扩散工艺常见质量问题及分析
扩散工艺介绍

扩散工艺知识介绍
1: 扩散工序简要介绍 2: 扩散工艺控制
扩散工序简要介绍
1: 2: 3: 4: 5: 扩散炉系统 热氧化 掺杂 扩散 其它
扩散炉系统
其它
氮气(HCL)退火和烘焙:工艺的稳定和重复 合金:工艺条件的严格控制
其它
退火 激活杂质 消除晶格损伤 钝化表面保护膜 合金 形成金属与硅的欧姆接触 烘焙
氧化层质量控制
氧化条件的选择: 厚度 质量要求 效率 条件管理 厚度均匀性 表面斑点 氧化膜针孔 反型层(低掺杂P型硅) 热氧化层错
掺杂质量控制
掺杂和扩散是联系在一起的 掺杂薄层的严格控制:条件的选择 气流的稳 定控制是难点 条件管理是关键 掺杂量的表征:表面方块电阻的局限性
扩散质量控制
扩散条件的选择: 满足设计要求 工艺重复性 稳定性(理论结合工艺试验) 条件管理 扩散速度:表面杂质浓度 杂质扩散系数 气氛 硅体内缺陷密度 扩散参数控制 表面质量控制 :合金点 白雾 硅片翘曲 表面 划伤 表面沾污
扩散质量控制
漏电流控制(器件特性异常):沾污 氧化层缺 陷 (表面沟道效应) 硅体内缺陷(管道效应) 表面杂质浓度偏低(复合电流) 氧化扩散与扩散氧化:杂质分凝效应 扩散参数偏差控制:温度分布 气流和排片方 式 进出舟速度和片间距 HFE 控制:综合考虑
Байду номын сангаас杂
其它杂质源 在硅表面淀积一薄的杂质层 优缺点:设备简单,操作方便,工艺简 单.精确掺杂控制能力低而且表面浓度不适 宜做大范围的调整,有污染.
铝和铝合金扩散焊接

铝和铝合金扩散焊接摘要:一、铝及铝合金概述二、扩散焊接原理三、铝和铝合金扩散焊接工艺1.焊接前准备2.焊接参数选择3.焊接过程中注意事项四、焊接接头性能分析五、应用实例及优缺点六、发展趋势与展望正文:一、铝及铝合金概述铝及铝合金在我国工业领域具有广泛的应用,其优良的性能如轻质、高强度、良好的耐腐蚀性等,使其在航空、航天、交通运输、建筑等领域受到青睐。
然而,铝及铝合金的焊接性能相对较差,传统的焊接方法难以获得高质量的焊接接头。
为此,扩散焊接技术应运而生,成为解决这一问题的有效手段。
二、扩散焊接原理扩散焊接是一种固态连接方法,通过高温和压力作用下,使焊接界面两侧的金属原子发生扩散,从而实现连接。
在扩散焊接过程中,焊接参数的选择至关重要,直接影响到焊接接头的质量。
三、铝和铝合金扩散焊接工艺1.焊接前准备在进行铝和铝合金扩散焊接前,应充分了解焊接材料的性能、焊接接头的使用要求等,以确保选用合适的焊接参数。
此外,还需对焊接表面进行严格清理,去除油污、氧化膜等,以提高焊接质量。
2.焊接参数选择焊接参数主要包括焊接温度、保温时间、焊接压力和冷却速度等。
焊接温度的选择应使焊接界面两侧金属的原子扩散速度达到最佳,一般控制在400-500℃;保温时间要充分保证扩散过程的进行;焊接压力根据焊接件的厚度和性能要求选取,一般为0.5-1.0MPa;冷却速度应适当,过快会导致焊接接头性能下降。
3.焊接过程中注意事项在焊接过程中,应严格控制焊接参数,确保焊接过程中焊接件的变形和裂纹等缺陷。
同时,要注意观察焊接接头的形成情况,及时调整焊接参数,以获得最佳的焊接效果。
四、焊接接头性能分析铝和铝合金扩散焊接接头的性能较好,可以实现无缝连接,提高焊接接头的强度和耐腐蚀性能。
此外,焊接接头的性能还与焊接参数、焊接材料等因素密切相关。
通过合理调整焊接参数和选用合适的焊接材料,可以进一步提高焊接接头的性能。
五、应用实例及优缺点铝和铝合金扩散焊接在航空航天、交通运输、建筑等领域具有广泛的应用。
扩散工艺

扩散工艺培训----主要设备、热氧化、扩散、合金前言:扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。
扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。
本文主要介绍热氧化、扩散及合金工艺。
目录第一章:扩散区域设备简介……………………………………第二章:氧化工艺第三章:扩散工艺第四章:合金工艺第一章:扩散部扩散区域工艺设备简介炉管设备外观:扩散区域的工艺、设备主要可以分为:炉管:负责高温作业,可分为以下几个部分:组成部分功能控制柜→对设备的运行进行统一控制;装舟台:→园片放置的区域,由控制柜控制运行炉体:→对园片进行高温作业的区域,由控制柜控制升降温源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。
FSI:负责炉前清洗。
第二章:热氧化工艺热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。
热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。
硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。
2. 1氧化层的作用2.1.1用于杂质选择扩散的掩蔽膜常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。
利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。
1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。
同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。
作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。
2.1. 2缓冲介质层其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。
光伏电池制备工艺-项目三-扩散

9)看PLC上实际流量是否达到设定值,如果一致, 再设定小氮流量,增大到扩散时小氮流量值的一半,流量 稳定且达到设定值后,再隔着玻璃看源瓶是否漏源(注意 未稳定前不能直接看源瓶是否漏源,以免流量增大时可能 导致的喷源,造成人员伤害)。 10)实际流量和设定值一致后,把流量设定为扩散时 的流量,再隔着玻璃看源瓶是否漏源。 11)如果实际流量和设定值一致,把小氮设为零,在 PLC控制面板上关小氮进气电磁阀,关小氮出气电磁阀。 12)把大氮电磁阀打开,大氮设为25000。 13)检查恒温槽中纯水量是否达到恒温槽容积的2/3。
2 石英管清洗
1) 石英管清洗槽的清洗 2) 领取所需化学品(HF) 3) 戴好防毒面具和长乳胶手套进行配液 4) 将石英管运至清洗机边(使用纸盒包装内充海绵) 将石英管放入HF槽中 (三人操作,尾端先放入,注意不要碰断进气管和热偶管) 6) 加水稀释至液位淹没进气管为止 ; 7) 打开启动按钮使石英管转动进行清洗,间隔15~20分钟检 查一下管子的位置,谨防破裂
石英管清洗
8) 1~1.5小时后将管子取出,放入清水槽中漂洗 9) 先提高管尾,将管中HF倒出 10) 再提高管口,将热偶管中HF倒出 11) 排水,用水枪反复冲洗管子的内外壁 12) 用氮气枪将管子吹干(吹时保持管子的旋转状态) 13) 关闭清洗机电源 14) 将管子装入纸盒中备用 15) 将盖板全部盖好 16) 打扫卫生,保持洁净
任务二 扩散工艺操作流程
一、工艺、质量要求
1 扩散后硅片表面呈咖啡色,颜色均匀; 2 表面清洁,无染色,无明显斑迹; 3 单晶薄层电阻在50~60Ω/□之间; 多晶薄层电阻在55~65Ω/□之间,单片方块电阻控制在正 负5Ω/□以内; 4 P-N结深为0.2~0.4µm 方块电阻,简称方阻,指一个
扩散工艺知识

扩散工艺知识咱先来说说啥是扩散工艺哈。
就拿生活里常见的事儿打个比方,您要是在房间里喷了香水,那香味是不是会慢慢扩散到整个房间?这其实就有点像扩散工艺的原理。
扩散工艺呢,简单来讲,就是让一种物质从高浓度的地方向低浓度的地方移动,从而实现均匀分布。
这在很多领域都有应用,比如说在半导体制造中,那可是至关重要的一步。
我记得有一次,我去参观一家半导体工厂。
那时候,我就亲眼看到了扩散工艺的神奇之处。
工厂里的工人们穿着那种一尘不染的白色工作服,戴着帽子和口罩,只露出一双眼睛。
他们在一个巨大的车间里忙碌着,里面摆满了各种高科技的设备。
我走到一台正在进行扩散工艺的设备前,隔着玻璃仔细观察。
只见一片片小小的硅片被小心地放进一个像烤箱一样的设备里,然后设备开始运作,里面的温度和压力都被精确地控制着。
我就好奇地问旁边的工作人员:“这到底是咋回事呀?”工作人员特别耐心地给我解释说:“这就好比是在给这些硅片‘注入灵魂’,通过扩散工艺,把一些特殊的杂质均匀地‘撒’进硅片里,这样才能让硅片具备特定的电学性能,成为有用的半导体器件。
”咱再回到扩散工艺的知识上哈。
在化学领域,扩散工艺也常常被用到。
比如说,把一种溶液滴到另一种溶液里,如果不搅拌,它们也会慢慢地混合均匀,这也是扩散在起作用。
还有在生物领域,细胞之间物质的交换,也离不开扩散。
想象一下,细胞就像一个个小小的房子,它们之间的“门窗”就是用来进行物质扩散的通道。
扩散工艺的影响可大了去了。
就拿我们用的手机来说吧,里面的芯片能这么厉害,少不了扩散工艺的功劳。
要是没有精确的扩散控制,芯片的性能可就没法保证啦,您的手机可能就会变得又慢又卡。
在工业生产中,为了让扩散工艺更高效、更精准,科学家和工程师们可是费了不少心思。
他们不断地改进设备,优化工艺参数,就为了能让扩散的效果更好。
比如说,他们会研究怎么控制温度,因为温度高一点或者低一点,扩散的速度和效果都会不一样。
还有扩散的时间,多一秒少一秒,都可能影响最终的产品质量。
浅谈太阳能晶硅电池生产过程中的扩散工艺

浅谈太阳能晶硅电池生产过程中的扩散工艺太阳能晶硅电池主要是以单/多晶硅片为原材料,利用光伏效应将太阳能转化为电能。
在电池片的生产过程中,扩散制PN结是最核心的工序。
扩散工艺对电池的性能有着重要影响。
文章从工厂生产的角度,结合工艺及设备使用情况,浅谈扩散工艺的技术特点。
标签:晶硅电池;扩散制结;工艺1 扩散在传统电池生产中的工艺步骤原材料硅片来料检验——清洗制绒——扩散制结——干法刻蚀洗磷(或湿法刻蚀)——PECVD镀膜——丝网印刷——烧结——测试分选——电池片成品包装。
2 扩散的原理及POCl3制PN结物质分子因浓度梯度而进行分子转移是扩散的基本原理;在工厂的晶硅电池生产中,普遍采用热扩散法:即在P型半导体表面掺杂五价磷元素,形成PN结,具体是指以液态POCl3作为扩散源,在高温有氧条件下(>600℃)充分分解反应,生成二氧化硅(SiO2)和磷原子,利用磷原子(N型)向硅片(P型)内部扩散的方法,改变硅片表面层的导电类型,形成PN结(同时在硅片表面形成一层磷硅玻璃),达到合适的掺杂浓度;当有适当波长的光照射在该PN结上,由于光伏效应而在势垒区两边形成电势,在开路情况下稳定的电势差形成电流。
POCl3→PCL5+P2O5PCL5+O2→P2O5+CL2↑POCl3+O2→P2O5+CL2↑P2O5+Si→SiO2+P↓POCl3液态源扩散具有生产效率较高,制结均匀平整,扩散层表面良好等优点。
3 扩散设备和扩散的具体工艺过程扩散方式有管式和链式之分;目前,国内工厂中普遍采用管式扩散炉(下同)制作电池片的PN结;其主要由控制部分、推舟净化部分、炉体部分、气源部分等组成。
在正常的生产过程中(无需运行饱和工艺),其具体工艺过程为:进舟——低温通氧和大氮——低温通大氮,氧和小氮——高温通大氮,氧和小氮——高温通大氮(恒温)——低温通大氮(冷却)——出舟。
低温通氧即预扩散,可改善方阻的均匀性,减少死层,同时也可以缩短整个工艺时间;扩散过程中对气氛的均匀性要求较高,因此在生产过程中应尽量避免将桨暴露在空气中过长时间;在初次使用或者清洗完成后要运行饱和工艺使扩散环境更加均匀良好。
第二章扩散

本体原子
杂质原子
不需要自填隙本体原子来推动扩散过程的进行
3、Fair空位模型:
建立在空位扩散机制的基础上
1)“空位电荷":中性空位俘获电子,使其带负电;中性空位 的邻位原子失去电子,可使空位带正电。 2)空位模型:总扩散率是所有荷电状态的空位的扩散率的加权 总和,加权系数是这些空位存在的概率。 带电空位的数量 总扩散率表达式:
■
硅中杂质的扩散率曲线(低浓度本征扩散):
■ 中性空位的扩散率:
其中,E0a是中性空位的激活能(eV);
D00是一个与温度无关的系数,取决于晶格结构和振动频率。(cm2/s)
■
如果必须考虑带电空位的扩散率,则扩散率就是位置的函
数,因而费克第二定律方程必须采用数值方法来求解。
4、费克第二定律的分析解
1、横向扩散:杂质在纵向扩散的同时,也进行横向的扩散
■
一般横向扩散长度是纵向扩散深度的0.75 - 0.85;
横向扩散的存在影响IC集成度,也影响PN结电容。
■
2、内建电场的影响
高温下杂质处于离化状态,杂质离子与电子(空穴)同时向低浓 度方向扩散。电子(空穴)扩散速度快,形成空间电荷层,建立 一自建电场,使离子运动形式为扩散+漂移。 有效扩散系数Deff
费克简单扩散方程 1) 第一种边界条件:(预淀积扩散) 在任何大于零的时刻,表面的杂质浓度固定
此时扩散方程的解为: 被称为特征扩散长度(pm); Cs是固定的表面杂质浓度(/cm3) 预淀积扩散又被称为恒定表面源(浓度)扩散;在实际工艺中, Cs的值一般都是杂质在硅中的高浓度,与温度有关。
2、杂质扩散机制
(3) 空位扩散(vacancy-assisted Diffusion Mechanism)
扩散工艺参考资料

VI1324
Байду номын сангаас
V41 I 23
V12 I34
V23 I 41
其中,F(Q)是形状因子,对于正方形结构,
范德堡法测量样品薄层电阻
2)杂质浓度—深度分布关系的测量--扩展电阻法
(1) 将样品磨出一个小角度斜面
(2) 将样品放在载片台上,用一对探针以预定压力与样品 表面接触,测量该电阻值。
(3) 将该电阻值与一个已知浓度的标准值进行比较, 从电阻率反推出载流子的分布。
第一步:预淀积扩散
第二步:推进扩散
整个扩散工艺过程
开启扩散炉 清洗硅片 预淀积
推进、激活 测试
预淀积
温度:800~1000℃ 时间:10~30min
预淀积的杂质层
推进
温度:1000~1250℃
预淀积的杂质层
结深
激活
稍微升高温度 替位式杂质原子。
激活
杂质原子
√
实际扩散分布的分析(与理论的偏差)
扩散工艺和设备
1、目前的扩散工艺已基本被离子注入取代,只有在进行重掺 杂时还用扩散工艺进行。
2、 扩散工艺的分类主要取决于杂质源的形态,常见的杂质源 形态包括:
(1) 气态源: AsH3,PH3,B2H6 (2) 固态源:
单磷酸铵
(NH4H2PO4) 砷酸铝
(AlAsO4)
(3) 液态源
硼源:BBr3(沸点90℃) 磷源:POCl3(沸点107℃)
主要是空位扩散机制。
氧化增强扩散或氧化阻滞扩散
4、SiO2中的扩 散
对于常见的杂质,如B,P,As等,其在SiO2中的扩散系数比在 Si中的扩散系数小得多,因此,SiO2经常用做杂质扩散的掩蔽层
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扩散工艺常见质量问题及分析
一、硅片表面不良
1、表面合金点。
形成表面合金点的主要原因是表面浓度过高。
(1)预淀积时携带源的气体流量过大。
如CVD预淀积时源的浓度过高,液态源预淀积时通源的气体流量过大或在通气时发生气体流量过冲;
(2)源温过高,使扩散源的蒸气压过大;
(3)源的纯度不高,含有杂质或水份;
(4)预淀积时扩散温度过高,时间太长;
为了改善高浓度扩散的表面,常在浓度较高的预淀积气氛中加一点氯气,防止合金点产生。
2、表面黑点或白雾。
这是扩散工艺中经常出现的表面问题。
一般在显微镜下观察是密布的小黑点,在聚光灯下看是或浓或淡的白雾。
产生的原因主要有:
(1)硅片表面清洗不良,有残留的酸性水汽;
(2)纯水或化学试剂过滤孔径过大,使纯水或化学试剂中含有大量的悬浮小颗粒(肉眼观察不到);
(3)预淀积气氛中含有水分;
(4)扩散N2中含有水分;
(5)硅片在扩散前暴露在空气中时间过长,表面吸附酸性气氛;
3、表面凸起物。
主要是由较大粒径的颗粒污染经过高温处理后形成的。
如灰尘、头屑、纤维等落在硅片表面,或石英管内的粉尘、硅屑等在进出舟时溅到硅片表面。
表面凸起物一般在日光灯下用肉眼可以看到。
4、表面氧化层颜色不一致。
通常是用CVD预淀积时氧化层厚度不均匀;有时也可能是扩散时气体管路泄漏引起气氛紊乱;气体还有杂质,使扩散过程中生长的氧化层不均匀,造成氧化层表面发花;
5、硅片表面滑移线或硅片弯曲。
这是硅片在高温下的热应力引起的,一般是由进出舟速度过快,硅片间隔太小,石英舟开槽不合适等引起的。
6、硅片表面划伤,边缘缺损,或硅片开裂等,通常是由操作不当造成的。
也有石英舟制作不良(放片子的槽不在同一平面上或槽开的太窄,卡片子)的因素。
二、漏电流大
漏电流大在集成电路失效的诸因素中通常占据第一位。
造成集成电路漏电流大的原因很多,几乎涉及到所有的工序。
主要有:
(1)表面沾污(主要是重金属离子和碱金属离子)引起的表面漏电;
(2)Si-SiO2界面的正电荷,如钠离子、氧空位,界面态等引起的表面沟道效应,在p型区形成反型层或耗尽层,造成电路漏电流偏大;
(3)氧化层的缺陷(如针孔等)破坏了氧化层在杂质扩散时的掩蔽作用和氧化层在电路中的绝缘作用而导致漏电;
(4)硅片(包括外延层)的缺陷引起杂质扩散时产生管道击穿;
(5)隔离再扩散深度和浓度不够,造成隔离岛间漏电流大(严重时为穿通);
(6)基区扩散前有残留氧化膜或基区扩散浓度偏低,在发射区扩散后表现为基区宽度小,集电极-发射极间反向击穿电压低,漏电流大;
(7)发射区扩散表面浓度太低,引起表面复合电流;
(8)引线孔光刻套偏和侧向腐蚀量过大后,由AL布线引起的短路漏电流;
(9)AL合金温度过高或时间过长,引起浅结器件发射结穿通;
减少或控制集成电路的漏电流,需要在整个制造过程中全面、综合地管理,防止有可能导致漏电的各个因素的产生。
从某种意义上说,漏电流的控制水平反映了集成电路生产线的管理水平和技术水平。
三、薄层电阻偏差
薄层电阻偏差超规范是扩散工艺最常见的质量问题,造成薄层电阻偏差的主要因素有:(1)扩散炉温失控或不稳定;
(2)用CVD法预淀积时,气体流量不稳定或热板温度不稳定;
(3)用其他方法预淀积时,携带源的气体流量不稳定,或源温失控;
(4)预淀积或在扩散时气体管路泄漏或气体含有杂质;
(5)光刻腐蚀后有残留氧化膜或在清洗过程中产生较厚的自然氧化膜(大于2nm)阻碍了杂质扩散;
(6)预淀积或在扩散过程中设备的故障或误动作;
(7)操作人员的误操作;
四、器件特性异常
器件特性异常主要是在发射区再扩散和合金后检测器件的击穿电压异常;Hfe不合规范,小电流下测的Hfe过低,稳压二极管稳压值不合规范;电阻呈非线性等。
1、击穿点压异常
击穿点压异常异常一般有低压击穿、分段击穿、软击穿、二次击穿和击穿电压蠕变等。
影响击穿点压的因素比较多,有些击穿异常如二次击穿,不仅设计芯片制造工艺,还和晶体管的设计、后工序的组装等有关,这里仅就扩散工艺有关的问题作一些分析。
(1)表面漏电大,可引起软击穿、分段击穿、击穿电压蠕变等异常现象;
(2)由缺陷造成的扩散杂质管道穿通和隔离扩散深度不够,会产生分段击穿;
(3)由于基区宽度太窄或发射区扩散后造成发射极和集电极短路,会使击穿电压降低,甚至为零。
造成这种现象的工艺原因是基区扩散浓度过低或发射区扩散结深过深,发射区再扩散时Hfe调整过大也会使击穿电压降低;
(4)Si-SiO2界面电荷密度高,尤其是可动离子密度过高,常常会引起击穿电压的不稳定,造成击穿电压的蠕变。
有时测试试片表面处理不好也会发现击穿电压蠕变的现象。
2、Hfe异常的原因:
(1)基区扩散异常。
基区扩散浓度过低(薄层电阻大)会使Hfe很容易调整过大;基区扩散浓度过高(薄层电阻小)会使Hfe很难调大。
基区扩散的不均匀性会使发射区再扩散后Hfe也很不均匀;
(2)发射区光刻腐蚀后有残留氧化膜,使发射区预淀积杂质的扩散受到阻挡,Hfe很难调大;
(3)发射区预淀积浓度异常,使Hfe很难调整;
(4)发射区再扩散时间偏短,则Hfe偏低,发射区再扩散时间偏长则Hfe偏大。
一般因时间控制不当很容易造成扩散过头的现象使Hfe偏大;
(5)表面漏电或可动离子密度过高,会使小电流Hfe偏小。
提高小电流Hfe的方法通常是采取通H2合金;
3、电阻呈非线性
电阻呈非线性主要是由于铝引线的接触不良引起的,通常的工艺原因是引线孔刻蚀不净,有残膜(氧化膜或残胶等)。