、已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=____________.10、已知定义在R 上的函数()f x 满足:①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]21,1,01,0,1x x f x x x -∈-=-∈⎪⎩,则函数()f x 与函数()122,0log ,0xx g x x x ⎧≤⎪=⎨>⎪⎩ 的图像在区间[]3,3-上的交点的个数为____________.11、已知各项均为正数的数列{}n a 满足:()()()11210N n n n n a a a a n *++--=∈,且110a a =, 则首项1a 所有可能取值中的最大值为____________.12、已知平面上三个不同的单位向量,,a b c r r r 满足12a b b c ⋅=⋅=r r r r ,若e r 为平面内的任意单位向量,则23a e b e c e ⋅+⋅+⋅r r r r r r的最大值为____________.二、选择题(本大题共有4小题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.13、若复数z 满足2z i z i ++-=,则复数z 在复平面上所对应的图形是( )A 、椭圆;B 、双曲线;C 、直线;D 、线段. 14、已知长方体切去一个角的几何体直观图如图所示给出下列4个平面图:则该几何体的主视图、俯视图、左视图的序号依次是( )A 、(1)(3)(4);B 、(2)(4)(3);C 、(1)(3)(2);D 、(2)(4)(1). 15、已知2sin 1cos x x =+,则cot2x=( ) A 、2; B 、2或12; C 、2或0; D 、12或0. 16、已知等比数列1234,,,a a a a 满足()10,1a ∈,()21,2a ∈,()32,4a ∈,则4a 的取值范围 是( )A 、()3,8;B 、()2,16;C 、()4,8;D 、()22,16.三、解答题(本大题共有5小题,满分76分)解答下列各题必须写出必要的步骤. 17、(本小题满分14分,第1小题满分6分,第2小题满分8分)如图所示,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1,且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点.已知球面上一点310,,22D ⎛⎫- ⎪ ⎪⎝⎭. (1)求,D C 两点在球O 上的球面距离; (2)求直线CD 与平面ABC 所成角的大小.18、(本小题满分14分,第1小题满分6分,第2小题满分8分)某地计划在一处海滩建造一个养殖场. (1) 如图,射线,OA OB 为海岸线,2π3AOB ∠=,现用长度为1千米的围网PQ 依托海岸线围成一个△POQ 的养殖场,问如何选取点,P Q ,才能使养殖场△POQ 的面积最大,并求其最大面积.OABPQ(2)如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB (点,A B 在直线l 上),使三角形OAB 面积最大,设其为1S ; 方案二:围成弓形CDE (点,D E 在直线l 上,C 是优弧»DE 所在圆的圆心且2π3DCE ∠=),其面积为2S ;试求出1S 的最大值和2S (均精确到0.001平方千米),并指出哪一种设计方案更好.19、(本小题满分14分,第1小题满分6分,第2小题满分8分)已知双曲线22:143x y C -=,其右顶点为P . (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为(1,1)n =-r,若在双曲线C 上恰有三个点123,,P P P到直线l 的距离均为d ,求d 的值.20、(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若数列{}n A 对任意的*N n ∈,都有()+10kn nA A k =≠,且0n A ≠,则称数列{}n A 为“k 级创新数列”.(1)已知数列{}n a 满足2122n n n a a a +=+,且112a =,试判断数列{}21n a +是否为“2级创新数列”,并说明理由;(2) 已知正数数列{}n b 为“k 级创新数列”且1k ≠,若110b =,求数列{}n b 的前n 项积.n T ;(3)设,αβ是方程210x x --=的两个实根(αβ>),令k βα=,在(2)的条件下,记数列{}n c 的通项1log n n n b n c T β-=⋅, 求证:21n n n c c c ++=+,*N n ∈.21、(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)对于定义域为R 的函数()g x ,若函数()sin g x ⎡⎤⎣⎦是奇函数,则称()g x 为正弦奇函数. 已知()f x 是单调递增的正弦奇函数,其值域为R ,()00f =.(1)已知()g x 是正弦奇函数,证明:“0u 为方程()sin 1g x =⎡⎤⎣⎦的解”的充要条件是“0u -为方程()sin 1g x =-⎡⎤⎣⎦的解”; (2)若()()ππ,22f a f b ==-,求a b +的值;(3)证明:()f x 是奇函数.浦东新区2016-2017学年度第二学期质量抽测高三数学试卷 2017.4注意:1. 答卷前,考生务必在试卷上指定位置将学校、班级、姓名、考号填写清楚.2. 本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1、已知集合201x A xx ⎧-⎫=≥⎨⎬+⎩⎭,集合{}04B y y =≤<,则A B I =____[2,4)________. 2、若直线l 的参数方程为44,23R x tt y t =-⎧∈⎨=-+⎩,则直线l 在y 轴上的截距是_____1______. 3、已知圆锥的母线长为4,母线与旋转轴的夹角为30︒,则该圆锥的侧面积为____8π______. 4、抛物线214y x =的焦点到准线的距离为______2_______.5、已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=___5_______.6、若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为 9 .7、已知射手甲击中A 目标的概率为0.9,射手乙击中A 目标的概率为0.8,若甲、乙两人各 向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是___0.98________.8、函数π3sin ,0,π62y x x ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦的单调递减区间是_____20,π3⎡⎤⎢⎥⎣⎦__________.9、已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=___14______.10、已知定义在R 上的函数()f x 满足:①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]21,1,01,0,1x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则函数()f x 与函数()122,0log ,0xx g x x x ⎧≤⎪=⎨>⎪⎩ 的图象在区间[]3,3-上的交点的个数为 6 .11、已知各项均为正数的数列{}n a 满足:()()()11210N n n n n a a a a n *++--=∈,且110a a =, 则首项1a 所有可能取值中的最大值为 16 .12、已知平面上三个不同的单位向量,,a b c r r r 满足12a b b c ⋅=⋅=r r r r ,若e r 为平面内的任意单位向量,则23a e b e c e ⋅+⋅+⋅r r r r r r的最大值为_______21__________.二、选择题(本大题共有4小题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.13、若复数z 满足2z i z i ++-=,则复数z 在复平面上所对应的图形是 ( D )A 、椭圆;B 、双曲线;C 、直线;D 、线段. 14、 ( C )15、已知2sin 1cos x x =+,则cot2x= ( C ) A 、2; B 、2或12; C 、2或0; D 、12或0.16、已知等比数列1234,,,a a a a 满足()10,1a ∈,()21,2a ∈,()32,4a ∈,则4a 的取值范围是 ( D )A 、()3,8;B 、()2,16;C 、()4,8;D 、()22,16. 三、解答题(本大题共有5小题,满分76分)解答下列各题必须写出必要的步骤. 17、(本小题满分14分,第1小题满分6分,第2小题满分8分)如图所示,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1, 且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点.已知球面上一点310,,22D ⎛⎫- ⎪ ⎪⎝⎭.(1)求,D C 两点在球O 上的球面距离; (2)求直线CD 与平面ABC 所成角的大小.解:(1)由题意:()()()311,0,0,0,1,0,0,0,1,0,2A B C D ⎛⎫ ⎪ ⎪⎝⎭则310,,22CD ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,……………………………………………………2分 所以1CD =u u u r ,即OCD ∆为等边三角形,所以π3DOC ∠=, …………4分则»ππ133DC=⨯= …………………………6分 (2)设直线CD 与平面ABC 所成角为θ,易得平面ABC 的一个法向量()1,1,1n =r, …………………………11分则313322sin 613CD nCD nθ+⋅===⨯⋅u u u r r u u u r r , …………………………13分 即直线CD 与平面ABC 所成角33θ+=…………………………14分ABOCED18、(本小题满分14分,第1小题满分6分,第2小题满分8分)某地计划在一处海滩建造一个养殖场. (1) 如图,射线,OA OB 为海岸线,2π3AOB ∠=,现用长度为1千米的围网PQ 依托海岸线围成一个POQ ∆的养殖场,问如何选取点,P Q ,才能使养殖场POQ ∆的面积最大,并求其最大面积.(2)如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB (点,A B 在直线l 上),使三角形OAB 面积最大,设其为1S ; 方案二:围成弓形CDE (点,D E 在直线l 上,C 是优弧»DE 所在圆的圆心且2π3DCE ∠=),其面积为2S ;试求出1S 的最大值和2S (均精确到0.001平方千米),并指出哪一种设计方案更好.解:(1)设,OP x OQ y ==由余弦定理得222211232x y xy x y xy xy ⎛⎫=+-⋅-=++≥ ⎪⎝⎭,13xy ∴≤…4分 则121133sin π2323S xy =≤⨯=max 3S =(平方千米)OABPQ即选取33OP OQ ==时养殖场POQ ∆的面积最大. …………6分(2)方案一:围成三角形OAB设AOB θ∠=,由21124OA OB OA OB OA OB +⎛⎫+=⇒⋅≤= ⎪⎝⎭,当且仅当12OA OB ==时取等号. 所以,11111sin 12248S OA OB θ=⋅≤⋅⋅=(平方千米), 当且仅当1π,22OA OB θ===时取等号.……………9分方案二:围成弓形CDE设弓形中扇形所在圆C 的半径为r ,而扇形圆心角为4π3、弧长为1千米, 故14433ππr ==. …………10分 于是22112π1sin 223S r r =⋅⋅+ …………11分 231930.1448π216π2=+⋅⋅≈(平方千米) …………13分 即12S S <,方案二所围成的养殖场面积较大,方案二更好. ……………14分19、(本小题满分14分,第1小题满分6分,第2小题满分8分)已知双曲线22:143x y C -=,其右顶点为P . (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为(1,1)n =-r,若在双曲线C 上恰有三个点123,,P P P到直线l 的距离均为d ,求d 的值. 解:(1)由题意,(2,0)P ,渐近线方程:3y x =320x y ±=……………2分则半径23221734r d ===+, ……………4分 所以圆方程为:()221227x y -+=……………6分(2)若在双曲线C 上恰有三个点123,,P P P 到直线l 的距离均为d ,则其中一点必定是与直线:2l y x =-平行的直线与双曲线其中一支的切点 ……………8分 设直线'l 与双曲线C 相切,并且与直线l 平行,则':l y x b =+,即有223412y x b x y =+⎧⎨-=⎩,消去y ,得到2281240x bx b +++= ……………10分 则226416(3)0b b ∆=-+=,解得1b =±,所以':1l y x =±…………12分 又d 是l 与'l 之间的距离,所以123222d +==或者12222d -==……………14分20、(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若数列{}n A 对任意的*N n ∈,都有()+10kn nA A k =≠,且0n A ≠,则称数列{}n A 为“k 级创新数列”. (1)已知数列{}n a 满足2122n n n a a a +=+,且112a =,试判断数列{}21n a +是否为“2级创新数列”,并说明理由;(2) 已知正数数列{}n b 为“k 级创新数列”且1k ≠,若110b =,求数列{}n b 的前n 项积.n T ;(3)设,αβ是方程210x x --=的两个实根(αβ>),令k βα=,在(2)的条件下,记数列{}n c 的通项1log n n n b n c T β-=⋅, 求证:21n n n c c c ++=+,*N n ∈.解:(1)由2122n n n a a a +=+,∴212+144+1n n n a a a +=+,即()212121n n a a ++=+,……………………2分且12120a +=≠, ………………………3分 ∴{}21n a +是“2级创新数列” ………………………4分 (2)由正数数列{}n b 是“k 级创新数列”,得()+10,1kn nb b k =≠,且0n b >∴+1lg lg n n b k b =, ………………………6分 ∴{}lg n b 是等比数列,且首项1lg 1b =,公比q k =; ∴111lg lg n n n b b qk --=⋅=; ………………………7分由1212lg lg lg lg n n n nT b b b T b b b =⇒=+++L L………………………9分21111n n k k k k k--=++++=-L ,∴()1110N nk k n T n -*-=∈ ……………………10分(3)由k βα=,11111lg 1log lg n nn n n n n b n n n k T k c T b k βββ------=== 111111n n nn n nn n k k k ββαβββαα----⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦==-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭n n αβαβ-=-; ……………………12分 由,αβ是方程210x x --=的两根,∴2211ααββ⎧=+⎪⎨=+⎪⎩;……………………14分∴()111111n n n n n n n n n n c c αβαβαβαβαβαβαβ+++++--+=+=-+---- ()()222111n n n nn c αβααββαβαβ+++-⎡⎤=+-+==⎣⎦--.…………………16分21、(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)对于定义域为R 的函数()g x ,若函数()sin g x ⎡⎤⎣⎦是奇函数,则称()g x 为正弦奇函数. 已知()f x 是单调递增的正弦奇函数,其值域为R ,()00f =.(1)已知()g x 是正弦奇函数,证明:“0u 为方程()sin 1g x =⎡⎤⎣⎦的解”的充要条件是“0u -为方程()sin 1g x =-⎡⎤⎣⎦的解”; (2)若()()ππ,22f a f b ==-,求a b +的值;(3)证明:()f x 是奇函数. 证明:(1) 必要性:0u 为方程()sin 1g x =⎡⎤⎣⎦的解,即()0sin 1g u ⎡⎤=⎣⎦,故()()00sin sin 1g u g u ⎡⎤⎡⎤-=-=-⎣⎦⎣⎦,即0u -为方程()sin 1g x =-⎡⎤⎣⎦的解.…………………………………………………2分充分性:0u -为方程()sin 1g x =-⎡⎤⎣⎦的解,即()0sin 1g u ⎡⎤-=-⎣⎦,故()0sin 1g u ⎡⎤-=-⎣⎦,()0sin 1g u ⎡⎤=⎣⎦,即0u 为方程()sin 1g x =⎡⎤⎣⎦的解. ………………………………4分(2)因为()()()0f b f f a <<,由()f x 单调递增,可知0b a <<. ……………………5分由(1)可知,若函数()f x 是正弦奇函数,则当a 为方程()sin 1f x =⎡⎤⎣⎦的解,必有a -为方程()sin 1f x =-⎡⎤⎣⎦的解,()sin 1f a ∴-=-⎡⎤⎣⎦,即()π2π2f a m -=-()Z m ∈,而0a -<,故()()00f a f -<=,从而()()π2f a f b a b -≤-=⇒-≤, 即0a b +≥; ……………………7分 同理()π2π2f b n -=+()()(),0Z n f b f ∈->,故()()π2f b f a b a -≥=⇒-≥, 即0a b +≤; …………………………9分 综上,0a b +=. …………………………10分(3)()f x 的值域为R 且单调递增,故对任意R c ∈,存在唯一的0,x 使得()0f x c =.…………11分可设()()πππ,π22n n f a n f b n ⎛⎫=-=-- ⎪⎝⎭()*N n ∈,下证()*0N n n a b n +=∈.当1n =时,由(2)知110a b +=,命题成立; ………………………………12分 假设n k ≤时命题成立,即110,,0k k a b a b +=+=L ,而由()f x 的单调性 知11110k k k k b b b a a a ++<<<<<<<<L L ,知11,k k k k a b b a ++-<->,则当1n k =+时,1k a +为方程()sin 1f x =±的解,故1k a +-为方程()sin 1f x =m的解, 且由单调性知()()1k k f a f b +-<,故()()11k k f a f b ++-≤,得11k k a b ++-≤;同理11k k b a ++-≥,故110k k a b +++=. ……………………………………………14分 要证()f x 是奇函数,只需证:对任意0x >,都有()()f x f x -=-.记000a b ==,若()*N n x a n =∈,则n x b -=,()()()2n f x n f a f x ππ⎛⎫-=--=-=- ⎪⎝⎭;……………………………………………………15分若()()221,N n n x a a n +∈∈,则()ππ2,2,22f x n n ππ⎛⎫∈-+ ⎪⎝⎭()ππ2π,2π22f x n n ⎛⎫⎛⎫⎛⎫-∈-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()212ππ,,2π,2π22n n x b b f x n n +⎛⎫⎛⎫⎛⎫-∈-∈-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而正弦函数在ππ2,222n n ππ⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭上单调递增,故由()()()()sin sin sin f x f x f x -=-=-得()()f x f x -=-.若()()2122,N n n x a a n ++∈∈,同理可证得()()f x f x -=-. …………………17分 综上,对任意0x >,都有()()f x f x -=-.故()f x 是奇函数. ……………18分。

上海市黄浦区高三数学4月二模考试试题 文

上海市黄浦区2015年高考模拟考数学试卷(文)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.一、填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.函数0(2)()lg(3)1x f x x x -=-++的定义域是 .2.函数22log (1)y x =-的单调递减区间是 .3.已知集合{}{}2|160,R ,|3,R A x x x B x x a x =-≤∈=-≤∈,若B A ⊆,则正实数a 的取值范围是 .4.若二次函数222(2)31y x m x m =+--+是定义域为R 的偶函数,则函数()2(1,R)m f x x mx x x =-+≤∈的反函数1()f x -= .5.已知角α的顶点与平面直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点()3,4P a a -(0,R)a a ≠∈,则cos2α的值是 .6.在△ABC 中,内角A B C 、、所对的边分别为a b c 、、,且2222sin a b c bc A =+-,则 ∠A = .7.在等差数列{}n a 中,若8103,1a a =-=,9m a =,则正整数m = . 8.已知点(2,3)(1,4)A B --、,则直线AB 的点法向式方程是 .9.已知抛物线216y x =的焦点与双曲线2221(0)12x y a a -=>的一个焦点重合,则双曲线的渐近线方程是 .10.已知AB 是球O 的一条直径,点1O 是AB 上一点,若14OO =,平面α过点1O 且垂直AB ,截得圆1O ,当圆1O 的面积为9π时,则球O 的表面积是 .11.若二次函数()y f x =对一切R x ∈恒有2224()245x x f x x x -+≤≤-+成立,且(5)27f =,则(11)f = .12.(文科) 设点(,)x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩所表示的区域内(含边界),则目标函数2z x y =+的最大值是 .13. (文科) 一个不透明的袋中装有大小形状质地完全相同的黑球、红球、白球共10个,从中任意摸出1个球,得到黑球的概率是25,则从中任意摸出2个球得到至少1个黑球的概率是 . 14. (文科) 在ABC ∆中,||=3,||1AB BC =u u u r u u u r ,且||cos =||cos AC B BC A u u u r u u u r,则AC AB ⋅u u u r u u u r 的数值是 .二、选择题(本大题满分20分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在空间中,下列命题正确的是 [答] ( ).A .若两直线a ,b 与直线l 所成的角相等,那么a ∥bB .空间不同的三点A BC 、、确定一个平面 C .如果直线l //平面α且l //平面β,那么βα//D .若直线a 与平面M 没有公共点,则直线a //平面M 16.设实数1212,,,a a b b 均不为0,则“1122a b a b =成立”是“关于x 的不等式110a x b +>与220a x b +>的解集相同”的 [答] ( ).A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件17.若复数z 同时满足2i z z -=,i z z =,则z = (i 是虚数单位,z 是z 的共轭复数) [答] ( ).A .1i -B .iC .1i --D . 1i -+18.已知数列{}n a 共有5项,满足123450a a a a a >>>>≥,且对任意(15)i j i j ≤≤≤、,有i j a a -仍是该数列的某一项,现给出下列4个命题:(1)50a =;(2)414a a =;(3)数列{}n a 是等差数列; (4)集合{}|,15i j A x x a a i j ==+≤≤≤中共有9个元素.则其中真命题的序号是 [答]( ). A .(1)、(2)、(3)、(4) B .(1)、(4) C .(2)、(3) D .(1)、(3)、(4) 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(文科)(1) 求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面);(2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).第19题图20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分. 已知函数13g()sin 221R 2x x x x =-+∈,,函数()f x 与函数()g x 的图像关于原点对称.(1)求()y f x =的解析式; (2)(文科) 当[,]42x ππ∈-时,求函数()f x 的取值范围.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块铁皮零件,其形状是由边长为40cm 的正方形截去一个三角形ABF 所得的五边形ABCDE ,其中12,10AF cm BF cm ==,如图所示.现在需要用这块材料截取矩形铁皮DMPN ,使得矩形相邻两边分别落在,CD DE 上,另一顶点P 落在边CB 或BA 边上.设DM x =cm ,矩形DMPN 的ABCD1A 1C 1D面积为y 2cm .(1)试求出矩形铁皮DMPN 的面积y 关于x 的函数解析式, 并写出定义域;(2)试问如何截取(即x 取何值时),可使得到的矩形DMPN 的面积最大?第21题图22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分. (文科)已知数列{}n a 满足12a =,对任意*N m p ∈、都有m p m p a a a +=⋅.(1)求数列{}n a (*N n ∈)的通项公式n a ;(2)数列{}n b 满足31223+21212121n n n b b b ba =+++++++L (*N n ∈),求数列{}nb 的前n 项和n B ; (3)设2n n nB c =,求数列{}n c (*N n ∈)中最小项的值.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知点12(2,0)(2,0)F F -、,平面直角坐标系上的一个动点(,)P x y 满足12||+||=4PF PF u u u r u u u u r.设动点P 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)点M 是曲线C 上的任意一点,GH 为圆22:(3)1N x y -+=的任意一条直径,求MG MH⋅u u u u r u u u u r 的取值范围;(3)(理科)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥u u u r u u u r (O 是坐标原点),试证明:直线AB 与某个定圆恒相切,并写出定圆的方程.(文科)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥u u u r u u u r(O 是坐标原点),试证明:原点O 到直线AB 的距离是定值.黄浦区2015年高考模拟考数学试卷(文理合卷)参考答案 (2015年4月21日)一、填空题1.(3,)+?; 8.7(2)3(3)0 7(1)3(4)0x y x y ++-=-++=也可以是; 2.(,1)-?; 9.3y x =?;3.(0,1] ; 10.100p ; 4.1()11(1)f x x x -=--?; 11.153;5.725-; 12.(理科)755;(文科)143;6.4p; 13.(理科)2.7;(文科)23;7.14 ; 14.(理科)4.(文科)2或32.二、选择题 15.D 16.B 17.D 18.A 三、解答题19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. (理科)解 (1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C .由1O 是11A C 中点,可得1(1,1,3)O .于是,111(1,1,3),(2,0,0)BO A D =--=-u u u u r u u u u r.设异面直线1BO 与11A D 所成的角为θ,则11111111cos ||||211BO A D BO A D θ⋅===u u u u r u u u u ru u u u r u u u u r 因此,异面直线1BO 与11A D 所成的角为11. (2)设(,,)n x y z =r是平面ABD 的法向量.∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ABCD1A 1C 1D xyz又11(0,2,3),(2,0,3)BA BC =-=-u u u r u u u u r,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =,可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BA C 的一个法向量是(3,3,2)n =r .∴||n DB d n ⋅=r u u u rr 62211=. (文科)解(1)Q 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC P P ,即11A D BC P .∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又Q 1C C BC ⊥,∴113tan 2C C C BC BC ∠==. ∴异面直线1BC 与11AD 所成的角是3tan 2arc .20.(本题满分12分) 本题共有2个小题,第1小题满分5分,第2小题满分7分. 解(1)设点(,)x y 是函数()y f x =的图像上任意一点,由题意可知,点(,)x y --在()y g x =的 图像上,于是有13sin(2)2)1,2R y x x x -=--+∈. 所以,13()sin 2212f x x x =-,R x ∈. (理科)(2)由(1)可知,13()sin 221sin(2)1,[0,]23f x x x x x ππ=-=+-∈,记[0,]D π=.由222,Z 232k x k k πππππ-≤+≤+∈,解得5,1212Z k x k k ππππ-≤≤+∈, 则函数()f x 在形如5[,],1212k k k Z ππππ-+∈的区间上单调递增. 结合定义域,可知上述区间中符合题意的整数k 只能是0和1.令0k =得15[,]1212D ππ=-;1k =时,得1713[,]1212D ππ=.所以,1[0,]12D D π=I ,27[,]12D D ππ=I .于是,函数()f x 在[0,]π上的单调递增区间是[0,]12π和7[,]12ππ.(文科) (2)由(1)可知,13()sin 2cos 21sin(2)1223f x x x x π=+-=+-. 又[,]42x ππ∈-,所以,42633x πππ-≤+≤.考察正弦函数sin y x =的图像,可知,3sin(2)123x π-≤+≤,[,]42x ππ∈-. 于是,31sin(2)103x π--≤+-≤. 所以,当[,]42x ππ∈-时,函数()f x 的取值范围是23()0f x +-≤≤.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解(1)依据题意并结合图形,可知:1 当点P 在线段CB 上,即030x <≤时,40y x =; 02 当点P 在线段BA 上,即3040x <≤时,由PQ BF QA FA =,得6485QA x =-. 于是,26765y DM PM DM EQ x x =⋅=⋅=-.所以,240,030676.30405 < x x y x x x ≤⎧⎪=⎨-<≤⎪⎩定义域(0,40]D =. (2)由(1)知,当030x <≤时,01200y <≤;当3040x <≤时,2266953610361076()55333y x x x =-=--+≤,当且仅当953x =时,等号成立. 因此,y 的最大值为36103. 答:先在DE 上截取线段953DM cm =,然后过点M 作DE 的垂线交BA 于点P ,再过点P 作DE的平行线交DC 于点N ,最后沿MP 与PN 截铁皮,所得矩形面积最大,最大面积为361032cm .22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分. (理科)解(1) Q 对任意*N m p ∈、都有m p m p a a a +=⋅成立,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈.∴数列{}n a (*N n ∈)的递推公式是1*111,2, N .n na a a a n +⎧=⎪⎨⎪=⋅∈⎩ (2)由(1)可知,数列{}n a (*N n ∈)是首项和公比都为12的等比数列,于是*1()2N n n a n =∈. 由131223(1)21212121n n n n b b b ba +=-+-++-++++L (*N n ∈),得 31121231(1)21212121n nn n b b b ba ---=-+-++-++++L (2n ≥). 故111(1)(1)(1)(2)212n n n n n n n nb a a b n +--=-⇒=-+≥+. 当1n =时,1113212b a b =⇒=+.所以*31)21(1)(1).(2,)2 ( N n n nn b n n ⎧=⎪⎪=⎨⎪-+≥∈⎪⎩,(3) ∵2nn n c b λ=+,∴当3n ≥时,12(1)(1)2nnn nc =+-+λ, 111112(1)(1)2n n n n c ----=+-+λ,依据题意,有1132(1)(2)02n nn n n c c λ---=+-+>,即12(1)322n nn λ-->-+. 01 当n 为大于或等于4的偶数时,有12322n n λ->-+ 恒成立,又12322n n-+ 随n 增大而增大,则 1min2128(4)33522n n n -⎛⎫⎪== ⎪ ⎪+⎝⎭,故λ的取值范围为12835λ>-; 02 当n 为大于或等于3的奇数时,有12322n nλ-<+恒成立,故λ的取值范围为3219λ<; 03 当2n =时,由22153(2)(2)042c c λλ-=+-+>,得8λ<.综上可得,所求λ的取值范围是128323519λ-<<. (文科)解(1) Q 对任意*N m p ∈、都有m p m p a a a +=⋅成立,12a =,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈.∴数列{}n a (*N n ∈)是首项和公比都为2的等比数列.∴1*122(N )n n n a a n -=⋅=∈.(2) 由31223+21212121n n n b b b ba =+++++++L (*N n ∈),得 31121231+21212121nn n b b b ba ---=+++++++L (2n ≥). 故121112(21)22(2)21n n n n n n n n n b a a b n -----=⇒=+=+≥+.当1n =时,111621ba b =⇒=+.于是,211*1)22.(2,)n n n n b n n --=⎧=⎨+≥∈⎩ ( N 6,当1n =时,116B b ==; 当2n ≥时,123221231241212131411311 =6+(2+2+2++2)+(2+2+2++2)2(14)2(12) =6+141224 =42.33n nn n n n n n B b b b b ⋅-⋅-⋅-⋅-------=++++--+--⋅++L L L 又1n =时,112442633n B =⋅++=,综上,有*2442N .33n n n B n =⋅++∈,(3)Q 2nn n B c =,11132B c ==,∴24121332n n n c =⋅+⋅+,*N n ∈.1111124124121(21)33233221=(2)0(2).32n n n n n n n n c c n -----∴-=⋅+⋅+-⋅+⋅+->≥∴数列{}n c (*N n ∈)是单调递增数列,即数列{}n c 中数值最小的项是1c ,其值为3.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.解(1)依据题意,动点(,)P x y 满足2222(2)(2)4x y x y -++++=.又12||224F F =<,因此,动点(,)P x y 的轨迹是焦点在x 轴上的椭圆,且24,2222a b c =⎧⎪⇒=⎨=⎪⎩ 所以,所求曲线C 的轨迹方程是22142x y +=. (2) 设00(,)M x y 是曲线C 上任一点.依据题意,可得,MG MN NG MH MN NH =+=+u u u u r u u u u r u u u r u u u u r u u u u r u u u u r. Q GH 是直径, ∴NH NG =-u u u u r u u u r .又||=1NG u u u r,22=()()=()() =||||.MG MH MN NG MN GH MN NG MN NG MN NG ∴⋅+⋅++⋅--u u u u r u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u ru u u u r u u u r∴22200||(3)(0)MN x y =-+-u u u u r=201(6)72x --. 由22142x y +=,可得22x -≤≤,即022x -≤≤.2221||25||||24MN MN NG ∴≤≤≤-≤u u u u r u u u u r u u u r ,0.∴MG MH ⋅u u u u r u u u u r 的取值范围是024MG MH ≤⋅≤u u u u r u u u u r.(另解21||25MN ≤≤u u u u r :结合椭圆和圆的位置关系,有||||||||||||OM ON MN OM ON -≤≤+(当且仅当M N O 、、共线时,等号成立),于是有1||5MN ≤≤.)(理科)(3)证明 因A B 、是曲线C 上满足OA OB ⊥的两个动点,由曲线C 关于原点对称,可知直线AB 也关于原点对称.若直线AB 与定圆相切,则定圆的圆心必在原点.因此,只要证明原点到直线AB 的距离(d )是定值即可.设12||,||OA r OB r ==,点11(cos ,sin )A r r θθ,则 2222(cos(),sin())(sin ,cos )22B r r r r ππθθθθ++=-.利用面积相等,有11||||||22OA OB AB d ⋅=⋅,于是2221222122211111r r d r r r r ==++. 又A B 、两点在曲线C 上,故222211222222cos sin 1,42sin cos 1.42r r r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 可得22212222cos sin 1,42sin cos 1.42r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩因此,22121134r r +=.所以,243d =,即d 为定值233.所以,直线AB 总与定圆相切,且定圆的方程为:2243x y +=. (文科)(3)证明 设原点到直线AB 的距离为d ,且A B 、是曲线C 上满足OA OB ⊥的两个动点.01若点A 在坐标轴上,则点B 也在坐标轴上,有11||||||22OA OB AB d =⋅,即22233d a b==+.02若点(,)A A A x y 不在坐标轴上,可设1:,:OA y kx OB y x k==-.由221,42.x y y kx ⎧+=⎪⎨⎪=⎩ 得222224,124.12A Ax k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩设点(,)B B B x y ,同理可得,222224,24.2B B k x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩于是,221||212k OA k +=+,221||22k OB k +=+,2222223(1)||(2)(12)k AB OA OB k k +=+=++ . 利用11||||||22OA OB AB d =⋅,得23d =. 综合012和可知,总有23d =,即原点O 到直线AB 的距离为定值23. (方法二:根据曲线C 关于原点和坐标轴都对称的特点,以及OA OB ⊥,求出A B 、的一组坐标,再用点到直线的距离公式求解,也可以得出结论)。

上海市浦东新区高三数学下学期4月二模考试试题 文(含解析)

上海市黄浦区2014届高三下学期4月二模考试数学 文(含解析)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.一.填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分. 1.函数xxy -+=11log 2的定义域是 . 【答案】(1,1)- 【解析】由1+0111x x x>-<<-得,所以函数x xy -+=11log 2的定义域是(1,1)-。

2.函数x x y 22sin cos -=的最小正周期=T .【答案】p【解析】x x y 22sin cos -=cos 2x =,所以22T ππ==。

3.已知全集R U =,集合{}|0,R A x x a x =+≥∈,{}||1|3,R B x x x =-≤∈.若U ()[2,4]C A B =-,则实数a 的取值范围是 .【答案】4a <-【解析】易知集合{}|0,R A x x a x =+≥∈ {}|x x a =≥-,{}||1|3,R B x x x =-≤∈{}|24x x =-≤≤.所以{}|u C A x x a =<-,因为U ()[2,4]C A B =-,所以4a ->,所以实数a 的取值范围是4a <-。

4.已知等差数列{}*(N )n a n ∈的公差为3,11-=a ,前n 项和为n S ,则nnn S na ∞→lim的数值是 . 【答案】2【解析】因为等差数列{}*(N )n a n ∈的公差为3,11-=a ,所以34n a n =-,23522n S n n =-,所以n n n S na∞→lim 34lim 23522n n n →∞-==-。

2015年浦东新区高三二模数学试卷及答案(2015.4)word版

2015年浦东新区高三二模数学试卷(2015.4)一. 填空题1. 不等式32x>的解为 ;2. 设i 是虚数单位,复数(3)(1)a i i +-是实数,则实数a = ;3. 已知一个关于x ,y 的二元一次方程组的增广矩阵为112012-⎛⎫⎪⎝⎭,则x y -= ; 4. 已知数列{}n a 的前n 项和2n S n n =+,则该数列的通项公式n a = ;5. 6. 7. 8.9.D 上的任何实数x 分别满足()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为 函数()f x 和()g x 的“隔离直线”,给出下列四组函数:①1()12x f x =+,()sin g x x =; ②3()f x x =,1()g x x=-;③1()f x x x =+,()lg g x x =; ④1()22x f x =-,()g x = 其中函数()f x 和()g x 存在“隔离直线”的序号是 ;二. 选择题15. 已知a ,b 是实数,那么“0a b <<”是“11a b>”的( ) A. 充分不必要条件; B. 必要不充分条件;C. 充分必要条件;D. 既不充分也不必要条件;16. 平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为( )的}j Q (三((-中,底面正方形ABCD的边长为2,PA⊥底面ABCD,E 20. 如图,在四棱锥P ABCD为BC的中点,PC与平面PAD所成的角为;(1)求异面直线AE与PD所成角的大小(结果用反三角函数表示);(2)求点B到平面PCD的距离;21. 一颗人造地球卫星在地球表面上空1630千米处沿圆形轨道匀速运行,每2小时绕地球旋转一周,将地球近似为一个球体,半径为6370千米,卫星轨道所在圆的圆心与地球球心重合,已知卫星于中午12点整通过卫星跟踪站A点的正上空A',12:03时卫星通过C点;(卫星接收天线发出的无线电信号所需时间忽略不计)(1)求人造卫星在12:03时与卫星跟踪站A之间的距离(精确到1千米);(2)求此时天线方向AC与水平线的夹角(精确到1分);22. 已知直线l 与圆锥曲线C 相交于A ,B 两点,与x 轴、y 轴分别交于D 、E 两点,且满足1EA AD λ=uu r uuu r ,2EB BD λ=uu r uu u r ;(1)已知直线l 的方程为24y x =-,抛物线C 的方程为24y x =,求12λλ+的值;(2)已知直线:1l x my =+(1m >),椭圆22:12x C y +=,求1211λλ+的取值范围; (3)已知双曲线2222:1x y C a b -=(0a >,0b >),21222a bλλ+=,试问D 是否为定点?若是,求出D 点坐标,若不是,说明理由;23. 记无穷数列{}n a 的前n 项12,,...,n a a a 的最大值为n A ,第n 项之后的各项12,,...n n a a ++的最小值为n B ,令n n n b A B =-;(1)若数列{}n a 的通项公式为2276n a n n =-+,写出1b ,2b ,并求数列{}n b 的通项公式;(2)若数列{}n b 的通项公式为12n b n =-,判断1{}n n a a +-是否等差数列,若是,求出公差,若不是,请说明理由;(3)若{}n b 为公差大于零的等差数列,求证:1{}n n a a +-是等差数列;浦东新区2014学年第二学期高三教学质量检测一. 填空题1. 3log 2x >;2. 3;3. 2;4. 2n ;5. 210;6. 1;7. 1; 8. 1m >; 9. 10. 23; 11. 1;12. 0q <<13. 1或0或32; 14. ①③④(((。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年浦东新区第二次高三数学质量检测
数学试卷(文科)
注意:1.答卷前,考生务必在答题纸上指定位置将姓名、学校、考号填写清楚. 2.本试卷共23道试题,满分150,考试时间120分钟. 一、填空题(本大题共有14题,满分56分);考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式32x >的解为 ..
2.设i 是虚数单位,复数()()31a i i +-是实数,则实数a = .
3.已知一个关于,x y 的二元一次方程组的增广矩阵为112012-⎛⎫
⎪⎝⎭
,则x y -= .
4.已知数列{}n a 的前n 项和2n S n n =+,则该数列的通项公式n a = .
5.已知21n
x x ⎛
⎫- ⎪⎝
⎭展开式中二项式系数之和为1024,则含7x 项的系数为 .
6.已知直线3420x y ++=与()2
221x y r -+=圆相切,则该圆的半径大小为 . 7.已知,x y 满足232300
x y x y x y +≤⎧⎪+≤⎪
⎨≥⎪⎪≥⎩,则x y +的最大值为 .
8.若对任意x R ∈,不等式2sin 22sin 0x x m --<恒成立,则m 的取值范围是 .
9.已知球的表面积为264cm π,用一个平面截球,使截面球的半径为2cm ,则截面与球心的距离是 cm
10.已知{},1,2,3,4,5,6a b ∈,直线1:210l x y --=,直线2:10l ax by +-=,则直线12l l ⊥的概率为 .
11.若函数()22
3
4f x x x =+-的零点(),1m a a ∈+,a 为整数,则所以满足条件a 的值
为 .
12.若正项数列{}n a 是以q 为公比的等比数列,已知该数列的每一项k a 的值都大于从2k a +开始的各项和,则公比q 的取值范围是 .
13.已知等比数列{}n a 的首项1a 、公比q 是关于x 的方程()2220x x t -+-=的实数解,若数列
{}n a 有且只有一个,则实数t 的取值集合为 .
14.给定函数()f x 和()g x ,若存在实常数,k b ,使得函数()f x 和()g x 对其公共定义域D 上的任何实数x 分别满足()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为函数()f x 和()g x 的“隔离直线”.给出下列四组函数: ①()()11,sin 2x f x g x x =
+=;②()()
3
1,f x x g x x
==-; ③()()1,lg f x x g x x x =+=;④()(
)1
2,2
x x f x g x =-其中函数()f x 和()g x 存在“隔离直线”的序号是 .
二、选择题(本大题共有4题,满分20分);每小题给出四个选项,其中有且只有一个选项
是正确的,考生应在答题纸相应的位置上,选对得5分,否则一律不得分. 15.已知,a b 都是实数,那么“0a b <<”是“
11
a b
>”的 ( )
16.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系是 ( ) A. 平行
B. 相交
C. 平行或重合
D. 平行或相交
17.若直线30ax by +-=与圆223x y +=没有公共点,设点P 的坐标(),a b ,那过点P 的一条直线
与椭圆22143
x y +=的公共点的个数为 ( )
A. 0
B. 1
C. 2
D. 1或2
18.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各项点依次为,
123,,,
n A A A A 则[]()12,,1
,2,3,6j i A A A A i j ⋅∈的值组成的集合为 ( )
A.{}2,1,0,1,2--
B.112,1,,0,,1,222⎧⎫
---⎨⎬⎩⎭
C.3
113,1,,0,,1,2222⎧⎫---⎨⎬⎩⎭
D.31132,,1,,0,,1,,22222⎧
⎫----⎨⎬⎩

三、解答题(本大题共有5题,满分74分):解答下列各题必须在答题纸的相应位置上,写
出必要的步骤.
19. (本大题共有2个小题,满分12分)第(1)小题满分6分,第(2)小题满分6分.
已知函数()(),0,a
f x x x a x =+>为实数.
(1)当1a =-时,判断函数()y f x =在()1,+∞上的单调性,并加以证明;
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
1A 2
A 3
A 4A 5
A 6
A
(2)根据实数a 的不同取值,讨论函数()y f x =的最小值.
20. (本大题共有2个小题,满分12分)第(1)小题满分6分,第(2)小题满分6分. 如图,在四棱锥P ABCD -中,底面ABCD 为边长为2的正方形,PA ⊥底面ABCD ,2PA = (1)求异面直线PC 与BD 所成角的大小; (2)求点A 到平面PBD 的距离.
21. (本大题共有2个小题,满分14分)第(1)小题满分6分,第(2)小题满分8分.
一颗人造卫星在地球上空1630千米处沿着圆形轨 道匀速运行,每2小时绕地球一周,将地球近似为 一个球体,半径为6370千米,卫星轨道所在圆的圆
心与地球球心重合,已知卫星与中午12点整通过卫
星跟踪站A 点的正上空'A ,12:03时卫星通过C
点,(卫星接收天线发出的无线电信号所需时间忽略不计)
(1)求人造卫星在12:03时与卫星跟踪站A 之间的距离.(精确到1千米) (2)求此时天线方向AC 与水平线的夹角(精确到1分).
P A
B C D
'A A C
O
22. (本大题共有3个小题,满分16分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知直线l 与圆锥曲线C 相交于两点,A B ,与x 轴,y 轴分别交于D E 、两点,且满足
1EA AD λ=2EB BD λ=
(1)已知直线l 的方程为24y x =-,抛物线C 的方程为24y x =,求12λλ+的值;
(2)已知直线():11l x my m =+>,椭圆22:12x C y +=,求1211
λλ+的取值范围;
(3)已知双曲线2
212:1,63
x C y λλ-=-=,求点D 的坐标.
23. (本大题共有3个小题,满分18分)第(1)小题满分4分,第(2)小题满分6分. 第(3)小题满分8分.
记无穷数列{}n a 的前n 项12,,,n a a a 的最大项为n A ,
第n 项之后的各项12,,n n a a ++的最小
项为n B ,令n n n b A B =-.
(1)若数列{}n a 的通项公式为221n a n n =-+,写出12,b b ,并求数列{}n b 的通项公式; (2)若数列{}n a 递增,且{}1n n a a +-是等差数列,求证:{}n b 为等差数列;
(3)若数列{}n b 的通项公式为12n b n =-,判断{}1n n a a +-是否为等差数列,若是,求出公差;若不是,说明理由.。

相关文档
最新文档