DSP课程设计报告
dsp简单课程设计

dsp简单课程设计一、教学目标本课程旨在让学生了解和掌握DSP(数字信号处理器)的基本原理和应用,培养学生对DSP技术的兴趣和热情。
知识目标:使学生掌握DSP的基本概念、工作原理和主要性能指标;了解DSP 在不同领域的应用,如通信、音视频处理、工业控制等。
技能目标:通过实践操作,培养学生使用DSP芯片进行程序设计和系统应用的能力;使学生能够运用DSP技术解决实际问题,提高创新能力。
情感态度价值观目标:培养学生对新技术的敏感度,增强其对DSP技术的自信心和责任感;激发学生对电子科技和自动化的兴趣,培养其积极向上的学习态度。
二、教学内容本课程的教学内容主要包括DSP的基本原理、DSP芯片的结构与工作原理、DSP程序设计方法和DSP应用实例。
1.DSP基本原理:介绍DSP的定义、分类和发展历程,使学生了解DSP技术的基本概念。
2.DSP芯片结构与工作原理:详细讲解DSP芯片的内部结构、工作原理和主要性能指标,以便学生能够深入理解DSP的运作方式。
3.DSP程序设计方法:教授DSP的编程语言、程序设计流程和调试技巧,使学生具备实际的编程能力。
4.DSP应用实例:分析DSP技术在通信、音视频处理、工业控制等领域的应用实例,帮助学生了解DSP技术的广泛应用。
三、教学方法为了提高教学效果,本课程将采用讲授法、讨论法、案例分析法和实验法等多种教学方法。
1.讲授法:通过教师的讲解,使学生掌握DSP的基本原理和应用。
2.讨论法:学生就DSP技术的相关问题进行讨论,培养学生的思考能力和团队协作精神。
3.案例分析法:分析DSP技术在实际应用中的案例,帮助学生更好地理解DSP技术的价值和应用前景。
4.实验法:安排学生进行DSP实验,锻炼学生的动手能力,提高其对DSP技术的实际应用能力。
四、教学资源为了保证教学效果,我们将准备以下教学资源:1.教材:选用权威、实用的DSP教材,为学生提供系统、全面的学习资料。
2.参考书:提供相关的DSP技术参考书籍,丰富学生的知识储备。
dsp综合设计课程设计报告

dsp综合设计课程设计报告一、教学目标本课程的教学目标是使学生掌握DSP(数字信号处理器)综合设计的基本理论和实践技能。
通过本课程的学习,学生应能够:1.知识目标:理解DSP的基本概念、原理和应用;熟悉DSP芯片的内部结构和编程方法;掌握DSP算法的设计和实现。
2.技能目标:能够使用DSP芯片进行数字信号处理的设计和实现;具备DSP程序的编写和调试能力;能够进行DSP系统的故障诊断和优化。
3.情感态度价值观目标:培养学生对DSP技术的兴趣和热情,提高学生的问题解决能力和创新意识,使学生认识到DSP技术在现代社会中的重要性和应用价值。
二、教学内容本课程的教学内容主要包括DSP的基本理论、DSP芯片的内部结构和工作原理、DSP程序的设计和调试方法、DSP应用系统的设计和实现等。
具体包括以下几个部分:1.DSP的基本概念和原理:数字信号处理的基本概念、算法和特点;DSP芯片的分类和特点。
2.DSP芯片的内部结构:了解DSP芯片的内部结构和工作原理,包括CPU、内存、接口、外设等部分。
3.DSP程序的设计和调试:学习DSP程序的设计方法,包括算法描述、程序编写和调试技巧。
4.DSP应用系统的设计和实现:掌握DSP应用系统的设计方法,包括系统架构、硬件选型、软件开发和系统测试等。
三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括讲授法、案例分析法、实验法等。
具体方法如下:1.讲授法:通过教师的讲解,使学生掌握DSP的基本理论和原理,引导学生理解DSP技术的核心概念。
2.案例分析法:通过分析具体的DSP应用案例,使学生了解DSP技术的实际应用,培养学生的实际操作能力。
3.实验法:通过实验操作,使学生熟悉DSP芯片的使用方法和编程技巧,提高学生的实践能力。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选择一本合适的教材,作为学生学习的基础资料,提供系统的DSP知识。
dsp课程设计实验报告

DSP课程设计实验语音信号的频谱分析:要求首先画出语音信号的时域波形, 然后对语音信号进行频谱分析。
在MATLAB中, 可以利用函数fft对信号进行快速傅立叶变换, 得到信号的频谱特性, 从而加深对频谱特性的理解。
其程序为:>> [y,fs,bits]=wavread('I:\xp.wav',[1024 5120]);>> sound(y,fs,bits);>> Y=fft(y,4096);>> subplot(221);plot(y);title('原始信号波形');>> subplot(212);plot(abs(Y));title('原始信号频谱');程序运行结果为:设计数字滤波器和画出频率响应:根据语音信号的特点给出有关滤波器的性能指标:低通滤波器性能指标, =1000Hz, =1200Hz, =100dB, =1dB;高通滤波器性能指标, =4800Hz, =5000Hz, =100dB, =1dB;带通滤波器性能指标, =1200Hz, =3000Hz, =1000Hz, =3200Hz, =100dB, =1dB;要求学生首先用窗函数法设计上面要求的三种滤波器, 在MATLAB中, 可以利用函数firl 设计FIR滤波器;然后再用双线性变换法设计上面要求的三种滤波器, 在MA TLAB中, 可以利用函数butte、cheby1和ellip设计IIR滤波器;最后, 利用MATLAB中的函数freqz画出各种滤波器的频率响应, 这里以低通滤波器为例来说明设计过程。
低通:用窗函数法设计的低通滤波器的程序如下:>> fp=1000;fc=1200;As=100;Ap=1;fs=22050;>> wc=2*fc/fs;wp=2*fp/fs;>> N=ceil((As-7.95)/(14.36*(wc-wp)/2))+1;>> beta=0.1102*(As-8.7);>> Win=Kaiser(N+1,beta);>>b=firl(N,wc,Win);>>freqz(b,1,512,fs);程序运行结果:这里选用凯泽窗设计, 滤波器的幅度和相位响应满足设计指标, 但滤波器长度(N=708)太长, 实现起来很困难, 主要原因是滤波器指标太苛刻, 因此, 一般不用窗函数法设计这种类型的滤波器。
dsp大学课程设计

dsp大学课程设计一、教学目标本课程的教学目标旨在帮助学生掌握数字信号处理(DSP)的基本理论、算法和实现方法。
通过本课程的学习,学生应能够:1.知识目标:–理解数字信号处理的基本概念、原理和数学基础。
–熟悉常用的数字信号处理算法,如傅里叶变换、离散余弦变换、快速算法等。
–掌握DSP芯片的基本结构、工作原理和编程方法。
2.技能目标:–能够运用DSP算法进行实际问题的分析和解决。
–具备使用DSP开发工具和实验设备进行软硬件调试的能力。
–能够编写DSP程序,实现数字信号处理算法。
3.情感态度价值观目标:–培养学生的创新意识和团队合作精神,提高解决实际问题的能力。
–增强学生对DSP技术的兴趣和热情,为学生进一步深造和职业发展奠定基础。
二、教学内容本课程的教学内容主要包括以下几个方面:1.数字信号处理基础:包括信号与系统的基本概念、离散信号处理的基本算法等。
2.离散余弦变换和傅里叶变换:离散余弦变换(DCT)和快速傅里叶变换(FFT)的原理和应用。
3.数字滤波器设计:低通、高通、带通和带阻滤波器的设计方法和应用。
4.DSP芯片和编程:DSP芯片的基本结构、工作原理和编程方法,包括C语言和汇编语言编程。
5.实际应用案例:包括音频处理、图像处理、通信系统等领域的实际应用案例分析。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式:1.讲授法:通过教师的讲解,使学生掌握数字信号处理的基本概念和原理。
2.讨论法:通过分组讨论和课堂讨论,培养学生的思考能力和团队合作精神。
3.案例分析法:通过分析实际应用案例,使学生了解数字信号处理在工程中的应用。
4.实验法:通过实验操作,使学生掌握DSP芯片的基本编程方法和实验技能。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《数字信号处理》(或其他指定教材)。
2.参考书:提供相关的参考书籍,供学生自主学习和深入研究。
3.多媒体资料:制作课件、教学视频等,以丰富教学手段和提高学生的学习兴趣。
基于dsp课程设计报告

基于dsp课程设计报告一、教学目标本课程的教学目标分为三个维度:知识目标、技能目标和情感态度价值观目标。
1.知识目标:通过本课程的学习,学生需要掌握DSP(数字信号处理器)的基本概念、原理和应用。
具体包括:了解DSP的发展历程和分类;理解DSP的基本结构和主要性能指标;掌握DSP的编程方法和应用领域。
2.技能目标:培养学生具备使用DSP进行数字信号处理的能力。
具体包括:学会使用DSP开发环境和工具;掌握DSP编程语言和算法;能够独立完成DSP项目的开发和调试。
3.情感态度价值观目标:激发学生对DSP技术的兴趣和好奇心,培养学生的创新意识和团队合作精神。
使学生认识到DSP技术在现代社会中的重要性和广泛应用,树立正确的技术观和价值观。
二、教学内容本课程的教学内容分为五个部分:DSP基础知识、DSP原理与结构、DSP编程方法、DSP应用案例和DSP项目实践。
1.DSP基础知识:介绍DSP的发展历程、分类和主要性能指标。
2.DSP原理与结构:讲解DSP的基本原理、结构和主要组成部分,如运算器、存储器、输入输出接口等。
3.DSP编程方法:学习DSP编程语言、算法和开发环境,掌握基本的编程技巧。
4.DSP应用案例:分析典型的DSP应用场景,如音频处理、图像处理、通信系统等。
5.DSP项目实践:分组进行项目实践,培养学生独立完成DSP项目的能力。
三、教学方法本课程采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等,以激发学生的学习兴趣和主动性。
1.讲授法:用于传授基本知识和理论,引导学生掌握DSP的基本概念和原理。
2.讨论法:鼓励学生针对案例进行分析讨论,培养学生的思考能力和团队协作精神。
3.案例分析法:通过分析实际应用案例,使学生更好地理解DSP技术的应用和价值。
4.实验法:让学生动手进行实验,培养实际操作能力和创新思维。
四、教学资源本课程所需教学资源包括教材、参考书、多媒体资料和实验设备。
1.教材:选用权威、实用的教材,如《数字信号处理器原理与应用》等。
dsp交通等课程设计报告

dsp交通等课程设计报告一、课程目标知识目标:1. 让学生理解交通信号灯的基本原理,掌握数字信号处理(DSP)技术在交通控制中的应用。
2. 使学生掌握交通流量的基本概念,学会分析交通数据,并运用DSP技术进行优化处理。
3. 帮助学生了解我国交通法规及交通信号控制的相关知识。
技能目标:1. 培养学生运用DSP技术进行交通信号灯控制程序编写的能力。
2. 培养学生运用数据分析方法,对交通流量进行有效监控和优化调整的能力。
3. 提高学生的实践操作能力,学会使用相关软件和硬件进行交通信号控制系统的设计和调试。
情感态度价值观目标:1. 培养学生关注社会交通问题,树立解决实际问题的责任感和使命感。
2. 激发学生对数字信号处理技术的兴趣,提高学生主动学习的积极性。
3. 培养学生的团队协作意识,学会与他人共同探讨、解决问题。
本课程针对年级特点,结合实际交通问题,以数字信号处理技术为载体,旨在提高学生的理论知识水平、实践操作能力以及解决实际问题的能力。
课程目标具体、可衡量,为后续教学设计和评估提供明确方向。
二、教学内容本章节教学内容主要包括以下三个方面:1. 交通信号灯原理及DSP技术基础- 教材章节:第一章 交通信号灯原理;第二章 DSP技术概述- 内容安排:介绍交通信号灯的基本原理、功能及分类;讲解DSP技术的基本概念、发展历程及其在交通控制领域的应用。
2. 交通流量分析及DSP技术应用- 教材章节:第三章 交通流量分析;第四章 DSP技术在交通控制中的应用- 内容安排:分析交通流量的基本特性,讲解数据采集、处理和优化方法;探讨DSP技术在交通信号控制、拥堵缓解等方面的应用实例。
3. 交通信号控制系统设计与实践- 教材章节:第五章 交通信号控制系统设计;第六章 实践操作- 内容安排:介绍交通信号控制系统的设计原理、硬件和软件选型;指导学生进行交通信号控制程序编写,开展实践操作,培养实际动手能力。
教学内容安排和进度:本章节共计12课时,分配如下:- 第1-4课时:交通信号灯原理及DSP技术基础- 第5-8课时:交通流量分析及DSP技术应用- 第9-12课时:交通信号控制系统设计与实践教学内容具有科学性和系统性,结合教材章节和实际案例,旨在帮助学生掌握交通信号控制相关知识,提高实践操作能力。
dsp课程设计报告方波

dsp课程设计报告方波一、教学目标本课程的教学目标是使学生掌握方波信号的性质、产生方法和应用,能够运用数字信号处理理论分析和设计方波信号处理电路,培养学生的理论联系实际的能力和创新意识。
具体分解为以下三个目标:1.知识目标:(1)掌握方波信号的定义、特点和分类。
(2)了解方波信号产生的方法,能够运用相关算法生成方波信号。
(3)熟悉方波信号在数字信号处理中的应用领域,如通信、雷达、音频处理等。
2.技能目标:(1)能够运用数学方法分析方波信号的波形、频率、幅值等参数。
(2)掌握至少一种编程语言,能够实现方波信号的生成和处理算法。
(3)具备一定的实验操作能力,能够通过实验验证方波信号处理的理论。
3.情感态度价值观目标:(1)培养学生对数字信号处理的兴趣,增强学习的主动性。
(2)培养学生团队合作精神,提高沟通与协作能力。
(3)培养学生关注国家发展战略,认识数字信号处理在科技前沿和国家经济建设中的重要地位。
二、教学内容本课程的教学内容主要包括以下几个部分:1.方波信号的基本概念:介绍方波信号的定义、特点和分类,使学生了解方波信号在数字信号处理中的重要性。
2.方波信号的产生方法:讲解方波信号产生的原理,介绍常见的方波信号生成算法,如查表法、计数器法等。
3.方波信号的处理方法:分析方波信号的处理方法,如滤波、采样、量化等,使学生掌握方波信号处理的基本技巧。
4.方波信号处理的应用:介绍方波信号在通信、雷达、音频处理等领域的应用,提高学生的实践能力。
5.实验与实践:安排一定数量的实验,使学生在实践中掌握方波信号处理的理论,培养学生的动手能力。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:教师讲解方波信号的基本概念、产生方法、处理方法和应用,引导学生掌握课程的核心知识。
2.讨论法:学生分组讨论方波信号处理的问题,培养学生的思考能力和团队合作精神。
3.案例分析法:分析实际案例,使学生了解方波信号处理在实际工程中的应用,提高学生的实践能力。
DSP技术课程设计实验报告

实验设计报告实验项目名称:基于DSP的数字滤波器设计与仿真目录一、课程设计的目的和要求 (3)二、系统功能介绍及总体设计方案 (3)1、系统功能介绍 (3)2、总体设计方案流程图 (3)三、主要内容和步骤 (4)1、滤波器原理 (4)2、DSP 实现FIR滤波的关键技术 (4)3.操作步骤 (6)四、详细设计 (7)1、MATLAB程序流程图 (7)2、CCS汇编程序流程图 (8)五、实验过程 (8)1.汇编语言 (8)2.C语言 (13)六、结论与体会 (18)七、参考文献 (19)八、附件:源程序清单 (19)汇编程序清单: (19)C程序清单 (21)一、课程设计的目的和要求通过课程设计,加深对DSP芯片TMS320C54x的结构、工作原理的理解,获得DSP应用技术的实际训练,掌握设计较复杂DSP系统的基本方法。
通过使用汇编语言编写具有完整功能的图形处理程序或信息系统,使学生加深对所学知识的理解,进一步巩固汇编语言讲法规则。
学会编制结构清晰、风格良好、数据结构适当的汇编语言程序,从而具备解决综合性实际问题的能力。
二、系统功能介绍及总体设计方案1、系统功能介绍一个实际的应用系统中,总存在各种干扰。
数字滤波器在语音信号处理、信号频谱估计、信号去噪、无线通信中的数字变频以及图像信号等各种信号处理中都有广泛的应用,数字滤波器也是使用最为广泛的信号处理算法之一。
在本设计中,使用MATLAB模拟产生合成信号,然后利用CCS进行滤波。
设定模拟信号的采样频率为32000Hz,。
设计一个FIR低通滤波器,其参数为:滤波器名称: FIR低通滤波器采样频率: Fs=40000Hz通带: 4000Hz~4500Hz过渡带: 2500Hz~3000Hz,3500Hz~4000Hz带内波动: 0.5dB阻带衰减: 50dB滤波器级数: N=154滤波器系数:由MATLAB根据前述参数求得。
2、总体设计方案流程图三、主要内容和步骤1、滤波器原理对于一个FIR 滤波器系统,它的冲击响应总是又限长的,其系统函数可记为:其中N-1是FIR 的滤波器的阶数,为延时结,为端口信号函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP课程设计报告摘要本次课程设计介绍了数字信号处理的最小系统的整个设计过程,该最小系统的硬件由主控芯片TWS320VC5402、电源电路、时钟电路、复位电路、JTAG 接口、外部存储器构成。
DSP 芯片是一种独特的微处理器,是以数字信号来处理大量信息的器件,其工作原理是接收模拟信号,转换为0或1的数字信号。
再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式,而且具有可编程性。
所以本次课程设计的过程是ADC0809完成数据的采样及A/D转换后,数字信号通过TMS320VC5402处理后,由DAC0832完成D/A转换并输出;外部存储器采用通用EPROM, TMS320VC5402采用8位并行EPROM引导方式;并加入了标准的14针JTAG 接口,便于系统的调试与仿真。
AbstractThe course design introduces the smallest system of DSP and its design process. The smallest system consists of main control chip that is TMS320VC5402, power circuit, clock circuit, reset circuit, JTAG interface circuit and external memory constitute.The chip of DSP is a unique microprocessor which is mainly dealing with digital signal, so it transforms analog signal to digital signal including 0 and 1. And then chip modifies, deletes and strengths digital signal that it can be transformed into analog signal through other chips. The chip of DSP can be programmed. Next, the process is following. The chip deals with digital signal after ADC0809 chip finishes data collection and transformation, and DAC0832 transforms digital signal to analog signal and outputs the analog signal. The external memory adopts EPROM. In order to debug and simulate , it adds the standard JTAG interface of 14 pins.1绪论在近20 多年时间里,DSP 芯片的应用已经从军事、航空航天领域扩大到信号处理、通信、雷达、消费等许多领域。
主要应用有信号处理、通信、语音、图形、图像、军事、仪器仪表、自动控制、医疗、家用电器等。
DSP 主要应用市场为3C 领域,占整个市场需求的90%。
数字蜂窝电话是DSP最为重要的应用领域之一。
由于DSP 具有强大的计算能力,使得移动通信的蜂窝电话重新崛起,并创造了一批诸如GSM、CDMA 等全数字蜂窝电话网。
在Modem 器件中,DSP 更是成效卓著,不仅大幅度提高了传输速率,且具有接收动态图像能力。
另外,可编程多媒体DSP 是PC 领域的主流产品。
以XDSL Modem为代表的高速通信技术与MPEG 图像技术相结合,使得高品位的音频和视频形式的计算机数据有可能实现实时交换。
目前的硬盘空间相当大,这主要得益于CDSP(可定制DSP)的巨大作用。
预计在今后的PC 机中,一个DSP 即可完成全部所需的多媒体处理功能。
DSP 也是消费类电子产品中的关键器件。
由于DSP的广泛应用,数字音响设备的更新换代周期变得非常短暂。
用于图像处理的DSP,一种用于JPEG 标准的静态图像数据处理;另一种用于动态图像数据处理。
2课题说明2.1功能要求完成基于TMS320VC5402 的DSP 最小系统设计;(1)绘制系统框图(VISIO);(2)包括电源设计、复位电路设计、时钟电路设计、存储器设计、JTAG接口设计等,用Protel 软件绘制原理图和PCB 图;(3)编写测试程序;(4)从理论上分析,设计的系统要满足基本的信号处理要求;2.2 DSP的特点DSP 芯片是模拟信号变换成数字信号以后进行高速实时处理的专用微处理器,其处理速度比最快的CPU 还快10-50 倍,具有处理速度高、功能强、性能价格比好以及速度功耗比高等特点,被广泛应用于具有实时处理要求的场合。
DSP 系统以DSP 芯片为基础,具有以下优点。
(1)高速性,DSP 运行速度高达1000MIPS 以上(2)编程方便,可编程DSP 可使设计人员在开发过程中灵活方便的对软件进行修改和升级。
(3)稳定性好,DSP 系统以数字处理为基础,受环境温度及噪声的影响比较小,可靠性高。
(4)可重复性好,数字系统的性能基本上不受元器件参数性能的影响,便于测试、调试和大规模生产。
(5)集成方便,DSP 系统中的数字部件有高度的规范性,便于大规模集成。
(6)性价比高,常用的DSP 价格在 5 美元以下。
2.3 TMS320VC5402的硬件资源TMS320VC5402 是TI 的第七代DSP 产品之一,它具有优化的CPU 结构,内部有 1 个40 位的算术逻辑单元(包括一个40 位的桶式移位寄存器和2 个独立的40 位累加器),一个17×17 的乘法器和一个40 位专用加法器,16K 字RAM 空间和4K×16bit ROM 空间。
共20 根地址线,可寻址64K 字数据区和1M 字程序区,具有64K I/O 空间。
处理速度为l00M IPS ,速度高、功耗低。
TMS320VC5402 采用修正的哈佛结构和8 总线结构(4 条程序/数据总线和4条地址总线),以提高运算速度和灵活性。
在严格的哈佛结构中,程序存储器和数据存储器分别设在两个存储空间,这样,就允许取址和执行操作完全重叠。
修正的哈佛结构中,允许在程序和数据空间之间传送数据,从而使处理器具有在单个周期内同时执行算术运算、逻辑运算、位操作、乘法累加运算以及访问程序和数据存储器的强大功能。
与修正的哈佛结构相配合,TMS320VC5402 还采用了一个 6 级深度的指令流水线,每条流水线之间彼此独立,在任何一个机器周期内可以有 1 至 6 条不同的指令在同时工作,每条指令工作在不同的流水线上,使指令的执行时间减小到最小和增大处理器的吞吐量。
TMS320VC5402 的硬件结构具有硬件乘法器、8 总线结构、功能强大的片内存储器配置和低功耗设计的特点。
因此,可以进行高速并行处理,同时,集成度高可节省硬件开销,提高系统抗干扰性。
它除了完成数字信号处理任务外,还可以兼顾通用单片机的操作任务,因此,它是集数字信号处理与通用控制电路于一体的多功能低功耗微处理器。
综上所述VC5402 的CPU 结构特征如下。
(1)具有高性能的改进的哈佛总线结构,即具有三条独立的16bit 数据存储器总线和一条16bit 的程序存储器总线。
(2)具有一个40bit 的算术逻辑单元,包括一个40bit 的筒形移位器和两个独立的加法器。
(3)17×17bit 的并行乘法器与专用的40bit 加法器相结合。
(4)具有专用于Viter bi 蝶形算法的比较、选择、和存储单元(CSSU)。
(5)指数译码器可以在一个指令周期内求一个40bit 累加数的指数值,这里的指数定义为累加器中没有数据占用的位数的个数减去8。
(6)两个地址发生器、八个辅助寄存器和两个辅助寄存器算术单元(ARAU)。
3电路设计3.1电路设计框图整个系统的硬件电路主要包含电源控制电路、时钟电路、复位电路、译码电路、输入接口电路、输出接口电路、存储器扩展电路和 JTAG 仿真接口电路 8部分。
3.2系统硬件概述(1)电源控制我们国家的电压电路标准是220V ,而TPS73HD318芯片所需的输入电压是5V 。
所以首先必须得将220V 的电压经过变压器或相关芯片转化为5V 电压。
如图所示的一种转化方式:TMS320VC5402 采用了双电源供电机制,以获得更好的电源性能,其工作电压为 3.3V 和 1.8V 。
其中,1.8V 主要为该器件的内部逻辑提供电压,包括 CPU 和其他所有的外设逻辑。
与 3.3V 供电相比,1.8V 供电大大降低功耗。
外部接口引脚仍然采用 3.3V 电压,便于直接与外部低压器件接口,而无需额外的电平变换电路。
为TPS73HD318提供5V 输入,就可以得到输出电压分别为3.3V ,1.8V ,TMS320VC D/A 存储A/D JTA 电时复每路的最大输出电流为750mA,并且提供两个宽度为200ms的低电平复位脉冲。
如图所示双电源电路:(2)时钟电路时钟电路就是像产生时钟一样准确的振荡电路,任何工作都按时间顺序,用于产生这个时间的电路。
时钟电路一般由晶体振荡器、晶振控制芯片和电容组成。
利用DSP 芯片内部的振荡器构成时钟电路,在芯片的Xl和X2/CLKIN引脚之间接入一个晶体和两个电容,用于启动内部振荡器。
(3)复位电路为确保微机系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的第一功能是上电复位。
一般微机电路正常工作需要供电电源为5V±5%,即4.75~5.25V。
由于微机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC超过4.75V低于5.25V以及晶体振荡器稳定工作时,复位信号才被撤除,微机电路开始正常工作。
VCC上电时,C充电,在10K电阻上出现电压,使得微机复位;几个毫秒后,C充满,10K电阻上电流降为0,电压也为0,使得单片机进入工作状态。
工作期间,按下S,C放电。
S松手,C又充电,在10K电阻上出现电压,使得微机复位。
(4)存储器设计5402片内提供了16k ×16bit的RAM和4k ×16 bit的ROM,片内的ROM不可用。
本系统程序容量比较小,一般不超过16 kB,考虑充分利用芯片的内部资源,采用引导装载的方式,以降低系统的设计难度和设计成本,缩短产品研制周期。
这里使用一片通用的64k ×8 bit的EPROM 27C512。