可控硅损坏原因

合集下载

可控硅损坏原因分析

可控硅损坏原因分析

图中L1、N1为脱扣器的上游,L2、N2为脱扣器的下游,脱扣电路的一端接的是火线(L1),另一端接的是零线(N2),又来滤除扰动信号的电容一端接的是可控硅控制极,另外一端为零线(N1)。

此为背景。

---------------------------------------------------------------------------------------------------------------
脱扣时,电流经过L1流至N2,线圈上电,形成磁场,装置TK脱扣,N1与N2分离,分离瞬间N1,N2之间存在电弧,电弧两端一定压降,于是N1与N2不再是等电势,且N1电势低于N2电势。

此时,可控硅还处于导通状态,控制极与阴极(即N2)之间的电势相差很小(拿示波器测试过,脱扣瞬间控制极与阴极之间的有1-2V的瞬间电压),所以,N1与N2之间电弧的压降同时也会直接加在电容两端,该压降很高,高至300V,所以该电容经常损坏,电容要么短接,要么断路,短路的情况下,可控硅控制极一直是接地,所以在有信号的情况下也不会脱扣,造成可控硅损坏的假象;断路的情况下,可控硅经常在扰动的干扰下导通。

多次试验后,可控硅的控制极与阴极还会出现被击穿的情况,两个引脚之间的阻值变为几欧。

对这个现象还没想到一个合理的解释。

解决办法:
把电容一端的地N1换成N2,电弧的电压不再加在电容两端,电容就不会这么容易损坏了。

避免可控硅损坏对产品造成不良后果

避免可控硅损坏对产品造成不良后果

COMPANY CONFIDENTIAL Subject / Department / Author -
7
October 23, 2011
损坏原因
损坏特征
解决方案
过流击穿 IVTM大于180
电子元器件表面有烧焦现象, 选择可控硅VDRM和 痕迹特征是芯片出现坑洞 VRRM为元件最大峰 值电压UM的2-3倍
COMPANY CONFIDENTIAL 12 Subject / Department / Author October 23, 2011
COMPANY CONFIDENTIAL 13 Subject / Department / Author October 23, 2011
8
October 23, 2011
这是损坏的可控硅(hydrox#1) 这是损坏的可控硅
COMPANY CONFIDENTIAL Subject / Department / Author -
9
October 23, 2011
这是SCR的冷却风扇 运行正常 ) 的冷却风扇( 这是 的冷却风扇
COMPANY CONFIDENTIAL 10 Subject / Department / Author October 23, 2011
基本参数
TYPE
SKKT106B-14E
ITAV 115
IVTM 180
VRRM 1400
ITAV -- 通态平均电流 IVTM -- 通态峰值电流 VRRM -- 反向峰值电压
COMPANY CONFIDENTIAL Subject / Department / Author -
6
October 23, 2011
避免可控硅损坏对产品造成不良后果

可控硅损坏原因讲解学习

可控硅损坏原因讲解学习

可控硅损坏原因晶闸管属于硅元件,很多人也称它为“可控硅”。

硅元件的普遍特性是过载能力差,因此在使用过程中经常会发生烧坏晶闸管的现象。

undefined 晶闸管烧坏都是由温度过高造成的,而温度是由晶闸管的电特性、热特性、结构特性决定的,因此保证晶闸管在研制、生产过程中的质量应从三方面入手:电特性、热特性、结构特性,而且三者是紧密相连、密不可分的,所以在研制、生产晶闸管时应充分考虑其电应力、热应力、结构应力。

烧坏晶闸管的原因很多,总的说来还是三者共同作用下才致使晶闸管烧坏的,某一单独的特性下降很难造成品闸管烧坏,因此我们在生产过程中可以充分利用这个特点,就是说如果其中的某个应力达不到要求时可以采取提高其他两个应力的办法来弥补。

从晶闸管的各相参数看,经常发生事故的参数有:电压、电流、dv/dt、di/dt、漏电、开通时间、关断时间等,甚至有时控制极也可烧坏。

由于晶闸管各参数性能的下降或线路问题会造成晶闸管烧损,从表面看来每个参数所造成晶闸管烧损的现象是不同的,因此通过解剖烧损的晶闸管就可以判断出是由哪个参数造成晶闸管烧坏的。

一般情况下阴极表面或芯片边缘有一烧损的小黑点说明是由于电压引起的,由电压引起烧坏晶闸管的原因有两中可能,一是晶闸管电压失效,就是我们常说的降伏,电压失效分早期失效、中期失效和晚期失效。

二是线路问题,线路中产生了过电压,且对晶闸管所采取的保护措施失效。

电流烧坏晶闸管通常是阴极表面有较大的烧损痕迹,甚至将芯片、管壳等金属大面积溶化。

由di/dt所引起的烧坏晶闸管的现象较容易判断,一般部是门极或放大门极附近烧成一小黑点。

我们知道晶闸管的等效电路是由两只可控硅构成,门极所对应的可控硅做触发用,目的是当触发信号到来时将其放大,然后尽快的将主可控硅导通,然而在短时间内如果电流过大,主可控硅还没有完全导通,大的电流主要通过相当于门极的可控硅流过,而可控硅的承载电流的能力是很小的,所以造成此可控硅烧坏,表面看就是门极或放大门极附近烧成一小黑点。

关于金风S48/750KW风机软启动过程及故障分析

关于金风S48/750KW风机软启动过程及故障分析

关于金风S48/750KW风机软启动过程及故障分析摘要:金风S48/750KW风机启动时,为了避免启动电流对电网的冲击,采用由双向可控硅组成的软启动控制电路,通过控制可控硅的导通角,从而控制发电机定子绕组的输入电压,使发电机的启动电流平滑上升,减小了电机的启动损耗。

并在PLC的程序控制下,当电机转速达到设定值时,自动闭合旁路接触器,使可控硅开关安全切出,最终完成发电机的并网。

关键词:软启动双向可控硅异步发电机控制流程故障分析金风S48/750KW风机在新疆风能公司苜蓿台风电场安装39台,总计容量29250KW。

从2010年至今已经运行两年有余,一些软启动故障也渐渐暴露出来。

本文通过对软启动的启动过程和故障分析,为风机维护人员处理此类故障提供参考。

一、什么是软启动(一)软启动的定义软启动(soft start),是指在电机启动过程中,通过控制电机的启动电压,从而使电机的启动电流平滑运行的一种启动方式。

(二)软启动的种类1.斜坡升压软启动这种启动方式比较简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定的函数关系增加。

其缺点是,由于不限流,在电机启动过程中,有时产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际应用较少。

2.斜坡恒流软启动这种方式是在电机的初始启动阶段,启动电流逐渐增加,当电流达到预先所设定的值后保持恒定,直至启动完毕。

启动过程中,电流上升变化的速率是可以根据电动机负载调整设定。

电流上升速率大,则启动转矩大,启动时间短。

该启动方式是应用最多的启动方式,尤其适用于风机负载的启动。

3.阶跃启动开机后以最短的时间使启动电流迅速达到设定值,即为阶跃启动。

通过调节启动电流设定值,可以达到快速启动效果。

4.脉冲冲击启动在启动初始阶段,让晶闸管在极短的时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,最后连入恒流启动。

该启动方法,在一般负载中较少应用,适用于重载并需要克服较大的静摩擦的启动环境。

可控硅原理--检测--击穿分析

可控硅原理--检测--击穿分析

一、可控硅击穿原因:1、RC电路只是用于尖峰脉冲电压的吸收(平波作用),RC时间常数应和尖峰脉冲上升沿时间一致,并且要注意电容的高频响应,应使用高频特性好的。

2、压敏电阻本身有反应时间,该反应时间必须要小于可控硅的最大过压脉冲宽度,而且压敏电阻的过压击穿电压值有一定的离散性,实际的和标识的值有一定的误差。

3、击穿的可能性好多种,过电流,过电压.短路,散热不好都会被击穿.RC电路或压敏电阻只是吸收尖峰脉冲电压.和涌浪电压用的有条件.可以增大双向可控硅容量,这能有效减少以上的问题,如果是短路就要查明短路原因二、问题例子:最初使用MOC3061+BT131控制电磁阀,BT131击穿很多;后来将BT131更换成BT136虽然有多改善,但还是偶尔有击穿。

电路图如下实际电路中R56没焊,R55为330欧姆。

电路有RC吸收、压敏电阻保护电路,负载为电磁阀,负载电流最多不超过100mA,按说1A的BT131就已经足够了,但使用4A的BT136还偶尔会坏,是可控硅质量问题,还是我的电路参数有问题?另外,有谁知道可控硅的门极触发电流是怎么计算得来的?在之前的BT131电路中R55、R56的阻值是330欧姆,后来的BT136电路中去掉了R56、R55的阻值还是330欧姆。

是不是这个值太小了,触发电流太大引起的损坏?关于电路图做一下补充:1.电阻R68实际用的是75欧姆2.电容C11用的是103 630V(0.01u)3.压敏电阻R75用的是471V的回答一:对双向可控硅驱动,技术已十分成熟了。

对感性负载,驱动电路不要这样接,有经典的参考电路,请参考相应的资料。

我认为该处应该用CBB电容,其特性有利于浪涌的吸收。

如果受体积限制,类似的电路我也这样用。

CBB电容回答二:照这个图来做,烧了可控硅那就是你的质量太差了!此电路我用了3年,现在还在用。

左边的电路为恒流,输入5-30V都不会烧坏光耦。

R3一定要用20-50欧以内的电阻,不可以用上百欧的否则可控硅无法完全导通,一直处于调压状态,很容易发热甚至损坏回答三:回答四:其实有一点大家可能都没有注意,就是可控硅的尾缀问题,TW的才是更适合电机类使用的器件!仔细查一下手册看看吧!三、可控硅检测:注:本文中所使用的万用表为指针式,若换为数字式,注意红黑表笔极性正好相反1、判断引脚极性方法一:由双向可控硅的内部结构可知,控制极G与主电极A1之间是由—块P型半导体连接的,两电极间的电阻(体电阻)为几十欧姆,根据公特点就可以方便地判断出各电极来。

可控硅的使用及其方法

可控硅的使用及其方法

可控硅的使用及其方法可控硅作为一种电子开关,广泛地应用在自动化设备和各种控制电路中,可控硅既有单项也有双向的,在使用中会经常遇到一些问题。

文章根据实际工作情况,介绍一些经验以供参考。

标签:自动化设备;控制回路;研究分析1 选购可控硅可控硅的电参数很多,在选购时要考虑的是:额定平均电流IT、正反向峰值电压VDRM(VRRM)、控制极触发电压与触发电流IGT这几个参数。

由于手册或产品合格证上给定的可控硅的上述参数值都是在规定的条件下测定的,而实际使用环境往往与规定条件不同,并且极有可能发生突发事故超过管子承受能力的现象。

所以为了管子在安全的电压下工作,特别是交流220V的情况下,应该按额定为实际电压的2~3倍值来选管子。

例如:外加电压为220V,则至少应选择400V以上的管子最好为600V,为了保证管子避免电流过大而烧毁,并考虑到管子的发热情况与电流的有效值,应选择平均电流的有效值的1.2~2倍,需要指出的是。

IT对单项可控硅而言是IT(A V)指允许流过SCR的最大有效值电流。

例如:8A SCR(单向)的有效值IT(RMS)=12.6A,因此用8A的BCR代替8A的SCR是不允许的,为了使管子的触发电压与触发电流要比实际应用中的数值要小。

例如:实际使用的触发电压为3V,则可选触发电压为2V的管子。

同样,管子的触发电流亦应选择小些以保证可靠触发,一般常用的集成电路输出电流均很小(除555电路例外,TTL比CMOS要大),所以可在其输出端加一级晶体管放大电路,以提供足够大的驱动电路来保证管子可靠地触发导通。

2 可控硅的具体接法2.1 直流电路首先,单向可控硅SCR有三个电极,即阳极A,阴极K,控制极G,SCR 在直流控制电路中使用时,要注意施加工作电压与控制触发电压的极性。

A,K 之间是加正向电压但控正向的接法是图1,只有A,K之间接正向电压,控制极G亦接正向电压,SCR才能导通。

SCR一旦触发导通后,即使降低控制极电压,甚至撤除控制极电源,SCR亦不阻断而是继续导通。

电机软启动器的故障分析及优化方案范文

电机软启动器的故障分析及优化方案范文

电机软启动器的故障分析及优化方案范文摘要:在工业生产中,电动机是一种常用的电气设备,其中电动机的功率有大有小,而电机软启动器是一种新型的启动设备,可以有效的控制电动器启动时的电流大小。

文章通过对两个电机软启动器出现的故障为例,分析故障的原因,提出相应的优化方案,降低电机软启动器的故障,保证电机软启动器的长久运行。

关键词:故障;电机软启动器;分析;优化1电机软启动器故障事例一1.1故障的发生一台185kW电动机的突然出现自行运转启动,但是当时操作工并未进行启动操作,且现场按停止按钮也无法停下设备,检查PLC的远程控制也未发出启动命令,通过检查之后,排除了外部因素导致的突然启动。

将设备断电后,然后使用万用表对软启动进行检测,用万用表检测软启动器的模块或可控硅是否击穿,及他们的触发门极电阻是否符合正常情况下的要求(一般在20-30欧左右),发现软启动器的A相和B相晶闸管导通,因设计图中软启动上侧未设计主接触器,而是断路器直接连接软启动器电源侧,在软启两相晶闸管击穿后现场电机带两相电缺相运行,险些造成人员及设备损坏。

1.2解决措施该设备为破碎机,属于重载设备,且根据记录显示,这个设备在短时间内有多次启停记录,而软启动可控硅属于电子产品,易损坏,造成软启动可控硅损坏的原因有电机在起动时,过电流将软起动器击穿、起动频繁,高温将可控硅损坏,滤波板损坏(更换损坏元件)输入缺相等。

而该设备的频繁启停导致软启动器可控硅过热损坏。

通过这一系列的判断和分析后,经过更换电机软启动器之后,电机设备可以正常的启动和运行,确定了故障的原因正是上述因素造成的{1}。

2电机软启动器故障事例二2.1故障的出现在进行企业生产的时候,操作人员在控制室发现某一监测电机运行的电流表并没有显示电流,因此就到现场进行检查,发现这一台电机并没有工作,然后按下开启按钮后,电机依然没有运行。

当检修人员去配电室进行检查后,发现电机软启动器以及保护器并没有故障报警,也没有显示故障,直到检查控制器的元件时闻到很浓的烧焦味道,经过仔细的检查,发现在ka1中间继电器上有一些焦黑的痕迹,而旁路接触器没有吸合。

在电路中可控硅不工作的原因

在电路中可控硅不工作的原因

在电路中可控硅不工作的原因全文共四篇示例,供读者参考第一篇示例:可控硅是一种重要的半导体器件,常用于电力控制和电能转换领域。

但是在实际使用中,我们有时会遇到可控硅不工作的情况,这给电路和设备的正常运行带来了隐患。

了解可控硅不工作的原因并采取相应的措施是非常重要的。

本文将对在电路中可控硅不工作的原因进行详细探讨。

一、电路中可控硅不工作的原因1. 可控硅损坏可控硅作为一种半导体器件,其本身可能会受到过压、过流等外部因素的影响而损坏。

这种情况下,可控硅会失去正常的工作功能,甚至短路或断路,无法正常导通。

2. 控制信号不足可控硅的工作需要通过控制信号来触发,如果控制信号不够强或者频率不足,可控硅可能无法正常触发。

这种情况下,即使电路中的其他部分正常工作,可控硅也无法正常导通或截止。

3. 温度过高可控硅在工作时会产生一定的热量,如果周围环境温度过高或者散热不佳,可能会导致可控硅温度过高而无法正常工作。

这种情况下,可控硅可能会进入过热保护状态或直接损坏。

4. 激励电路异常在实际电路中,连接可控硅的激励电路可能发生异常,比如电路连接错误、元器件损坏等情况,这些都可能导致可控硅无法正常工作。

5. 其他外部干扰电路中可能会存在其他外部干扰的因素,比如电磁干扰、电压波动等,这些因素可能会导致可控硅无法正常工作。

二、针对以上原因的解决措施1. 对可控硅进行严格的过压、过流保护,避免因外部因素导致可控硅损坏。

2. 加强对控制信号的管理和调节,确保可控硅能够获得充足、稳定的控制信号。

3. 优化散热结构,提高可控硅的工作环境温度,避免因过高温度影响可控硅的正常工作。

4. 定期检查激励电路和相关连接,确保可控硅的激励电路正常,不存在连接错误或元器件损坏等情况。

5. 增加电路的抗干扰能力,通过隔离、滤波等方法来消除外部干扰对可控硅的影响。

总结:在电路中可控硅不工作的原因是多方面的,可能来自于器件本身的损坏,也可能来自于外部的因素干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶闸管属于硅元件,很多人也称它为“可控硅”。

硅元件的普遍特性是过载能力差,因此在使用过程中经常会发生烧坏晶闸管的现象。

undefined
晶闸管烧坏都是由温度过高造成的,而温度是由晶闸管的电特性、热特性、结构特性决定的,因此保证晶闸管在研制、生产过程中的质量应从三方面入手:电特性、热特性、结构特性,而且三者是紧密相连、密不可分的,所以在研制、生产晶闸管时应充分考虑其电应力、热应力、结构应力。

烧坏晶闸管的原因很多,总的说来还是三者共同作用下才致使晶闸管烧坏的,某一单独的特性下降很难造成品闸管烧坏,因此我们在生产过程中可以充分利用这个特点,就是说如果其中的某个应力达不到要求时可以采取提高其他两个应力的办法来弥补。

从晶闸管的各相参数看,经常发生事故的参数有:电压、电流、dv/dt、di /dt、漏电、开通时间、关断时间等,甚至有时控制极也可烧坏。

由于晶闸管各参数性能的下降或线路问题会造成晶闸管烧损,从表面看来每个参数所造成晶闸管烧损的现象是不同的,因此通过解剖烧损的晶闸管就可以判断出是由哪个参数造成晶闸管烧坏的。

一般情况下阴极表面或芯片边缘有一烧损的小黑点说明是由于电压引起的,由电压引起烧坏晶闸管的原因有两中可能,一是晶闸管电压失效,就是我们常说的降伏,电压失效分早期失效、中期失效和晚期失效。

二是线路问题,线路中产生了过电压,且对晶闸管所采取的保护措施失效。

电流烧坏晶闸管通常是阴极表面有较大的烧损痕迹,甚至将芯片、管壳等金属大面积溶化。

由di/dt所引起的烧坏晶闸管的现象较容易判断,一般部是门极或放大门极附近烧成一小黑点。

我们知道晶闸管的等效电路是由两只可控硅构成,门极所对应的可控硅做触发用,目的是当触发信号到来时将其放大,然后尽快的将主可控硅导通,然而在短时间内如果电流过大,主可控硅还没有完全导通,大的电流主要通过相当于门极的可控硅流过,而可控硅的承载电流的能力是很小的,所以造成此可控硅烧坏,表面看就是门极或放大门极附近烧成一小黑点。

至于dv/dt其本身是不会烧坏晶闸管的,只是高的dv/dt会使晶闸管误触发导通,其表面现象跟电流烧坏的现象差不多。

开通时间跟di/dt的关系很密切,因此其烧坏晶闸管的现象跟di/dt烧坏晶闸管基本类似。

关断时间烧坏晶闸管的现象较难分析,其特点有时象电压烧坏,有时又象电流烧坏,从实践来看象电流烧坏的时候比较多。

以上分析只是从晶闸管表面的损坏程度来判断其到底是由什么参数造成的,但无论什么原因损坏都会在晶闸管上留下痕迹,这种痕迹大多是烧坏的黑色痕迹,而黑色痕迹就是金属熔化的痕迹,就是说烧坏晶闸管的最根本原因是将晶闸管芯片熔化,有的是大面积熔化,有的是小面积熔化。

我们知道单晶硅的熔点是1450℃~1550℃,只有超过这个温度才有可能熔化,那么这么高的温度是怎么产生的呢?就晶闸管的各项参数而言即使每相参数都超出标准很多也不会产生如此高的温度,因为温度是由电流、电压、时间三者的乘积决定的,其中某一相超标是不会产生这么高的温度的,所以瞬时产生的高电压、大电流是不会将芯片烧坏的,除非是高电压、大电流、长时间才会如此,但这种情况是不可能出现的,因为晶闸管一经烧毁设备立即就会出现故障,会立即停机,时间不会很长的,因此烧坏晶闸管芯片的高温决不是电流、电压、时间三者的乘积产生的。

那么到底是怎么产生的呢?
其实无论晶闸管的那个参数造成其烧坏,最终的结果都可以归纳为电压击穿,就是说晶闸管烧坏的最终原因都是由电压击穿造成的,其表面的烧损痕迹也是由电压击穿所引起的,这点我们在晶闸管的应用中也能够证明:在用万用表测试烧坏的晶闸管时发现其阴极、阳极电阻都非常小,说明其内部短路,到目前为止基本没发现有阴极、阳极开路的现象,因为芯片是由不同金属构成的,不同金属的熔点是不一样的,总会有先熔化和后熔化之分,是逐渐熔化。

一般情况下应该是铝垫片或银垫片先熔化,然后才是硅片和钼片,而铝垫片或银
垫片也不会小面积熔化,应该是所有有效面积的垫片都会熔化。

铝垫片或银垫片熔化后一是有可能产生隔离层使阴极和阳极开路,二是铝垫片或银垫片高温熔化后与硅片的接合部有可能材质发生变化,产生绝缘的物质,造成阴极、阳极开路的现象。

那么电压击穿与晶闸管表面烧损的痕迹(小黑点或大面积熔化)有什么关系呢?
1.由于晶闸管的电压参数下降或线路产生的过电压超过其额定值造成其绝缘强度相对降低,因此发生启弧放电现象,而弧光的温度是非常高的,远大于芯片各金属的熔点,因此烧毁晶闸管,又由于芯片外圆边缘、芯片阴极-阳极表面之间的绝缘电压强度不是完全一致的,只有在相对绝缘电压较低的那点启弧放电,因此电压击穿表现为在芯片阴极表面或芯片的边缘有一小黑点。

2.由于晶闸管的电流、dv/dt、漏电、关断时间、压降等参数下降或线路的原因造成其芯片温度过高,超过结温,造成硅片内部金属格式发生变化,引起其绝缘电压降低,因此发生启弧放电现象,弧光产生的高温将垫片、硅片、钼片熔化、烧毁,同时也会将外壳与芯片相连的金属熔化。

由于芯片温度过高需要较长的时间,是慢慢积累起来的,因此超温的面积是较大的,烧损的面积也是较大的。

3.由于di/dt、开通时间烧坏的品闸管虽然也是一小黑点,但烧坏的位置与真正的电压击穿是不同的,其烧坏的机理与上面2所述的是一样的,只是由于芯片里面的小可控硅比较小,所以形成的烧毁痕迹亦较小,实际是已经将小可控硅完全烧毁了。

综上所述,无论什么原因烧坏晶闸管,最终都是由于晶闸管绝缘电压相对降低,然后启弧放电,产生高温,使晶闸管芯片金属甚至外壳金属熔化,致使晶闸管短路,损坏。

相关文档
最新文档