dsp课程设计实验报告总结
dsp原理与应用实验报告总结

dsp原理与应用实验报告总结DSP(Digital Signal Processing)数字信号处理是利用数字技术对信号进行处理和分析的一种方法。
在本次实验中,我们探索了DSP的原理和应用,并进行了一系列实验以验证其在实际应用中的效果。
以下是对实验结果的总结与分析。
实验一:数字滤波器设计与性能测试在本实验中,我们设计了数字滤波器,并通过性能测试来评估其滤波效果。
通过对不同类型的滤波器进行设计和实现,我们了解到数字滤波器在信号处理中的重要性和应用。
实验二:数字信号调制与解调本实验旨在通过数字信号调制与解调的过程,了解数字信号的传输原理与方法。
通过模拟调制与解调过程,我们成功实现了数字信号的传输与还原,验证了调制与解调的可行性。
实验三:数字信号的傅里叶变换与频谱分析傅里叶变换是一种重要的信号分析方法,可以将信号从时域转换到频域,揭示信号的频谱特性。
本实验中,我们学习了傅里叶变换的原理,并通过实验掌握了频谱分析的方法与技巧。
实验四:数字信号的陷波滤波与去噪处理陷波滤波是一种常用的去除特定频率噪声的方法,本实验中我们学习了数字信号的陷波滤波原理,并通过实验验证了其在去噪处理中的有效性。
实验五:DSP在音频处理中的应用音频处理是DSP的一个重要应用领域,本实验中我们探索了DSP在音频处理中的应用。
通过实验,我们成功实现了音频信号的降噪、均衡和混响处理,并对其效果进行了评估。
实验六:DSP在图像处理中的应用图像处理是另一个重要的DSP应用领域,本实验中我们了解了DSP在图像处理中的一些基本原理和方法。
通过实验,我们实现了图像的滤波、边缘检测和图像增强等处理,并观察到了不同算法对图像质量的影响。
通过以上一系列实验,我们深入了解了DSP的原理与应用,并对不同领域下的信号处理方法有了更深刻的认识。
本次实验不仅加深了我们对数字信号处理的理解,也为日后在相关领域的研究与实践提供了基础。
通过实验的结果和总结,我们可以得出结论:DSP作为一种数字信号处理的方法,具有广泛的应用前景和重要的实际意义。
DSP实验报告6

DSP第六、七次实验报告1. 实验目的:(1)进一步熟悉Matlab实验环境和语言。
(2)熟悉各种滤波器的结构及Matlab实现语言。
(3)掌握用冲击响应不变法和双线性变换法设计IIR滤波器的方法。
(4)掌握用窗函数法和频率抽样法设计FIR滤波器的方法。
2. 实验内容及总结:1.滤波器结构:(1)IIR滤波器各种结构1、直接型结构例如直接型滤波器系统函数, 则有系数向量a=[1,a1,a2,a3],b=[b0,b1,b2], 利用:Y=filter[b,a,x]求信号x(n)通过此滤波器的输出。
2、由系统函数或差分方程求系统的二阶分式(含一阶分式)的级联结构将例如的系统函数重写为二阶分式节的级联型, 利用:[sos,G]=tf2sos(b,a)3、由二阶分式的级联结构转换成系统函数的直接结构是第二步的逆运算, 调用函数:[b,a] = sos2tf(sos)可以求得系数向量a,b, 从而得到H(z)4、由系统函数求部分分式展开(留数及其极点计算)即求z反变换的部分分式展开法, 利用:[r,p,c]=residuez(b,a)其中极点为p, 留数为r, 直接项系数为c。
5、由r,p,c求系统函数即第4步的逆运算, 利用:[b,a]=residuez(r,p,c)6、由直接型结构转换为并联型结构需开发函数:[C,B,A]=tf2par(b,a)其中, b,a为直接型的系数向量, C,B,A为并联型实系数向量, 基本思想是: 1.反复调用[r,p,c]=residuez(b,a)求出极点及留数;2.利用cplxpair函数把极点、留数对按复共轭极点-留数对, 实极点-留数对的顺序排列;3.开发cplxcomp函数, 保证极点和留数相互对应;4.调用[b,a]=residuez(r,p,c)计算并联二阶节的分子分母。
7、由并联型结构转换成直接型结构开发函数:[b,a]=par2tf(C,B,A)为[C,B,A]=tf2par(b,a)的逆函数。
dsp课程设计实验报告

DSP课程设计实验语音信号的频谱分析:要求首先画出语音信号的时域波形, 然后对语音信号进行频谱分析。
在MATLAB中, 可以利用函数fft对信号进行快速傅立叶变换, 得到信号的频谱特性, 从而加深对频谱特性的理解。
其程序为:>> [y,fs,bits]=wavread('I:\xp.wav',[1024 5120]);>> sound(y,fs,bits);>> Y=fft(y,4096);>> subplot(221);plot(y);title('原始信号波形');>> subplot(212);plot(abs(Y));title('原始信号频谱');程序运行结果为:设计数字滤波器和画出频率响应:根据语音信号的特点给出有关滤波器的性能指标:低通滤波器性能指标, =1000Hz, =1200Hz, =100dB, =1dB;高通滤波器性能指标, =4800Hz, =5000Hz, =100dB, =1dB;带通滤波器性能指标, =1200Hz, =3000Hz, =1000Hz, =3200Hz, =100dB, =1dB;要求学生首先用窗函数法设计上面要求的三种滤波器, 在MATLAB中, 可以利用函数firl 设计FIR滤波器;然后再用双线性变换法设计上面要求的三种滤波器, 在MA TLAB中, 可以利用函数butte、cheby1和ellip设计IIR滤波器;最后, 利用MATLAB中的函数freqz画出各种滤波器的频率响应, 这里以低通滤波器为例来说明设计过程。
低通:用窗函数法设计的低通滤波器的程序如下:>> fp=1000;fc=1200;As=100;Ap=1;fs=22050;>> wc=2*fc/fs;wp=2*fp/fs;>> N=ceil((As-7.95)/(14.36*(wc-wp)/2))+1;>> beta=0.1102*(As-8.7);>> Win=Kaiser(N+1,beta);>>b=firl(N,wc,Win);>>freqz(b,1,512,fs);程序运行结果:这里选用凯泽窗设计, 滤波器的幅度和相位响应满足设计指标, 但滤波器长度(N=708)太长, 实现起来很困难, 主要原因是滤波器指标太苛刻, 因此, 一般不用窗函数法设计这种类型的滤波器。
DSP实验报告_6

实验一: 闪灯实验熟悉DSP 软硬件测试系统实验目的1.了解SHARC 系列高性能数字信号处理器的程序开发过程和编程语言;2.熟悉集成开发工具VisualDSP++, 学会使用VisualDSP++进行SHARC 系列ADSP 的程序开发、编译与调试;3.掌握SHARC 系列ADSP 的程序加载设计和加载过程。
实验内容利用波形产生信号板, 结合FPGA 编程技术和程序编程器, 编写测试ADSP21065L 和FPGA 之间硬件连接的应用程序, 同时完成应用程序的加载和脱机操作, 在信号指示灯“HL2”上产生可调周期的脉冲信号, “点亮”与“熄灭”指示灯HL2。
实验要求通过DSP 编程, 在其FLAG11引脚上模拟如下波形的周期信号:要求:(1) 500H T ms >,500L T ms >. (2) 并用示波器查看波形, 测量信号周期。
实验步骤1. 熟悉电路图, 清楚波形产生电路板ADSP21065L 与可编程FPGA 器件之间的连接关系;2. 编写FPGA 程序。
在FPGA 内部将ADSP21065L 的标志引脚FLAG11(引脚号26)设置为输出, 作为FPGA 的输入信号, 在FPGA 内部编程将该信号直接输出在发FPGA 的37引脚号上, 设置37引脚为输出信号, 驱动板上的HL2 LED 指示灯;3. 启动VisualDsp++4.5,选择project 工程选项菜单, 创建一个名称为Test.dpj 的工程文件, 选择处理器的型号为ADSP-21065L ;4.弹出一个对话框, 选择是否需要加入VDSP kernel ,选择“NO ”;5. 在工程中加入以下参考源文件:\exp1\test(boot)\ boot1.asm 和boot1.ldf 6.编译, 链接调试, 生成可执行文件。
7.运行程序, 可以看到波形发生电路板上的指示灯“HL2”不断闪动。
8. 利用示波器观测系统时钟,并测量产生信号的波形和周期。
DSP实验报告(综合)

实验报告||实验名称 D SP课内系统实验课程名称DSP系统设计||一、实验目的及要求1. 掌握用窗函数法设计FIR数字滤波器的原理和方法。
熟悉线性相位FIR 数字滤波器特性。
了解各种窗函数对滤波器特性的影响。
2. 掌握设计IIR数字滤波器的原理和方法。
熟悉IIR数字滤波器特性。
了解IIR数字滤波器的设计方法。
3.掌握自适应数字滤波器的原理和实现方法。
掌握LMS自适应算法及其实现。
了解自适应数字滤波器的程序设计方法。
4.掌握直方图统计的原理和程序设计;了解各种图像的直方图统计的意义及其在实际中的运用。
5.了解边缘检测的算法和用途,学习利用Sobel算子进行边缘检测的程序设计方法。
6.了解锐化的算法和用途,学习利用拉普拉斯锐化运算的程序设计方法。
7.了解取反的算法和用途,学习设计程序实现图像的取反运算。
8.掌握直方图均衡化增强的原理和程序设计;观察对图像进行直方图均衡化增强的效果。
二、所用仪器、设备计算机,dsp实验系统实验箱,ccs操作环境三、实验原理(简化)FIR:有限冲激响应数字滤波器的基础理论,模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。
数字滤波器系数的确定方法。
IIR:无限冲激响应数字滤波器的基础理论。
模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。
数字滤波器系数的确定方法。
、自适应滤波:自适应滤波器主要由两部分组成:系数可调的数字滤波器和用来调节或修正滤波器系数的自适应算法。
e(n)=z(n)-y(n)=s(n)+d(n)-y(n)直方图:灰度直方图描述了一幅图像的灰度级内容。
灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标是该灰度出现的频率(像素个数与图像像素总数之比)。
图像边缘化:所谓边缘(或边沿)是指其周围像素灰度有阶跃变化。
经典的边缘提取方法是考察图像的每个像素在某个邻域内灰度的变化,利用边缘临近一阶或二阶方向导数变化规律,用简单的方法检测边缘。
DSP实验报告(一)

实验一 信号系统及系统响应一、实验目的1、 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
2、 熟悉离散信号和系统的时域特性。
3、 熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、 掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
二、实验原理(一)连续时间信号的采样采样是指按一定的频率从模拟信号抽样获得数字信号。
采样是从连续时间信号到离散时间信号的过渡桥梁。
对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即()()()ˆa a x t x t M t =(1)其中连续信号的理想采样,是周期冲激脉冲()()n M t t n T d +=-=-å(2)它也可以用傅立叶级数表示为:1()s jm tn M t eT+W =-=å(3)其中T 为采样周期,Ω是采样角频率。
设是连续时间信号的双边拉氏变换,即有:()()ata a X s x t edt+--=ò(4)此时理想采样信号的拉氏变换为()ˆˆ()()1ˆ()1ˆ()1()s s ataa jm tsta m s jm ta m a s m X s x t e dtxt ee dtTxt e dtT X s jm T+--++W -=--++--W =- -++=--====-W òåòåòåò(5)作为拉氏变换的一种特例,信号理想采样的傅立叶变换1ˆ()[()]aa s m X j X j m T+=-W =W-W å(6)由式(5)和式(6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。
根据Shannon 取样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频谱混淆现象。
DSP实验报告(二)

DSP实验报告(二)实验二应用FFT对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法及其程序的编写。
2、熟悉应用FFT对典型信号进行频谱分析的方法。
3、了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
二、实验原理与方法①一个连续信号的频谱可以用它的傅立叶变换表示为+ Xa(jW)=-jWtx(t)edtòa-如果对该信号进行理想采样,可以得到采样序列x(n)=xa(nT)同样可以对该序列进行z变换,其中T为采样周期X(z)=+ x(n)z-n+ -令z为ejw,则序列的傅立叶变换X(ejw)=x(n)ejwn-其中ω为数字频率,它和模拟域频率的关系为w=WT=W/fs式中的是采样频率。
上式说明数字频率是模拟频率对采样率的归一化。
同模拟域的情况相似。
数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。
序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系。
1X(e)=Tjw+ - w-2pXa(j)T即序列的频谱是采样信号频谱的周期延拓。
从式可以看出,只要分析采样序列的谱,就可以得到相应的连续信号的频谱。
注意:这里的信号必须是带限信号,采样也必须满足Nyquist定理。
在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。
无限长的序列也往往可以用有限长序列来逼近。
有限长的序列可以使用离散傅立叶变换。
当序列的长度是N时,定义离散傅立叶变换为:X(k)=DFT[x(n)]=其中W=e2pj-NN-1n=0WNkn它的反变换定义为:1x(n)=IDFT[X(k)]=N根据式和,则有N-1n=0X(k)WNknX(z)|z=Wnk=NN-1n=0x(n)WNnk=DFT[x(n)]j2pN可以得到X(k)2pk的点,就NN是将单位圆进行N等分以后第k个点。
所以,X(k)是z变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
dsp实验报告总结【精品】

我不应把我的作品全归功于自己的智慧,还应归功于我以外向我提供素材的成千成万的事情和人物!——采于网,整于己,用于民2021年5月12日dsp实验报告总结篇一:dsp课程设计实验报告总结DSP课程设计总结(XX-XX学年第2学期)题目:专业班级:电子1103 学生姓名:万蒙学号:指导教师:设计成绩:XX 年6 月目录一设计目的----------------------------------------------------------------------3 二系统分析----------------------------------------------------------------------3 三硬件设计3.1 硬件总体结构-----------------------------------------------------------3 3.2 DSP模块设计-----------------------------------------------------------4 3.3 电源模块设计----------------------------------------------------------4 3.4 时钟模块设计----------------------------------------------------------5 3.5 存储器模块设计--------------------------------------------------------6 3.6 复位模块设计----------------------------------------------------------6 3.7 JTAG模块设计--------------------------------------------------------7 四软件设计4.1 软件总体流程-----------------------------------------------------74.2 核心模块及实现代码---------------------------------------8五课程设计总结-----------------------------------------------------14一、设计目的设计一个功能完备,能够独立运行的精简DSP硬件系统,并设计简单的DSP控制程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP课程设计总结(2013-2014学年第2学期)题目:专业班级:电子1103学生姓名:万蒙学号:11052304指导教师:设计成绩:2014 年6 月目录一设计目的----------------------------------------------------------------------3 二系统分析----------------------------------------------------------------------3 三硬件设计3.1 硬件总体结构-----------------------------------------------------------33.2 DSP模块设计-----------------------------------------------------------43.3 电源模块设计----------------------------------------------------------43.4 时钟模块设计----------------------------------------------------------53.5 存储器模块设计--------------------------------------------------------63.6 复位模块设计----------------------------------------------------------63.7 JTAG模块设计--------------------------------------------------------7 四软件设计4.1 软件总体流程-----------------------------------------------------74.2 核心模块及实现代码---------------------------------------8五课程设计总结-----------------------------------------------------14一、设计目的设计一个功能完备,能够独立运行的精简DSP硬件系统,并设计简单的DSP 控制程序。
二、系统分析1.1设计要求硬件要求:(1)使用TMS320VC5416作为核心芯片。
(2)具有最简单的led控制功能。
(3)具有存放程序的外部Flash芯片。
(4)外部输入+5V电源。
(5)绘制出系统的功能框图。
(6)使用AD(Altium Designer)绘制出系统的原理图和PCB版图。
软件要求:利用实验箱的模拟信号产生单元产生不同频率的信号,或者产生两个频率的信号的叠加。
在DSP中采集信号,并且对信号进行频谱分析,滤波等。
通过键盘选择算法的功能,将计算的信号频率或者滤波后信号的频率在LCD上显示。
三、硬件设计3.1 硬件总体结构3.2 DSP总体结构3.3 电源模块设计3.4 时钟模块设计3.5 存储器模块设计3.6复位模块设计3.7 JTAG模块设计四、硬件设计4.1 软件总体流程4.2核心模块及实现代码1.采集数据去直流in_x[m] = port8002 & 0x00ff;//读取数据m++;intnum = m;if (intnum == Len) //以256个点为采样周期{intnum = 0;xavg = 0.0;for (s=0; s<Len; s++){xavg = in_x[s] + xavg; //归一化处理}xavg = xavg/Len;//采样均值for (s=0; s<Len; s++){x[s] = 1.0*(in_x[s] - xavg);}1.FFT变换void kfft(double pr[Len],double pi[Len],int n,int k,double fr[Len],double fi[Len],int l,int il) //pr为实部,pi为虚部,k为蝶形运算级数{int it,m,is,i,j,nv,l0;double p,q,s,vr,vi,poddr,poddi;for (it=0; it<=n-1; it++){ m=it; is=0;for (i=0; i<=k-1; i++){ j=m/2; is=2*is+(m-2*j); m=j;}fr[it]=pr[is]; fi[it]=pi[is]; //序数重排}pr[0]=1.0; pi[0]=0.0;p=6.283185306/(1.0*n);pr[1]=cos(p); pi[1]=-sin(p);if (l!=0) pi[1]=-pi[1];for (i=2; i<=n-1; i++){ p=pr[i-1]*pr[1]; q=pi[i-1]*pi[1];s=(pr[i-1]+pi[i-1])*(pr[1]+pi[1]);pr[i]=p-q; pi[i]=s-p-q;}for (it=0; it<=n-2; it=it+2){ vr=fr[it]; vi=fi[it];fr[it]=vr+fr[it+1]; fi[it]=vi+fi[it+1];fr[it+1]=vr-fr[it+1]; fi[it+1]=vi-fi[it+1];}m=n/2; nv=2;for (l0=k-2; l0>=0; l0--){ m=m/2; nv=2*nv;for (it=0; it<=(m-1)*nv; it=it+nv)for (j=0; j<=(nv/2)-1; j++){ p=pr[m*j]*fr[it+j+nv/2];q=pi[m*j]*fi[it+j+nv/2];s=pr[m*j]+pi[m*j];s=s*(fr[it+j+nv/2]+fi[it+j+nv/2]);poddr=p-q; poddi=s-p-q;fr[it+j+nv/2]=fr[it+j]-poddr;fi[it+j+nv/2]=fi[it+j]-poddi;fr[it+j]=fr[it+j]+poddr;fi[it+j]=fi[it+j]+poddi;}}if (l!=0)for (i=0; i<=n-1; i++){ fr[i]=fr[i]/(1.0*n);fi[i]=fi[i]/(1.0*n);}if (il!=0)for (i=0; i<=n-1; i++){ pr[i]=sqrt(fr[i]*fr[i]+fi[i]*fi[i]);if (fabs(fr[i])<0.000001*fabs(fi[i])){ if ((fi[i]*fr[i])>0) pi[i]=90.0;else pi[i]=-90.0;}elsepi[i]=atan(fi[i]/fr[i])*360.0/6.283185306;//pi为相位}}2.计算频率void cf(double f[Len]){ double max;int no=0;max=f[0];for(i=0;i<128;i++){if(f[i]>max){max=f[i];//max为最大幅值no=i;//最大幅值处对应序数}}fstop=no*fs/256;3.FIR滤波void firdes(double npass //求出窗口函数h{int t;for (t=0; t<FLen; t++){h[t] = sin((t-(FLen-1)/2.0)*npass*pai)/(pai*(t-(FLen-1)/2.0));}if (t == ((FLen-1)/2)) h[t]=npass;}//作卷积for (s=0; s<Len; s++){x[s] = 1.0*(in_x[s] - xavg);pr[s] = x[s]; //输入实部pi[s] = 0; //输入虚部for (p=0; p<FLen; p++){xmid[FLen-p-1] = xmid[FLen-p-2];}xmid[0] = x[s];r = 0;rm= 0;for (j=0; j<FLen; j++){r = xmid[j] * h[j];rm = rm + r;}y[s] = rm;}4.LCD显示SendCMD(CLEAR);showperson();Delay(1);//-----------------------------------------------------------SendCMD(CLEAR);SendCMD(0x0080); //设定DDRAM的地址在第一行80Hdelay_100us();for(i =0;i<16;i++){SendDat(data_buff3[i]);delay_100us();asm(" nop ");}asm(" nop ");SendCMD(0x0090);shownum(f1);//------------------------------SendCMD(0x0088); //设定DDRAM的地址在第二行90Hdelay_100us();for(i =0;i<16;i++){SendDat(data_buff4[i]);delay_100us();}SendCMD(0x0098);shownum(f2);4.3 软件实验效果图1.去直流2.滤波前fft3.滤波后fft4.窗口函数五课程设计总结在为期两个多星期的综合设计中,重新熟悉了一下AD和CCS软件的操作。
在画原理图时,各元件的连接及封装形式都应参照手册。
只有深刻了解各管脚的功能,才能准确快速地画好原理图。
画好原理图后,要先编译一下看是否有连接错误。
如果原理图有所改变,可以在PCB中重新导入。
如果元器件管脚或IO引脚变绿,可能是间距违反了规定的rule。
可以将rule里的间距改小一点。
在pcb连线过程中,我发现移动clk时钟器件,其管脚变绿,但rule并无问题。
后经查阅资料,取消了Drc功能,才恢复正常。
在连接滤波电容时,将滤波电容靠近其滤波元器件。
在软件设计过程中,前两天一直没有搞清楚设计要求,进展缓慢。
首先了结了一下各个模块程序的输入输出变量的含义,只有这样才能正确地调用各个函数。
在计算频率时,其实我只计算了一个频率。
输入是一个混频信号,由于左右对称,在128点内可得到两个最大幅度,0到30(或其他分界点亦可,视滤波效果而言),比较一次,30到128,再比较一次。
滤波函数仅仅只是计算了窗口函数,故还需将输入信号函数和窗口函数进行卷积得到最终结果。