正弦波脉宽调制技术
空间矢量脉宽调制技术

空间矢量脉宽调制技术空间矢量脉宽调制技术(SPWM)是一种广泛应用于电力电子和驱动控制系统中的调制技术。
该技术是基于对正弦波进行Pulse Width Modulation(PWM)的基础上,通过多种空间矢量变换的方式,进一步提高功率电子器件的使用效率和控制精度。
本文旨在探究SPWM 技术的原理、发展历程及在实际应用中的优点和挑战。
一、SPWM技术的原理SPWM技术是一种通过调制信号的脉宽来控制功率开关器件的电力电子调制技术,其原理基于三相交流电源。
具体而言,SPWM技术涉及到对正弦波电源进行采样、比较、引出调制波等操作,最终生成宽度可调的PWM信号,用于控制功率开关器件的通断。
在SPWM技术中,生成一个矢量的宽度可以通过比较采样信号和调制信号来实现。
采样信号是正弦波电源经过采样转换后得到的“参照信号”,调制信号则是通过多种空间矢量变换技术得到的“控制信号”。
1. 采样:将三相电源的正弦波进行采样转换,得到由三个方向的“参照信号”。
2. 比较:将每个参照信号与对应的调制信号进行比较,得到每个周期内相应的PWM信号。
3. 引出调制波:通过正弦波调制,将参照信号转换成空间矢量,得到三个方向的“控制信号”。
4. 生成PWM信号:根据每个周期内相应的控制信号,生成宽度可调的PWM信号,用于控制功率开关器件的通断。
SPWM技术的发展历程可以追溯到上世纪70年代末,当时由于功率开关器件的普及,PWM技术成为电力电子调制技术的主流技术。
SPWM技术的发展缘起于对传统PWM技术中影响系统效率和精度的限制的挑战。
传统PWM技术在控制效率和精度上有着天然的限制,因此SPWM技术的出现实际是为了进一步提高系统的效率和精度。
在此基础上,SPWM技术一步步得到完善。
90年代初期,国外开始出现一些SPWM技术的研究成果,如空间矢量调制技术(SVM)、对称空间矢量调制技术(SSVM)等。
此后,国内也相继出现大量研究SPWM技术的文献。
三电平逆变器调制方法

三电平逆变器调制方法1. 三电平逆变器调制方法是指一种将直流电能转换为交流电能的电子器件,它通过控制电路中的开关器件,将直流电源的电压转换为三个不同电平的交流电压。
2. 最常用的三电平逆变器调制方法是基于脉宽调制技术,其中包括两种主要调制方法:三角波脉宽调制(SPWM)和正弦波脉宽调制(SPWM)。
3. 在三角波脉宽调制方法中,参考电压信号通常是一个三角波形,它与待生成的交流电压进行比较,根据比较结果控制开关器件的通断情况,实现不同电平的输出电压。
4. 正弦波脉宽调制方法是基于生成与期望输出正弦波形相匹配的脉冲信号。
通常,通过选择适当的参数,如调制指数、频率等,来调整输出波形的质量。
5. 在三电平逆变器调制方法中,不同的开关状态会导致不同的输出电压水平。
在三电平逆变器中,有三种基本的开关状态:1) 上平态:正负中性电平之间的状态,2) 下平态:负中性和零中性之间的状态,3) 零平态:正中性和零中性之间的状态。
6. 三电平逆变器调制方法的目标是尽可能减小输出电压的谐波含量,以保证输出波形更接近理想的正弦波形。
7. 三电平逆变器调制方法可以采用单极性或双极性开关器件,具体选择取决于应用需求和性能要求。
8. 在三电平逆变器调制方法中,通常需要使用相应的控制算法来实现输出电压的精确控制。
9. 调制方法的选择取决于应用要求。
在某些高性能应用中,正弦波脉宽调制可能更适合,而在一些低成本应用中,三角波脉宽调制可能更为常见。
10. 在三电平逆变器调制方法中,需要注意的一个重要问题是开关器件的导通和关断损耗,以及这些损耗对转换效率的影响。
11. 在三电平逆变器调制方法中,常用的控制策略包括基于传统 PI 控制器、神经网络控制器、模糊逻辑控制器等。
12. 对于带有恒定负载的应用,三电平逆变器调制方法通常可以提供更稳定和高效的输出。
13. 对于带有非线性负载的应用,三电平逆变器调制方法可以降低输出谐波含量,减小对负载的干扰。
脉宽调制(PWM)技术

现代电力电子及变流技术第四章脉宽调制(PWM)技术脉宽调制技术:按同一比例改变在ur 和uc交点时刻控制IGBT 的通断u r 和uc的点时刻制IGBT 的通断控制公用三角波载波uc 三相的调制信号依次u c u rW单相逆变器结构特点电路结构特征:2个桥臂输出电压:ab ag bg V V V =−结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
�逆变器共有4种开关状态—S a S b :00,01,10,11。
开关状态与电压的关系4.5 4.5 SVPWMSVPWM 的原理及实现结构特点�两个桥臂电压V ag 和V bg 分别独立可控——控制存在两个自由度;�由于连接了负载,输出电压V ab 具有唯一性——只有一个自由度。
如何分析两维的桥臂电压和一维的输出电压之间的联系?几何分析方法矢量空间�桥臂电压构成两维空间,两个自由度分别代表两个垂直方向——桥臂电压空间;�输出电压只有一个自由度,构成一维空间 ——输出电压空间。
4.5 4.5 SVPWMSVPWM 的原理及实现桥臂电压和输出电压的联系�采用投影方式建立联系;�开关状态(00),(11)形成的两个桥臂电压——对应一个输出电压(0V)。
这一投影具有唯一性投影关系ag ab bg 01111V V V V −⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦V 0是零序电压*11ag 22ab 11bg 220*V V V V ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦逆变器控制方法V 0*为一定范围的任意数注:V 0*取常数(如V i )时,Vag 和Vbg 的驱动波形可以设计。
例:V ab *取0.5V i , V 0*取V iV ag 取0.75V i , V bg 取0.25V ia 桥臂上管b 桥臂下管b 桥臂上管a 桥臂下管4.5 4.5 SVPWMSVPWM 的原理及实现V 0*取其他值会怎样? V 0*有没有一个取值原则?4.5 4.5 SVPWMSVPWM 的原理及实现三相逆变器结构特点结构特征:3个桥臂电路特征:()ng ag bg cg 3V V V V =++结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
SVPWM的等效算法及SVPWM与SPWM的本质联系

SVPWM的等效算法及SVPWM与SPWM的本质联系一、本文概述随着电力电子技术的快速发展,空间矢量脉宽调制(SVPWM)和正弦脉宽调制(SPWM)作为两种重要的调制策略,在电力转换和控制领域得到了广泛应用。
本文旨在探讨SVPWM的等效算法,并深入揭示SVPWM 与SPWM之间的本质联系。
我们将对SVPWM的基本原理和算法进行详细阐述,包括其空间矢量的概念、合成方法以及脉宽调制的实现过程。
在此基础上,我们将引入SVPWM的等效算法,该算法通过简化计算过程,提高了SVPWM的实时性和效率。
我们将对SPWM的基本原理和算法进行回顾,包括其正弦波调制的原理、实现方法以及优缺点。
通过对比SVPWM和SPWM的调制策略,我们将揭示两者在调制原理、波形质量、电压利用率等方面的本质联系和差异。
本文将通过仿真和实验验证SVPWM的等效算法的有效性,并展示SVPWM和SPWM在实际应用中的性能表现。
通过本文的研究,读者将能够更深入地理解SVPWM和SPWM的调制原理,为电力转换和控制领域的研究和应用提供有益的参考。
二、SVPWM的基本原理与等效算法空间矢量脉宽调制(SVPWM)是一种用于三相电压源型逆变器的先进调制策略。
其基本原理在于,将三相电压视为一个旋转的空间矢量,并通过控制该矢量的旋转速度和方向,实现对输出电压的精确控制。
SVPWM通过在一个控制周期内合成多个基本电压矢量,使得输出电压能够逼近期望的电压矢量,从而提高了电压利用率并降低了谐波含量。
SVPWM的等效算法主要基于伏秒平衡原则,即在一个控制周期内,通过合理地分配各个基本电压矢量的作用时间,使得输出电压的平均值等于期望的电压值。
具体实现时,首先根据期望的电压矢量计算出其在αβ坐标系下的分量,然后根据这些分量确定所需的基本电压矢量及其作用时间。
通过PWM信号控制逆变器的开关状态,实现输出电压的精确控制。
SVPWM与SPWM(正弦脉宽调制)的本质联系在于,它们都是通过控制逆变器的开关状态来生成期望的输出电压波形。
正弦脉宽调制的原理

正弦脉宽调制的原理哎呀,说起正弦脉宽调制,这玩意儿听起来是不是有点高大上?别急,我慢慢给你掰扯掰扯,咱们用大白话聊聊。
记得有一回,我在实验室里头,老师让我们搞明白这个正弦脉宽调制是个啥玩意。
一开始,我心想,这玩意儿听着就复杂,肯定不好整。
但是,你猜怎么着?其实,这玩意儿跟我们日常生活中的一些小玩意儿挺像的。
咱们先从“正弦”这个词儿说起。
你肯定知道,正弦波嘛,就是那种上上下下,像海浪一样起伏的波形。
你瞧,就像这样,咻——咻——咻,一个波峰,一个波谷,再一个波峰,再一个波谷。
这玩意儿在数学里头,就是那个正弦函数,sin(x),你懂的。
然后,咱们再聊聊“脉宽调制”。
这个词儿听起来挺唬人的,其实呢,就是控制一个东西的开关时间。
比如说,你家里的电灯开关,你按一下,灯亮了,再按一下,灯灭了。
这就是最简单的脉宽调制,只不过,咱们现在要控制的不是电灯,而是更复杂的东西。
那么,正弦脉宽调制,就是把这两个概念结合起来。
想象一下,你手里拿着一个遥控器,这个遥控器能控制一个电机的转速。
你想让电机转得快一点,就按一下遥控器,电机就转得快;想让电机转得慢一点,就再按一下,电机就转得慢。
这个“按一下”的时间,就是脉宽。
你控制这个脉宽,就能控制电机的转速。
但是,咱们现在不是简单地按一下遥控器,而是让电机的转速跟着正弦波走。
就像你开车,油门不是一脚踩到底,也不是一脚踩到底,而是跟着音乐的节奏,一会儿踩深一点,一会儿踩浅一点。
这样,电机的转速就会跟着正弦波起伏,这就是正弦脉宽调制。
我记得那天在实验室里,我看着那个电机,它就那么跟着正弦波一上一下地转着,感觉就像是在跳舞一样。
我心想,这玩意儿还挺有意思的,虽然听起来复杂,但其实就跟我们平时开车、按遥控器差不多。
最后,我想说的是,正弦脉宽调制这玩意儿,虽然听起来高大上,但其实它的原理就跟我们日常生活中的一些小玩意儿挺像的。
它就是通过控制脉宽,让电机的转速跟着正弦波走。
所以,下次你看到电机在那儿一上一下地转,你就知道,哦,这玩意儿在用正弦脉宽调制呢。
SPWM技术分析

SPWM技术分析本文主要是从脉宽调制(即PWM)技术入手,从而进一步分析正弦脉宽(SPWM)技术。
标签:PWMSPWM波SPWM波的产生方法单极性SPWM波双极性SPWM 波1 概述脉宽调制(Pulse Width Modulation,PWM)就是利用控制半导体开关元件(例如二极管、三极管和场效应管等)的通断时间比,即通过调节脉冲宽度或周期来实现控制输出电压的一种技术。
本文将重点介绍PWM的原理,并着重介绍正弦脉宽调制(Sinusoidal- PWM)的原理以及SPWM波形的实现方法。
日常生活中PWM技术常用于电压型逆变器,因为它可消除或减小低次谐波,减小滤波器体积,有利于产品的小型化和低成本,所以被广泛使用。
而SPWM方式的逆变器因谐波分量更小,应用则更加广泛。
2 SPWM的原理2.1 PWM的原理脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。
图2所示为脉冲宽度调制系统的原理框图和波形图。
该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。
语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。
因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。
2.2 SPWM的原理所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规律排列,这样输出波形经过适当的滤波可以做到正弦波输出。
SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。
如图2所示:我们把一个正弦半波分成N(N=6)等份,然后把正弦半波看成是由N(N=6)个彼此相连的脉冲所组成的波形。
这些脉冲宽度相等,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。
如果我们把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,矩形脉冲和相应正弦部分面积(冲量)相等,就得到如图(b)所示的脉冲序列,这就是SPWM 波形。
第4章 脉宽调制技术

4.1.2 PWM型逆变电路的控制方式
1.异步调制
载波信号和调制信号不保持同步关系的调制方式称为异步方式。在异步调 制方式中,调制信号频率fr变化时,通常保持载波频率fc固定不变,因而载波
比N是变化的。
在采用异步调制方式时,希望尽量提高载波频率,以使在调制信号频率较 高时仍能保持较大的载波比,改善输出特性。
般为8位或10位。
(5)通讯接口
芯片应备有用于外围通信的同步、异步串行接口的硬件或软件单元。
27
2.几种新型单片微处理器简介
8xCl96MC系列
8xCl96MC是一个16位微处理器,其内部有一 个三相互补SPWM波形发生器,可直接输出6路 SPWM信号,驱动电流达20mA。
28
4.3 电流跟踪型PWM逆变器控制技术
在不提高载波频率的前提下,消除所不希望的各谐波分量。
1.两电平PWM逆变器消除谐波的一般方法
23
24
2.三电平PWM逆变器消除谐波的方法
图4-14所示PWM逆变器,当S1、S2采用10、00、01开关模式时,则逆变器 输出电压具有三种电平,其输出PWM波形如下图所示。
图4-17 三电平PWM逆变器的输出电压波形
37
4.4.2.反馈信号的测取
1.电压和电流反馈信号的测取
电压和电流反馈信号的检测一般有三种方法: ⑴电阻法:采用电阻分压,可将电压信号衰减至所需要的电平。将被测 电流通过已知电阻,测量其压降后可知被测电流。
电阻法的优点是电路简单,交直流信号皆适用。缺点是,如反馈控制电路 与主电路没有隔离,而两者的电压相差极大(几十倍至上百倍),万一主电路 的高电压通过反馈电路进入控制电路,将危及到控制系统的安全。而电阻法要 求分压器和分流器的电阻值稳定不变,这也是很难做到的。
脉宽调制技术

脉宽调制通常有两种方法:
脉宽调制控制技术结构简单、易于实现、技术比较成熟,俄罗斯已经将其成功地应用于远程火箭的角度稳定 系统控制中。但是当调制量为零时,正反向的控制作用相互抵消,控制效率明显比变流率系统低。而且系统响应 有一定的滞后,其开关的频率必须远大于KKV本身的固有频率,否则不但起不到调制效果,甚至会发生灾难性后 果。
优点
PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可 将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产 生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要 原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC络可以滤除调制高频方波并 将信号还原为模拟形式。
原理
对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所 需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平 滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频 率。
例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度 相等,都等于 ∏/n,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果 把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合, 且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。可以看出,各脉冲 宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦的负半周, 也可以用同样的方法得到PWM波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、正弦波脉宽调制
1、正弦脉宽调制法(SPWM ):是将每一正弦周期内的多个脉冲作自然或规则的宽度调制,使其依次调制出相当于正弦函数值的相位角和面积等效于正弦波的脉冲序列,形成等幅不等宽的正弦化电流输出。
其中每周基波(正弦调制波)与所含调制输出的脉冲总数之比即为载波比。
2、正弦脉宽调制原理(以单相为例):以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave ),并用频率和期望波相同的正弦波作为调制波(Modulation wave ),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。
矩形波的面积按正弦规率变化。
这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation ,简称SPWM ),这种序列的矩形波称作SPWM 波。
等效原理:如图1所示,把正弦分成 n 等分,每一区间的面积用与其相等的等幅不等宽的矩形面积代替,正弦的正负半周均如此处理。
3、SPWM 控制方式:SPWM 控制技术有单极性控制和双极性控制两种方式。
如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得的SPWM 波也只处于一个极性的范围内,叫做单极性控制方式。
如果在正弦调制波的半个周期内,三角载波在正负极性之间连续变化,则SPWM 波也在正负之间变化,叫作双极性控制方式。
4、正弦脉宽调制的特点是脉宽调制是以逆变器的功率器件的快速而有规律的开关,形成一系列有规则的矩形方波,以和期望的控制电压等效。
其特点是基波分量大,2N-1次以下谐波得到有效的拟制,输出电流接近正弦波。
二、交流电动机动态数学模型:
1、交流电机数学模型的性质:
(1)、多变量,强耦合(如图2)
输入变量:电压(或电流),频率
输出变量: 转速、磁通
(2)、有两个变量的乘积项。
数学模型是非线性的。
(3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统。
a)
b)图6-3图1 SPWM 调制原理
图2 异步电机的多变量、强耦合模型结构
(2)、有两个变量的乘积项。
数学模型是非线性的。
(3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统。
2、三相异步电机的动态数学模型:三相异步电机的动态模型是一个高阶、非线性、强耦合的多变量系统。
电机方程
3、等效的两相交流电机绕组:以产生同样的旋转磁动势为准则,两相绕组可以和三相绕组彼此等效。
或者说,在三相坐标系下的 i A 、i B 、i C ,在两相坐标系下的 i d 、i q 是等效的,它们能产生相同的旋转磁动势。
图3 两相交流绕组
U s
ω1 (I s ) ω
Φ
Ψ
Ri u p +=Li Ψ=)]120sin()()120sin()(sin )[(b C a B c A a C c B b A c C b B a A ms p e ︒-+++︒++++++=θθθ
i i i i i i i i i i i i i i i i i i L n T t n J T T d d p L e ω+=t d d θω=
特别是:就 M 、T 两个绕组而言,当观察者站在地面看上去,它们是与三相交流绕组等效的旋转直流绕组;如果跳到旋转着的铁心上看,它们就的的确确是一个直流电机模型了。
这样,通过坐标系的变换,可以找到与交流三相绕组等效的直流电机模型。
4、三相--两相变换(3/2变换):在三相静止绕组A 、B 、C 和两相静止绕组α、β 之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换。
下图中绘出了 A 、B 、C 和 α、β 两个坐标系,为方便起见,取 A 轴和 α 轴重合。
设三相绕组每相有效匝数为N3,两相绕组每相有效匝数为N2,各相磁动势为有效匝数与电流的乘积,其空间矢量均位于有关相的坐标轴上。
由于交流磁动势的大小随时间在变化着,图中磁动势矢量的长度是随意的。
(1)三相和两相坐标系与绕组磁动势的空间矢量
图4
设磁动势波形是正弦分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在 α、β 轴上的投影都应相等,
写成矩阵形式,得
(2)、三相—两相坐标系的变换矩阵
令 C3/2 表示从三相坐标系变换到两相坐标系的变换矩阵,则
)2
121(60cos 60cos C B A 3C 3B 3A 3α2i i i N i N i N i N i N --=︒-︒-=)(2360sin 60sin C B 3C 3B 3β2i i N i N i N i N -=︒-︒=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡C B A 23β2323021211αi i i N N i i ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣
⎡---=2323021211322/3C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡C B A C B A i i i i i i K K K N N i i i 2/32302323021211C βα
正弦波脉宽调制(SPWM)原理小谈
本文来自:我爱研发网() - R&D大本营
详细出处:/Blog/Detail_RD.Blog_abraham_1549.html
1、QPWM的概念在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。
SPWM脉冲系列中,各脉冲的宽度以及相互间的间隔宽度是由正弦波(基准波或调制波)和等腰三角波(载波)的交点来决定的。
具体方法如后所述。
2、单极性SPWM法
(1)调制波和载波:曲线①是正弦调制波,其周期决定于需要的调频比kf,振幅值决定于ku,曲线②是采用等腰三角波的载波,其周期决定于载波频率,振幅不变,等于ku=1时正弦调制波的振幅值,每半周期内所有三角波的极性均相同(即单极性)。
调制波和载波的交点,决定了SPWM脉冲系列的宽度和脉冲音的间隔宽度,每半周期内的脉冲系列也是单极性的。
(2)单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时通时断地工作,另一个完全截止;而在另半个周期内,两个器件的工况正好相反,流经负载ZL的便是正、负交替的交变电流。
3、双极性SPWM法
(1)调制波和载波:
调制波仍为正弦波,其周期决定于kf,振幅决定于ku,中曲线①,载波为双极性的等腰三角波,其周期决定于载波频率,振幅不变,与ku=1时正弦波的振幅值相等。
调制波与载波的交点决定了逆变桥输出相电压的脉冲系列,此脉冲系列也是双极性的,但是,由相电压合成为线电压(uab=ua-ub;ubc=ub-uc;uca=uc-ua)时,所得到的线电压脉冲系列却是单极性的。
(2)双极性调制的工作特点:逆变桥在工作时,同一桥臂的两个逆变器件总是按相电压脉冲系列的规律交替地导通和关断,毫不停息,而流过负载ZL的是按线电压规律变化的交变电流。
4、实施SPWM的基本要求
(1)必须实时地计算调制波(正弦波)和载波(三角波)的所有交点的时间坐标,根据计算结果,有序地向逆变桥中各逆变器件发出“通”和“断”的动作指令。
(2)调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所胶点的时间坐标都必须重新计算。
要满足上述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展,迄今,已经有能够产生满足要求的SPWM波形的专用集成电路了。
本文来自:我爱研发网() - R&D大本营
详细出处:/Blog/Detail_RD.Blog_abraham_1549.html。