投影与视图教案(29.1投影第1课时)
第一课时29.1投影-第二十九章投影和视图

投影面
投影
皮影戏是利用灯光的照射,把影子的影 态反映在银幕(投影面)上的表演艺术.这 是平行投影吗? 皮影戏是利用灯光的照射,把影子的影态 反映在银幕(投影面)上的表演艺术.
灯 光
照 射
物 体
投 影 面
影 子
灯光与太阳光线有什么不同?
手电筒、路灯和台灯的光线可以看成是 从一点出发的. 由同一点(点光源)发出的光线形成的 投影叫做中心投影.
辨别平行投影与中心投影
(1)分别过每个物体的顶端及其影子 的顶端作一条直线, (2)若两直线平行,则为平行投影;
若两直线相交,则为中心投影,
其交点就是光源的位置.
图中表示一块三角尺在光线照射下形成 投影,其中图(1)与图(2)(3)的投影 线有什么区别?
(1)
(2)
(3)
图(1)中的投影线集中于一点, 形成中心投影;
29.1
投
影
回顾知识:
1、产生影子的条件:光源、遮挡物和屏,且遮挡物要
在光源和屏之间。
2、可以自己发光并正在发光的物体叫做光源。
3、影子的特点:物体影子的长短、方向随着光源位置、 方向的改变而改变;物体影子的大小与物体和光源之 间的距离有关;物体影子的形状和光源所照射的物体 侧面的形状有关。 4、从不同侧面照射得到的物体的影子叫做投影,投影 在我们生活中很有用处。
o
确定图中路灯灯泡的位置,并画出此时 小赵在路灯下的影子.
小赵
如图的影子是在太阳光下形成的还是
在灯光下形成的?画出同一时刻旗杆的影
子(用线段表示).
与一盏路灯相对,有一玻璃幕墙,幕墙前面 的地面上有一盆花和一棵树.晚上 ,幕墙反射路灯 灯光形成了那盆花的影子,树影是路灯灯光形成 的.你能确定此时路灯光源的位置吗? 光源
《投影》投影与视图PPT课件(第1课时)

远眺图使用说明
1、远眺距离为1米-2.5米(远眺图电脑版比纸质 版小,距离相应缩短),每日眺望5次以上,每次 3—15分钟。
2、要思想集中,认真排除干扰,精神专注,高 度标准为使远眺图的中心成为使用者水平视线的 中心点。
3、远眺开始,双眼看整个图表,产生向前深进 的感觉,然后由外向内逐步辨认每一层的绿白线 条。
远眺图是利用心理学 空间知觉原理,在一张二维 空间平面上,强烈显示出三 维空间的向远延伸的立体图 形,远视和视力良好的人在 长时间近距离用眼情况下引 起的视力疲劳,可以通过此 种方法获得一定的缓解。
因绿色为最佳感受色, 可使睫状体放松,图案从里 到外大小不等,不断变化图 案可不断改变眼睛晶状体的 焦距,使调节他们的睫状体 放松而保护视力。
概念:点光源的光线形成的投影.
变化规律:垂直于地面的物体离点光源距离
中心投影 近时,影子短,离光源远时影子长.
作图
寻找光源. 光源出作投影.
可爱的同学,找资料眼 睛累了吧!长时间屏幕,眼 睛会干涩、酸痛、疲劳的。
不过现在教同学们一个 小办法,左边我为大家准备 了一张视力保健“远眺图” ,看看图就能缓解眼疲劳, 起到远眺解乏的作用。
二 中心投影的作图及规律
例1:确定以下图路灯灯泡所在的位置.
O
解:过一根木杆的顶端及其影子的顶端画一条直线,再过另一根木杆的顶端 及其影子的顶端画一条直线,两线相较于点O,点O就是灯泡的位置.
例2:一个广场中央有一站路灯.
〔1〕高矮相同的两个人在这盏路灯下的影子一定一样长吗?如 果不一定,那么什么情况下他们的影子一样长? 不一定一样长,只有在距离路灯的距离相等时候影子才会一样长.
讲授新课
一 中心投影的概念
29.1投影(第1课时)课件人教版数学九年级下册

第29章 投影与视图 29.1 投影
第1课时 平行投影与中心投影
学习目标
1.了解投影、投影线、投影面、平行投影和中心投 影的概念。
2.了解平行投影和中心投影的含义、特征、区别与 联系。
3.能利用平行投影和中心投影的相关知识解决实际 问题。
回顾旧知
我们小学阶段已经学过观察物体,根据学习过的知识判 断下面这些图分别是谁看到的?
8.两个人的影子在两个相反的方向,这说明( C ) A.他们站在阳光下 B.他们站在路灯下 C.他们站在路灯的两侧 D.他们站在月光下 9.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )
A.越长 B.越短 C.一样长 D.随时间变化而变化
平行投影和1中0心投.影有如什么图区别是和联两系呢根? 标杆AC,BD及它们在灯光下的影子,请在图中画出光源的位置
F
求平行投影中相关线段的长的方法 解决与平行投影有关的作图与计算问题,往往根据 平行投影的性质画出投影线,得到相关的线段,从 而根据同一时刻,不同物体的物高与影长成正比, 求得线段的长.
4.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大 到屏幕上,若光源到幻灯片的距离为 30 cm,幻灯片到屏幕 的距离为 1.5 m,且幻灯片中图形的高度为 10 cm,则屏幕上 图形的高度为 60 cm.
例如,物体在灯泡发出的光照射下形成的影子就是中心投影.
解:连接A′C,B′D并延长,交点P即为光源的位置;
根据点光源、物体边缘上的点及它在影子上的对应点在同一条直线上,先找两个物体边缘上的点及其在影子上的对应点,再分别过两个物体边缘上的点及其在影子上的对应点画直
线,两条直线的交点即为点光源.
【人教版】九年级数学下册:第1课时 投影教案

第二十九章投影与视图29.1 投影第1课时投影1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.阅读教材P87-88页,自学“投影”、“平行投影”、“中心投影”的内容,区分清楚概念.自学反馈独立完成后小组内交流①光线照射物体,在某个平面(地面或墙壁等)上得到的,叫做物体的投影,照射光线叫做,投影所在的平面叫做.②由光线形成的投影叫做平行投影,由发出的光线形成的影子就是中心投影.③皮影戏是利用(填“平行投影”或“中心投影”)的一种表演艺术.④“平行投影”与“中心投影”的投影线有何区别?⑤教材P88页练习题.影子的形成需要“光线”、“物体”、“形成影子的面”三个条件;本章中所提的“投影面”是一个平面,生活中的影子不一定在同一个平面上;而光线的平行与否是区分“平行投影”和“中心投影”的条件.活动1 小组讨论例1 太阳光照射到日晷上形成的投影与灯光照射到三角尺在墙面上形成的投影有何不同?解:太阳光形成的投影是平行投影,灯光形成的投影是中心投影.太阳光是平行光线,由此形成的投影是平行投影;灯光是从一点发出的光线,它形成的投影叫做中心投影.例 2 如图中①②③④是木杆一天中四个不同时刻在地面上的影子,将它们按时间先后顺序排列为.解:④③②①.一天当中影子的变化情况是:正西—北偏西—正北—北偏东—正东.活动2 跟踪训练(独立完成后展示学习成果)1.请判断如图所示的两根电线杆的影子是灯光还是太阳光形成的.可画出光线,根据光线的方向来判断,若光线平行则是太阳光照射形成的平行投影;若交于一点则是灯光照射形成的中心投影.2.身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 .活动1 小组讨论例3 如图,小强家后院有一根电线杆和一棵大树.①请根据树在阳光下的影子,画出电线杆的影子;(用线段表示)②若此时大树的影子长为6 m ,电线杆高8 m,其影长为10 m ,求大树的高度. 解:①如图,线段AB 即为所求;②设大树的高度为x m,则有6x =810.∴x=4.8.答:大树的高度为4.8 m.①小题首先要确定太阳光为光源,投影线是平行的,可以根据树和它的影子确定光线,从而画出电线杆的影子;②在同一时刻,物体的影长与实际长度的比值是定值.活动2 跟踪训练(独立完成后展示学习成果)如图,我国某大使馆内有一单杠支架,支架高2.8 m,在大使办公楼前竖立着高28 m的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17 m,在一个阳光灿烂的某一时刻,单杠支架的影长为2.24 m,大使办公窗口离地面5 m,问此刻中华人民共和国国旗的影子是否能达到大使办公室的窗口?可先画出旗杆在办公楼上的投影,通过同一时刻,同一物体的影长与物长的比是一个定值这一规律计算出旗杆投影到墙上的影长,跟5 m进行比较就可得出结论.活动3 课堂小结学生试述:这节课你学到了什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①影子投影线投影面②平行同一点(点光源)③平行投影④略⑤略【合作探究1】活动2 跟踪训练1.灯光2.短【合作探究2】活动2 跟踪训练旗杆的影长应为22.4 m,投在墙上的影长为6.75 m>5 m,所以影子能达到大使办公室的窗口。
投影与视图全章教案

课题:29.1投影(1) 一、学习目标: 1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念; 2、了角平行投影和中心投影的区别。 3、学会关注生活中有关投影的数学问题,提高数学的应用意识。 二、教学重、难点 教学重点:理解平行投影和中心投影的特征; 教学难点:在投影面上画出平面图形的平行投影或中心投影。 三、教学过程: (一)板书课题,出示目标: 同学们,现在我们来学习29.1投影,请看学习目标。 (二)指导自学 为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导: 请同学们认真看课本P100--101内容: 问题:1、什么是投影呢? 2、什么是平行投影? 3、什么是中心投影? 自学过程中如有不懂的地方,可小声请教同桌或举手问老师。 5分钟后,比一比谁会解答类似的问题 (三)、学生自学,老师巡视 1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。 2、检测P101练习 3、学生练习,教师巡视,收集错误。 (四)后教(在课前布置,以数学学习小组为单位) 探究平行投影和中心投影和性质和区别 1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。 2、 不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有
其他情况吗? 3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。如图4-14,当线段AB与投影面平行时,AB的中心投影A‘B’把线段AB放大了,且AB∥A’B‘,△OAB~ OA‘B’.又如图4-15,当△ABC所在的平面与投影面平行时, △ABC的中心投影△A‘B’C‘也把△ABC放大了,从△ABC到△A‘B’C‘是我们熟悉的位似变换。 4、请观察平行投影和中心投影,它们有什么相同点与不同点? 教师引导学生讨论,归纳,弄清为什么? 平行投影与中心投影的区别与联系
《投影与视图》教案

第二十九章投影与视图本章的主要内容包括:1.投影的基础知识,包括投影、平行投影、中心投影、正投影等概念以及正投影的成像规律.2.视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形(包括相应的表面展开图)与它的三视图的相互转化.全章共包括三节:29.1投影;29.2三视图;29.3课题学习制作立体模型.第一节首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同的位置关系时的正投影.可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的.第二节讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化.这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系.第三节安排了观察、想象、制作相结合的实践活动——“课题学习制作立体模型”,这是结合实际,动脑与动手并重的学习内容,进行这个课题学习既可以采用独立完成的形式,也可以采用合作学习的方式.应该把这个课题学习看作是对前面学习的内容是否切实理解并掌握以及能否灵活运用的一次联系实际的检验.本章内容与其他章有较为明显的区别,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算.1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质.2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力.3.通过制作立体模型的课题学习,在实际动手的过程中进一步加深对投影和视图知识的认识,加强在实践活动中手脑结合的能力.本章教学约需5课时,具体分配如下:29.1 投影2课时29.2 三视图2课时29.3 课题学习制作立体模型1课时29.1投影第1课时投影(1)知识与技能1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.了解平行投影和中心投影的区别.过程与方法使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.情感、态度与价值观理解现实生活中影子的现象,学会用数学知识解答.重点理解平行投影和中心投影的特征.难点在投影面上画出平面图形的平行投影或中心投影.一、问题引入你看过皮影戏吗?皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.你知道皮影戏所用的原理吗?二、新课教授问题1.如图所示的图片是物体在生活中的几个图片,请同学们考虑它们是怎样得到的.教师出示图片,引导学生观察图片的形成,让学生感受在日常生活中的一些投影现象.师生共同总结,一起感受.物体在日光或灯光的照射下,会在地面、墙壁等处形成影子,它既与物体的形状有关,也与光线的照射方式有关.问题2.通过观察和自己的认识,你是怎样理解图片的含义的?师生共同总结:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.问题3.请同学们观察下图的投影过程,它们的投影过程有什么不同?师生活动:教师引导学生从两个方面考虑,第一,观察光线的特点;第二,观察照射的方式.结论:图(1)中的投影线集中于一点,由同一点(点光源)发出的光线形成的投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.图(2)、(3)中,投影线是互相平行的射线,由平行光线形成的投影是平行投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.问题4.请观察问题3中的图,说说平行投影和中心投影有什么相同点与不同点?教师出示表格,要求学生完成.平行投影与中心投影的区别与联系:区别光线物体与投影面平行时的投影联系平行投影平行的投影线全等中心投影从一点发出的投影线放大都是物体在光线的照射下,在某个平面内形成的影子.(即都是投影)三、例题讲解例(1)地面上直立一根标杆AB,如图,杆长为2 cm.①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?画出投影示意图.(2)一个正方形纸板ABCD和投影面平行(如图),投影线和投影面垂直,点C在投影面的对应点为C′,请画出正方形纸板的投影示意图.(3)下面两幅图表示两根标杆在同一时刻的投影,请在图中画出形成投影的光线.它们是平行投影还是中心投影?说明理由.解:(1)①一点②线段(图略)(2)图略(3)分别连接标杆的顶端与投影上的对应点,很明显,图(1)的投影线互相平行,是平行投影.图(2)的投影线相交于一点,是中心投影.四、巩固练习1.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.线段D.以上都有可能答案D2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长答案D五、课堂小结1.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影.2.由同一点(点光源)发出的光线形成的投影叫做中心投影.3.太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.4.物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变.本节课我让学生通过实践、观察、探索了解平行投影、中心投影的含义,学会辨别光源是太阳光线还是灯光光线,学会进行中心投影条件下的物体与其投影之间的相互转化,感悟灯光与影子在现实生活中的应用价值.第2课时 投影(2)知识与技能了解正投影的概念;能根据正投影的性质画出简单的平面图形的正投影. 过程与方法培养动手实践能力及空间想象能力. 情感、态度与价值观学会观察,理解原理,增强自信心.重点理解正投影的含义并能根据正投影的性质画出简单的平面图形的正投影. 难点归纳出正投影的性质,正确画出简单平面图形的正投影.一、复习引入1.回忆复习平行投影、中心投影的概念.由同一点(点光源)发出的光线形成的投影叫做中心投影;太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.2.下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图(1)中的投影线集中于一点,形成中心投影;图(2)、(3)中,投影线互相平行,形成平行投影.二、新课教授问题1.图(2)、(3)的投影线与投影面的位置关系有什么区别? 教师出示图片,引导学生观察图片的特征.结论:图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影;如果投射线不垂直于投影面,那么这种投影就称为斜投影.问题2.通过学习,我们对投影应如何分类?物体――→光照投影⎩⎨⎧――→点光源中心投影――→平行光线平行投影⎩⎪⎨⎪⎧正投影斜投影探究1.如图,把一根直的细铁丝(记为线段AB)放在三个不同的位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点). 三种情形下,铁丝的正投影各是什么形状?通过观察,我们可以发现:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB =A1B1;(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2;(3)当线段AB垂直于投影面P时,它的正投影是一个点A3.探究2.如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.结论:(1)当纸板P平行于投影面Q时,P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小发生变化;(3)当纸板P垂直于投影面Q时,P的正投影成为一条线段.归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.三、例题讲解例画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P,如图(1);(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P,如图(2).解:(1)如图,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系;(2)如图,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线的长,矩形的宽等于正方体的棱长.矩形上、下两边中点的连线A′B′是正方体侧棱即它所对的另一条侧棱AB的投影.四、巩固练习1.(1)在一天中,从早晨到傍晚物体的影子由正西向________、________、________和正东方向移动;(2)如图是小明在学校时上午、下午看到的学校操场上的旗杆的影子的俯视图,将它们按时间顺序进行排列为________.答案(1)西北正北东北(2)C,D,B,A2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( ) 答案D五、课堂小结1.在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影;如果投射线不垂直于投影面,那么这种投影就称为斜投影.2.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同. 3.投影的分类:物体――→光照投影⎩⎨⎧――→点光源中心投影――→平行光线平行投影⎩⎪⎨⎪⎧正投影斜投影本节课首先探究正投影的概念,然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律.最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影.可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的.29.2 三视图第1课时 三视图(1)知识与技能会从投影的角度理解视图的概念,进一步明确正投影与三视图的关系. 过程与方法培养动手实践能力及空间想象能力. 情感、态度与价值观经历探索简单立体图形的三视图的画法的过程,能识别物体的三视图.重点简单立体图形的三视图的画法. 难点三视图中三个位置关系的理解.一、问题引入如图所示,直三棱柱的侧棱与水平投影面垂直,请与同伴一起探讨下面的问题:1.以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形?2.画出直三棱柱在水平投影面上的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?这个水平投影能完全反映这个物体的形状和大小吗?如果不能,那么还需哪些投影面? (物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影.)二、新课教授如图(1),我们用三个互相垂直的平面作为投影面,其中正对着我们的面叫做正面,正面下方的面叫做水平面,右边的面叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图、俯视图和左视图组成).三视图中的各视图,分别从不同方向表示物体,三者结合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正、主视图与左视图的高平齐、左视图与俯视图的宽相等.师:通过以上的学习,你有什么发现?物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图.三、例题讲解例1 画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图.2.在主视图正下方画出俯视图,注意与主视图“长对正”.3.在主视图正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.解:例2 画出如图所示的支架(一种小零件)的三视图.解:如图是支架的三视图:四、巩固练习一个正六棱柱高2 cm,底面是边长为1.5 cm的正六边形,先说说它在正面、水平面、侧面三个方向的正投影分别是什么图形,然后画出它的三视图.答案五、课堂小结1.画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰.2.在画三视图时,三个视图不要随意乱放,应做到俯视图在主视图的下方、左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等.本节课的教学设计,力求突出具体、生动、直观,因此,学生多以操作、观察实物模型和图片等活动为主,比如正方体在不同位置时的正投影.归纳出物体三视图的概念,并能根据此规律画出简单的立体几何图形的三视图.在介绍三视图时,若条件允许,可采用试验的方法进行实例的观察,这样不仅直观而且富有真实感.第2课时三视图(2)知识与技能学会根据物体的三视图描述出几何体的基本形状或实物原型.过程与方法经历探索简单的几何体的三视图的还原过程,进一步发展空间想象能力.情感、态度与价值观了解将三视图转换成立体图在生活中的作用,使学生体会到所学的知识有重要的实用价值.重点根据三视图描述基本几何体和实物原型及三视图在生活中的作用.难点根据物体的三视图描述出几何体的基本形状或实物原型.一、问题引入1.画一个立体图形的三视图时要注意什么?(三个视图要放在正确的位置,并且使主视图与俯视图的长对正、主视图与左视图的高平齐、左视图与俯视图的宽相等.)2.做一做:画出下面几何体的三视图.二、新课教授例1 根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.解:(1)从三个方向看立体图形,图像都是矩形,可以想象出:整体是长方体,如图(a)所示;(2)从正面、侧面看立体图形,图像都是等腰三角形;从上面看,图像是圆,可以想象出:整体是圆锥,如图(b)所示.例2 根据物体的三视图(如图)描述物体的形状.分析:由主视图可知,物体的正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到,两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的,且有一条棱(中间的实线)可见到,综合各视图可知,物体是五棱柱形状的.解:物体是五棱柱形状的,如下图所示.例3 某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形,即展开图.在实际的生产中,三视图和展开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图,从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱.(如图(左)).密封罐的高为50 mm ,底面正六边形的直径为100 mm ,边长为50 mm ,右图是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50×32=6×502×(1+32) ≈27 990(mm 2). 三、巩固练习如图所示的图形是一个多面体的三视图,请根据视图说出该多面体的具体名称.答案 正四棱锥 四、课堂小结1.一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.2.一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性.例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.3.对于较复杂的物体,由三视图想象出物体的原型,应理解并掌握三个视图之间的前后、左右、上下的对应关系.本节课的教学,以课程标准为指南,结合学生的已有知识和经验而设计.重点讲解由三视图判断几何体的结构特征,也就是画三视图时尺寸不作严格要求.教学设计时使用了大量的图片,建议在实际应用时尽量使用信息技术,如画法几何,让学生从动态过程中获得三视图的感性认识,以便从整体上把握三视图的画法.29.3 课题学习 制作立体模型知识与技能1.通过实际动手进一步加深对投影和视图知识的认识. 2.加强在实践活动中手脑结合的能力.3.体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.过程与方法1.通过创设情境让学生自主探索立体图形的制作过程.2.通过自主探索、合作研究讨论使学生加深对投影和视图的认识.3.制作模型,体会由平面图形转化为立体图形的过程与乐趣.情感、态度与价值观1.通过创设问题情境使学生感受平面图形与立体图形的关系.2.通过参与数学实践培养合作探索的精神和尊重理解他人想法的学习品质.3.通过动手实践活动培养学生的创新意识与创造发明的意识.重点让学生亲自经历规律的发现、深入研究、应用的过程.难点学生通过手工制作实现理论与实践的结合;在探索解决实际问题的过程中,养成科学的研究态度.一、问题引入请学生回答下列两个问题:1.主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.答案长高长宽宽高2.下面是一个立体图形的三视图,请在括号内填上立体图形的名称( )答案圆柱体二、新课教授活动一:根据三视图制作原实物.师:以硬纸板为主要原材料,分别做出下面的两组视图所表示的立体模型.师:用硬纸板制作各面,围成立体图形.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发他们继续学习的兴趣.活动二:根据三视图制作实物模型.师:按照下面给出的两组视图,用马铃薯(或萝卜)制作相应的实物模型.生:学生动手制作,实际动手制作立体物品有利于培养学生的空间想象能力.师:(1)是圆锥,(2)是直五棱柱,它的底面五边形中有三个直角.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发学习的兴趣.活动三:根据平面图形制作相应的实物图.师:下面的每一组平面图形都是由四个等边三角形组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面的图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?(1) (2) (3)师:(1)和(3)可折叠成正四面体,正四面体的体积为212,表面积为 3.活动四:课题拓广.三视图和展开图都是与立体图形有关的平面图形,利用课余时间去观察了解或者上网查询了解,结合我们的生活实际和具体的事例,写一篇短文介绍三视图及展开图的应用以及你的感受.三、巩固练习1.小明从正面观察下图所示的两个物体,看到的是( )答案C2.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )答案B3.如图是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是( )A.北B.京C.欢D.迎答案C四、课堂小结从技能上说,认识平面图形与立体图形的联系,有助于根据需要实现它们之间的相互转化,即学会画三视图和由三视图得出立体图形.从能力上说,认识平面图形与立体图形的联系,对于培养空间想象能力是非常重要的.本节是结合实际问题动手与动脑并重的学习内容.“观察、想象、制作、交流”相结合是本节中的主要实践活动.设计这个课题学习的目的是:(1)在具体问题中,对是否切实理解掌握前面学习的三视图的内容以及能否灵活运用知识的一次检验;(2)是采用独立完成与合作学习相结合的方式,使同学之间相互讨论、互助互学,增强协作能力,增进感情.。
人教版九年级数学下册第29章投影与视图全章教案

第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。
2、空间观念的形成是一个长期的过程。
本章是第七章内容的继续和发展。
二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。
2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。
3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。
4、能由三视图想象简单几何体。
难点:几何体与其投影的关系及由三视图想象几何体。
三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。
2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。
3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。
4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。
5、通过三视图的学习,培养学生识图、画图的基本技能。
6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。
四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。
很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。
在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。
(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。
人教版九年级下册数学第二十九章投影与视图29.1投影教案设计含反思2课时

29.1 投影第1课时平行投影与中心投影1.理解平行投影和中心投影的特征;(重点)2.在投影面上画出平面图形的平行投影或中心投影.(难点)一、情境导入北京故宫中的日晷闻名世界,是我国光辉灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.本节课学习有关投影的知识.二、合作探究探究点一:平行投影【类型一】判断影子的形状下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()解析:选项A.影子平行,且较高的树的影子长度大于较低的树的影子,正确;选项B.影子的方向不相同,错误;选项C.影子的方向不相同,错误;选项D.不同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.方法总结:平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】平行投影作图在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.解析:过物体顶点作光线的平行线得到物体的平行投影,再根据平行投影中物体与投影面平行时的投影是全等的可找到XY的位置.解:连接AC,过点M作MP∥AC交NC于点P,则NP为MN的影子.过点B作BX∥AC,且BX=MP,过X作XY⊥NC交NC于点Y,则XY即为所求.方法总结:先根据物体投影确定光线,然后利用两个物体的顶端和各自影子的对应点的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定影子.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】平行投影的相关计算李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF 是1.6m,请你帮李航求出楼高AB.解析:过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.解:过点D 作DN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDME 、ACDN 是矩形,∴AN =ME =CD =1.2m ,DN =AC =30m ,DM =CE =0.6m ,∴MF =EF -ME =1.6-1.2=0.4m.∵EF ∥AB ,∴△DFM ∽△DBN ,DM DN =MF BN ,即0.630=0.4BN ,∴BN =20m ,∴AB =BN +AN=20+1.2=21.2m.答:楼高为21.2m.方法总结:在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 探究点二:中心投影【类型一】 判断是否是中心投影下面属于中心投影的是( )A .太阳光下的树影B .皮影戏C .月光下房屋的影子D .海上日出解析:中心投影的光源为灯光,平行投影的光源为阳光与月光.在各选项中只有B 选项得到的投影为中心投影.故选B.方法总结:判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】判断影长的情况晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.方法总结:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】中心投影作图如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,粗线分别表示三人的影子.请根据要求,进行作图(不写画法,但要保留作图痕迹).(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解析:(1)利用中心投影的图形的性质连接对应点得出灯泡位置即可;(2)根据灯泡位置即可得出小明的身高.解:(1)如图所示:O即为灯泡的位置;(2)如图所示:EF即为小明的身高.方法总结:连接物体和它影子的顶端所形成的直线必定经过点光源.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】中心投影的相关计算如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1m ,继续往前走3米到达E 处时,测得影子EF 的长为2m ,已知王华的身高是1.5m ,求路灯A 的高度AB .解析:根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.解:当王华在CG 处时,Rt △DCG ∽Rt △DBA ,即CD BD =CGAB ;当王华在EH 处时,Rt △FEH ∽Rt △FBA ,即EF BF =EH AB =CG AB ,∴CD BD =EFBF .∵CG =EH =1.5m ,CD =1m ,CE =3m ,EF=2m ,设AB =x ,BC =y ,∴1y +1=2y +5,解得y =3,经检验y =3是原方程的根.∵CDBD =CG AB ,即1.5x =14,解得x =6m.即路灯A 的高度AB =6m. 方法总结:解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.平行投影的定义及应用;2.中心投影的定义及应用.本节以自主探索、合作交流为设计主线,从皮影戏、手影、日晷等学生熟悉的生活实际出发,引入物体投影的相关概念,通过观察图片等活动,使学生认识中心投影和平行投影的区别与联系,加强主动学习数学的兴趣,体现数学的应用价值.29.1 投影第2课时正投影1.理解正投影的概念;(重点)2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)一、情境导入观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?二、合作探究探究点:正投影【类型一】确定正投影的形状如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()解析:依题意,光线是垂直照下的,故只有D符合.故选D.方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】物体与其正投影的关系木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】画投影面上的正投影画出下列立体图形投影线从上方射向下方的正投影.解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.解:如图所示:方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:正投影的综合应用【类型一】正投影与勾股定理的综合一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.(1)求影子A1B1的长度(如图①);(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).解析:根据平行投影和正投影的定义解答即可.解:如图①,A1B1=AB=8cm;如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE==4cm,∴A2B2=4cm.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】正投影与相似三角形的综合在长、宽都为4m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)解析:根据题意画出图形,则AN=0.08m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4m.∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.正投影的概念及性质;2.正投影的综合应用.本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1投影(第1课时)
教学目标:
知识与技能:
1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.
2.了解平行投影和中心投影的含义,认识两者之间的区别.
3.会在投影面上画出平行投影和中心投影.
过程与方法
1.通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.
2.认识中心投影和平行投影的区别与联系,发展空间想象能力.
情感态度与价值观
1.通过观察、分析、探究得出结论,激发学生学习数学的兴趣,培养学生观察能力和实践能力.
2.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.
教学重点
理解平行投影和中心投影的特征.
教学难点
在投影面上画出平面图形的平行投影或中心投影.
教学过程
一、新课导入
你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区非常流行.皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎.你知道期中的原理吗?
二、新知构建
1、认识概念
思考:(1)物体在日光或灯光的照射下会形成影子,影子的形成与哪些因素有关?(物体本身、照射光线、形成影子的平面)
(2)你能举出生活中的一些实例吗?
结论:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.教师展示分别用探照灯和灯泡作为光源,在教室的墙面上形成三角尺的影子.
思考:(1)探照灯的光线与灯泡发出的光线有什么不同?
(2)太阳光与哪种光线相同?
结论:有时光线是一组互相平行的射线,例如太阳光或探照灯中的光线.由平行光线形成的投影叫做平行投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.
由同一点(点光源)发出的光线形成的投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.
2、共同探究
思考:(1)如图(1)所示的是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线.若是灯光的光线,请确定光源的位置.
(2)请判断如图(2)所示的两棵树的影子是在太阳光下形成的还是在灯光下形成的,并画出同一时刻旗杆的影子(用线段表示
)
.
(3)通过上边的练习,请观察平行投影和中心投影,它们有什么相同点与不同点?
归纳:
归纳:平行投影与中心投影的区别与联系:
3、例题讲解 (1)地面上直立一根标杆AB ,如图(1)所示,杆长为2 m .
①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?
②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图. 区别 联系
平行投影 平行的投影线 都是物体在光线的照射
下在某个平面内形成的影子(即都是投影) 中心投影 从一点发出的
投影线
(2)一个正方形纸板ABCD和投影面平行(如图(2)所示),投影线和投影面垂直,点C在投影面上的对应点为C',请画出正方形纸板的投影示意图.
引导分析:
(1)当阳光垂直照射地面时,点A的影子落在什么地方?
(2)当阳光与地面的倾斜角为60°时,点A的影子落在什么地方?
(3)在直角三角形中,已知一锐角和一直角边,怎样求出三角形的另一直角边?
(4)当投影线与投影面垂直时,如何画出顶点A,B,C,D的投影?
解:(1)①当阳光垂直照射地面时,标杆在地面上的投影是一个点.因为标杆与地面垂直,阳光垂直照射地面时与标杆平行,使得影子与点B重合.
②当阳光与地面的倾斜角为60°时,如图(3)所示,
在Rt△ABC中,∠ACB=60°,AB=2,
∵tan∠ACB==,∴BC==.
∴标杆在地面上的投影是长为 m的线段,如图(3)所示的BC.
(2)因为纸板与投影面平行,投影线和投影面垂直,所以分别过点A,B,D 作投影面的垂线,垂足分别为A',B',D',顺次连接A',B',C',D'即可.如图(4)所示的为所画的投影.
注意:(1)光线移动时,物体影子的大小、方向也随着变化,物体的形状与影子的形状有密切的联系.
(2)光是沿直线传播的,因此我们可以由投影与物体确定光线方向.
(3)平行投影的应用:①根据阳光下影子的大小、位置的变化判断时刻的不同;②已知一个物体及其在阳光下的影子,可作出同一时刻另一个物体在阳光下的影子;③根据物高和影长的关系可以求物高或影长.
(4)中心投影应用:①根据点光源下两种或两种以上物体及影子的情况判断点光源的位置;②已知点光源的位置,可以画物体在点光源下的影子.
三、课堂小结
1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.
2.有时光线是一组互相平行的射线,例如太阳光或探照灯中的光线.由平行光线形成的投影叫做平行投影.
3.由同一点(点光源)发出的光线形成的投影叫做中心投影.
四、检测反馈
1.平行投影中的光线是()
A.平行的
B.聚成一点的
C.不平行的
D.向四面八方发散的
2.下列投影中属于中心投影的是()
A.阳光下跑动的运动员的影子
B.阳光下木杆的影子
C.阳光下汽车的影子
D.路灯下行人的影子
3.下图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是.
4.下列影子:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是,属于中心投影的是.
5.某一广告牌PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告牌PQ上.
(1)在图中画出此时的太阳光线CE及木杆AB的影子BF;
(2)若AB=5米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB 的影长.
五、板书设计
29.1投影(第1课时)
1.认识概念
平行投影中心投影
2.共同探究
3.例题讲解
例题
六、课堂作业
【必做题】教材第92页习题29.1第1题.
【选做题】教材第92页习题29.1第2题.
教学反思:。