高压发泡机常见机械故障及解决方法

高压发泡机常见机械故障及解决方法
高压发泡机常见机械故障及解决方法

高压发泡机常见机械故障及解决方法

【摘要】高压发泡机是冰箱和冰柜生产线中的关键主要设备之一,根据作者长期维修高压发泡机的经验总结,逐一分析了高压发泡机重要部件可能发生的常见机械故障,并提出具体解除方法。本文对初次接触高压发泡机的维护人员以及对高压发泡机的操作者、维护者有一定的指导意义。

【关键词】变量泵;高低压换向阀;混合头;流量;压力;高压循环

发泡是家用冰箱和冰柜制造过程中关键的一道工艺,发泡质量的优劣直接影响到冰箱的制冷效果和冰箱的强度,而高压发泡机则是提供优良发泡的重要基础。高压发泡机主要由原料罐、变量泵、高低压换向阀、混合头、液压站、计量系统及电气控制系统组成。常见的机械故障集中在变量泵、混合头、高低压换向阀、液压站等部件,本文逐一进行分析和描述。

1.变量泵

变量泵是高压发泡机的心脏,目前使用的大都是开式轴向柱塞变量泵,也有部分闭式泵在使用。这种泵的柱塞组是活动的,可以左右摇摆,它的吐出量与泵组对轴心的角度成正比,角度越大吐出量就越大,吐出量与摆动角度基本是线性变动。闭式和开式变量泵是可以互相改变的,只要把原料管路稍做更改就行了。变量泵经常出现的问题有流量不稳定、没有流量输出、泵噪音大、泵头漏料等故障。

1.1变量泵流量不稳定

主要原因有:泵的输入口供料不足或泵的柱塞与内壁间间隙过大引起的。变量泵吸料不足有可能是因滤网脏或原料罐预压气压太低引起的,洗清滤网和加大气压即可。一般按照工艺要求,料罐的气压应控制在2.5-3.0BAR.如果低压循环和高压循环时的流量波动过大,这就是泵的柱塞与内壁间间隙过大,需要更换新泵了。另外在泵的吐出口,这里有几道密封圈,如果有泄露,那也会造成流量不稳。变量泵的转动电机转速是否均衡也影响到流量的稳定性。

1.2变量泵无流程输出

当变量泵的输出突然变为零时,则很有可能是泵内配油盘与活塞头间压紧的碟型弹片失去弹性或挡圈掉了,更换碟型垫片和重新安装挡圈即可。当配油盘上的一道浅沟完全磨损消失后,这只配油盘和与它配合的活塞头也就报废了。端盖与活塞外套间有通道让高压原料流动,这两个面间有密封圈,如果它坏了,变量泵输出也没了。

1.3变量泵的噪音

在变量泵使用过程中噪音大也是常见的故障,主要原因料温过低导致原料的粘度大和原料中气体过多(特别是组合聚醚)引起的。料温过低可通过打开加热器加热原料,也可以将混合头压力降低,通过连续高压循环达到原料升温。为了避免原料中气体过多,原料应在不工作时不要过多搅拌,料罐原料不应过少,控制在料罐1/2处。另外变量泵口处的轴承组中的轴承坏了,也易产生噪音,这时更换轴承就可以了。在料罐没料时,如果泵还启动,那会产生刺耳的声音,极易把泵咬死报废,千万小心不能打空泵。在电气保护回路中也设置了放置高压泵空运转情况的发生。

1.4变量泵的漏料

变量泵主轴伸出泵体外处的轴封经常渗漏,需要定期更换轴封和轴套,换轴

电气设备故障诊断汇总

电气故障诊断 一、电气设备的状态及检测技术 1、电气设备的状态 (1)正常状态:设备具备其应有的功能,没有缺陷或缺陷不明显,缺陷严重程度仍处于容限范围内。 (2)异常状态:缺陷有了进一步的发展,设备状态发生变化,性能恶化,但仍能维持工作。(3)故障状态:缺陷发展到使设备性能和功能都有所丧失的程度。 (4)事故状态:功能完全丧失,无法进行工作状态。 2、电气设备的状态检测 (1)判断设备所处的状态; (2)根据其状态决定对待的方式。 二、电气设备的现代检测技术 1、现代故障诊断技术的构成: (1)故障诊断机理的研究:(理化原因等) (2)故障诊断信息学的研究:(数据采集与分析) (3)诊断逻辑和数学原理方面的研究:(诊断与决策) 2、现代故障诊断四项技术: (1)检测技术(采集信号、参数) (2)信号处理技术(提取状态信息) (3)识别技术(分析、判断) (4)预测技术(决策和预测) 3、故障诊断与状态监测的关系 (1)工况监测:对反映设备或系统工作状态的信息进行全面监测和分析,实时掌握设备基本工作状态。 (2)状态监测:又称简易诊断,通过监测结果与设定阈值之间的对比,仅对设备运行状态作出正常、异常或故障的判断,而对故障的性质、严重程度等不予或无法进行更深入的诊断。

4、故障诊断的成功因素 (1)故障信息源 (2)诊断方法 5、故障诊断技术的发展趋势(与当代前沿科技相融合) (1)人工智能技术:人工神经网络、专家系统等; (2)前沿数学:小波分析、模糊数学、分析几何等; (3)信息融合技术:证据理论等。 6、故障诊断的关注点 (1)故障阶段:尚未发展造成事故的阶段; (2)其目的是:防患于未然; (3)作用阶段:继电保护动作之前。 三、电气设备的传统检测技术 如果把有故障的电气设备比作病人,电工就好比医生。由中医诊断学的经典四诊(望、闻、问、切),结合电气设备故障的特殊性和诊断电气故障的成功经验,电气设备的检测技术归纳为“六诊”要诀,另外引申出电气设备诊断特殊性的“九法”、“三先后”要诀。 “六诊”、“九法”、“三先后”是行之有效的电气设备诊断的思想方法和工作方法。 事物往往是千变万化的和千差万别的,电气设备出现的故障是五花八门,“六诊”、“九法”、“三先后”电气故障诊断要诀,只是一种思想方法和工作方法,切记不能死搬硬套。检修人员要善于透过现象看本质,善于抓住事物的主要矛盾。 (一)“六诊”检测法 “六诊”------口问、眼看、耳听、鼻闻、手模、表测六种诊断方法,简单地讲就是通过“问、看、听、闻、摸、测”来发现电气设备的异常情况,从而找出故障原因和故障所在的部位。前“五诊”是凭借人的感官对电气设备故障进行有的放矢的诊断,称为感官诊断,又称直观检查法。同样,由于个人的技术经验差异,诊断结果也有所不同。可以采用“多人会诊法”求得正确结论。“表测”即应用电气仪表测量某些电气参数的大小,经过与正常数值对比,来确定故障原因和部位。 (1)口问 当一台设备的电气系统发生故障后,检修人员首先要了解详细的“病情”。即向设备操作人员了解设备使用情况、设备的病历和故障发生的全过程。 如果故障发生在有关操作期间或之后,还应询问当时的操作内容以及方法、步骤。总的来讲,了解情况要尽可能详细和真实,这些往往是快速找出故障原因和部位的关键。 例如:当维修人员巡查时,操作人员反应前处理一台打水离心泵不能启动,需要及时处理。这时维修人就要询问,水罐是否有水,上班和本班是否曾经运行,具体使用情况,是否运行一段时间后停止,还是未运行就不能开启。还要询问故障历史等等。了解具体情况后,到现场进行处理就会有条理,轻松解决问题。 (2)眼看 1)看现场 根据所问到的情况,仔细查看设备外部状况或运行工况。如设备的外形、颜色有无异常,熔丝有无熔断:电气回路有无烧伤、烧焦、开路、短路,机械部分有无损坏以及开关、刀闸、按钮插接线所处位置是否正确,改过的接线有无错误,更换的元件是否相符等:还要观察信

给水泵机封损坏原因分析与处理方法

给水泵机封损坏原因分析及处理措施 给水泵是确保电厂安全运行的重要设备,针对三厂区热源一期给水泵机械密封损坏的问题,本文通过机械密封损坏原因分析吸取的教训,结合现场实际情况降低给水泵振动,改善给水泵机械密封冷却水水质,改善机械密封运行环境,较好解决了给水泵机械密封频繁损坏的问题,取得了较好的效果. 1前言 三厂区热源一期除氧给水系统配备长沙佳能通用泵业有限公司的DG150-100×10(P)多级锅炉给水泵,该泵型系卧式自平衡型结构离心泵,为单吸多级结构,其吸入口在进水段上为垂直向上,吐出口在出水段上为垂直向上,用拉紧螺栓将泵的进水段、中段、

出水段、次级进水段联成一体,轴承驱动端采用圆柱滚子轴承,末端采用圆柱滚子轴承和角接触球轴承组合结构,采用强制油循环稀油润滑,润滑油由液偶油系统提供;泵的进水段、中段、出水段之间的密封面均采用密封胶或“0”形圈密封,轴的密封形式为机械密封。 2给水泵机封运行中存在的问题 三厂区热源一期给水泵在启动正常后,可连续运行,随着运行周期延长,机封漏水量逐渐增大,机封靠轴端外缘出现积盐,在运行中给水泵临时切换或者处理故障停运,机封漏水量显著加大,以至于过大而无法启动。同时当给水泵振动增大时,机械密封漏水量也会增大,严重影响给水泵组安全运行。 3给水泵机封损坏原因分析 3.1机械密封安装注水静试泄漏分析

机械密封安装调好后,要进行注水静压检查,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封固有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。 3.2试运转时机械密封出现的泄漏分析 给水泵机械密封经过静试后,运转时高速旋转产生的离心力,会抑制给水的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:

高压断路器机械振动信号分析及故障诊断技术的研究

目录 第一章绪论 (1) 1.1 课题的研究背景及意义 (1) 1.2 国内外研究现状 (2) 1.3 断路器振动信号分析的重要性 (5) 1.4 研究内容及论文结构 (6) 1.4.1 研究内容 (6) 1.4.2 论文结构 (7) 第二章高压断路器特征信号的采集 (9) 2.1 在线监测系统设计 (9) 2.2 主要监测内容 (11) 2.2.1 监测内容及传感器选择 (11) 2.2.2 断路器触头行程 (11) 2.2.3 断路器机械振动信号 (14) 2.2.4 动作线圈电流 (17) 2.2.5 主回路电流 (18) 2.3 监测系统软件设计 (21) 2.4 监测系统的抗干扰措施 (22) 2.4.1 现场的电磁场干扰分析 (22) 2.4.2 抗干扰设计 (23) 2.5 本章小结 (26) 第三章断路器机械振动信号处理及统计特性研究 (29) 3.1 断路器机械振动信号的小波去噪 (29) 3.1.1 小波去噪原理 (29) 3.1.2 小波去噪方法 (30) 3.1.3 数据仿真分析 (32) 3.1.4 现场实例分析 (34) 3.2 小波包频带能量法分析断路器振动信号 (36) V

3.2.1 断路器振动信号的频谱分析 (36) 3.2.2 特征频带选取 (37) 3.3 断路器机械振动信号的统计性 (38) 3.4 本章小结 (41) 第四章断路器机械振动信号的功率谱估计分析 (43) 4.1 经典谱估计 (43) 4.2 AR功率谱估计 (48) 4.2.1 AR模型的功率谱估计原理 (48) 4.2.2 AR模型阶数的选取 (49) 4.2.3 数据仿真分析 (51) 4.2.4 参数求解算法 (55) 4.2.5 现场实例分析 (62) 4.3 外界噪声影响 (64) 4.4 本章小结 (65) 第五章基于支持向量机理论的断路器故障诊断技术 (67) 5.1 高压断路器故障诊断技术 (67) 5.2 支持向量机故障诊断方法 (70) 5.2.1 支持向量机 (70) 5.2.2 多分类支持向量机 (73) 5.3 高压断路器的支持向量机故障诊断方法 (76) 5.3.1 样本数据预处理 (77) 5.3.2 样本集构造 (78) 5.3.3 核函数及其参数的选择 (79) 5.4 高压断路器故障诊断实例 (82) 5.4.1 试验数据集描述及数据可视化 (82) 5.4.2 基于RBF核函数10-CV交叉验证法参数寻优 (84) 5.4.3 性能评估及结果分析 (85) 5.4.4 诊断实例 (87) 5.5 本章小结 (91) 第六章总结 (93) 6.1 主要结论 (93) 6.2 研究展望 (94) VI

掘进机的常见机械故障

掘进机的常见机械故障 EBZ掘进机是三一公司通过多年试验改进,在广大三一研发人员和制造工人的共同努力下创造的国内最先进煤机产品.三一人以品质改变世界的敬业精神,创造了煤机行业的一个个神话. 虽然公司的设备先进,但在日常的维护中,由于井下条件、维护和使用不当也会造成一定的故障,所以保养已成为日常维护中的重中之重. 掘进机的常见机械故障 一;截割部 截割部的主要故障是由于齿轮箱及伸缩部在日常维护中忘加齿轮油造成.常见的故障有齿轮箱损坏.轴承损坏.齿轮卡死.浮动密封损坏.等等.下面介绍一下截割部的常见故障. 1:截割头 (1)截齿磨偏:其主要原因是由于截齿在工作中由于煤灰 的作用将齿柄和齿座卡死,使其不能转动,造成了截齿 磨偏,所以在日常的维护中和开车前必须将截齿周围 的煤去掉,敲击截齿使其能转动. (2)齿座磨损:其主要原因是由于截齿磨损没有极时更换, 和截割岩层比较松散,含沙量大的岩层. (3)截齿座脱落:主要由于截齿脱落没有极时的更换,由其 是在一导向板内连续脱落几个截齿,加重齿座的附载, 造成齿座的脱落.另就是质量问题.

(4)截割头脱落:主要存在在EBZ160以下.截割头主要由 两个固定螺栓固定.在日常的维护中由于截割头被煤 灰包围,检查比较困难,当螺栓松动时截割头转动时将 其切断后就造成了截头脱落.所以在时常维护中,我们 必须定时检查固定螺栓是否松动,保险是否完好. 2;伸缩部及截割部 (5)伸缩及截割部的主要问题也是齿轮油的问题,由于伸 缩及截割部的加油较困难,检查油量往往被维护人员 所乎视,造成了腔内缺油,破坏了轴承的浮动的润滑, 便之损坏. (6)浮动油封的损坏其主原因是1.内喷雾喷口堵塞造成 的水压回流,有些内喷雾外制的设备也会产生回水.2. 煤尘,由于在截割过程中煤尘进入使油封磨损.3.是无 油润滑造成油封的损伤.总之一但油封损伤就会造成 腔内油液的泄漏,使截割部损坏.所以在日常的维护中 要认真检查截割头部有否漏油. (7)轴承的损坏一般情况下是由于腔内无油及油量太少. 由其在切割尖部时由于油液太少,轴承得不到润滑,造 成了轴承的磨损.另外杂质的侵入也是轴承损坏的一 个原因. (8)在日常的维护检查时一般的情况下要注意开车时的 异常声音,定期放油查看油质中是否含水.

断路器常见故障及分析

高压断路器是电力系统中最重要的开关设备,它担负着控制和保护的双重任务,如断路器不能在电力系统发生故障时及时开断,就可能使事故扩大,造成大面积停电。为了满足开断和关合,断路器必须具备三个组成部分;①开断部分,包括导电、触头部分和灭弧室。②操动和传动部分,包括操作能源及各种传动机构。③绝缘部分,高压对地绝缘及断口间的绝缘。此三部分中以灭弧室为核心。 断路器按灭弧介质的不同可分为: 油断路器,利用绝缘油作为灭弧和绝缘介质,触头在绝缘油中开断,又可分为多油和少油断路器。 压缩空气断路器,利用高压力的空气来吹弧的断路器。 六氟化硫断路器,指利用六氟化硫气体作为绝缘和灭弧介质的断路器。 真空断路器,指触头在真空中开断,利用真空作为绝缘和灭弧介质的断路器。 断路器的分合操作是依靠操作机构来实现,根据操作机构能源形式的不同,操作机构可分为:电磁机构,指利用电磁力实现合闸的操作机构。 弹簧机构,指利用电动机储能,依靠弹簧实现分合闸的操作机构。 液压机构,指以高压油推动活塞实现分合闸的操作机构。 气动机构,指以高压力的压缩空气推动活塞实现分合闸的操作机构。 操作机构还有组合式的,例如气动弹簧机构是由气动机构实现合闸,由弹簧机构分闸。操作机构一般为独立产品,一种型号的操作机构可以配几种型号的断路器,一种型号的断路器可以配几种型号的操作机构。 下面就不同灭弧介质的断路器和不同型式操作机构分别介绍断路器在运行时最常见的故障,以及原因分析。 1.断路器本体的常见故障 1.1油断路器本体 序号常见故障可能原因 1 渗漏油固定密封处渗漏油,支柱瓷瓶、手孔盖等处的橡皮垫老化、安装工艺差和固定螺栓的不均匀等原因。 轴转动密封处渗漏油,主要是衬垫老化或划伤、漏装弹簧、衬套内孔没有处理干净或有纵向伤痕及轴表面粗糙或轴表面有纵向伤痕等原因。 2 本体受潮帽盖处密封性能差。 其他密封处密封性能差。 3 导电回路发热接头表面粗糙。 静触头的触指表面磨损严重,压缩弹簧受热失去弹性或断裂。 导电杆表面渡银层磨损严重。 中间触指表面磨损严重,压缩弹簧受热失去弹性或断裂。 4 断路器本体内部卡滞导电杆不对中。灭弧单元装配不当、传动部件及焊接尺寸不合格和灭弧单元与传动部件装配时间隙不均匀。 运动机构卡死。拉杆装配时接头与杆不在一条直线、各柱外拐臂上下方向不在一条直线上。 5 断口并联电容故障并联电容器渗漏油。 并联电容器试验不合格。 2真空断路器本体 序号常见故障可能原因 1 真空泡漏气真空泡密封性能差,漏气造成真空泡内部真空度下降,绝缘性能下降。

电动机常见机械故障检修

电动机常见机械故障检 修 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电动机常见机械故障检修 1.定、转子铁芯故障检修 定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。 ①轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高。这时应用细锉等工具去除毛刺,消除硅钢片短接,清理干净后涂上绝缘漆,并加热烘干。 ②拆除旧绕组时用力过大,使盗槽歪斜和向外张开。此时应用尖嘴钳、木榔头等工具予以修整,使齿糟复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。 ③因受潮等原因造成铁芯表面锈蚀。此时需用砂纸打磨干净,清理后涂上绝缘漆。 ④围绕组接地产生高热烧毁铁芯糟或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘漆烘干。 ⑤铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。 2.轴承故障检修 转轴通过轴承支撑转动,是负荷最重的部分,又是容易磨损的部件。

①故障检查 运行中检查; 滚动轴承缺油时,会听到“骨碌骨碌”的声音;若听到不连续的“梗梗”的声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。 拆卸后检查; 先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕等,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外刚圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,停转后外钢圈没有倒退现象。否则说明轴承已不能再用了。左手卡住外圈,右手捏住内钢圈,用力向各个方向推动,如果推动时感到很松,就是磨损严重。 ②故障修理 轴承外表面上的锈斑可用00号砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。 3.转轴故障检修 ①轴弯曲; 若弯曲不大,可通过磨光轴颈、滑环的方法进行修复;若弯曲超过0.2mm,可将转轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如果弯曲过大,则需另换新轴。

常用简易的设备故障诊断方法

常用简易的设备故障诊 断方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

常用简易的设备故障诊断方法 常用的简易状态监测方法主要有听诊法、触测法和观察法等。 1、听诊法 设备正常运转时,伴随发生的声响总是具有一定的音律和节奏。只要熟悉和掌握这些正常的音律和节奏,通过人的听觉功能就能对比出设备是否出现了重、杂、怪、乱的异常噪声,判断设备内部出现的松动、撞击、不平衡等隐患。用手锤敲打零件,听其是否发生破裂杂声,可判断有无裂纹产生,用听诊法对滚动轴承工作状态进行监测的常用工具是木柄螺丝刀,也可以使用外径为φ20mm左右的硬塑料管。 (1)滚动轴承正常工作状态的声响特点 滚动轴承处于正常工作状态时,运转平稳、轻快、无停滞现象,发出的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。噪声的强度不大。异常声响所反映的轴承故障锥入度大一点的新润滑脂。 (2)轴承在连续的“哗哗”声中发出均匀的周期性的“嗬罗”声。这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。声响的周期与轴承的转速成正比。应对轴承进行更换。 (3)轴承发出不连续的“梗梗”声。这种声音是由于保持架或者内外圈破裂而引起的。必须立即停机更换轴承。 (4)轴承发出不规律、不均匀“嚓嚓”声。这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。声响强度较小,与转速没有联系。应对轴承进行清洗,重新加脂或换油。

(5)轴承发出连续而不规则的“沙沙”声。这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系,声响强度较大。应对轴承的配合关系进行检查,发现问题及时修理。 (6)轴承发出连续刺耳啸叫声。这种声音是由于轴承润滑不良,缺油造成了干摩擦,或者滚动体局部接触过紧,如内外圈滚道偏斜,轴承内外圈配合过紧等情况而引起的。应及时对轴承进行检查找出问题,对症处理。 电子听诊器是一种振动加速度传感器。它将设备振动状况转换成电信号并进行放大,工人用耳机监听运行设备的振动声响,以实现对声音的定性测量。通过测量同一测点、不同时期、相同转速、相同工况下的信号,并进行对比,来判断设备是否存在故障。当耳机出现清脆尖细的噪声时,说明振动频率较高,一般是尺寸相对较小的、强度相对较高的零件发生局部缺陷或微小裂纹。当耳机传出混浊低沉的噪声时,说明振动频率较低,一般是尺寸相对较大的、强度相对较低的零件发生较大的裂纹或缺陷。当耳机传出的噪声比平时增强时,说明故障正在发展,声音越大,故障越严重。当耳机传出的噪声是杂乱无规律地间歇出现时,说明有零件或部件发生了松动。 2、触测法 用人手的触觉可以监测设备的温度、振动及间隙的变化情况。人手上的神经纤维对温度比较敏感,可以比较准确地分辨出80℃以内的温度。当机件温度在0℃左右时,手感冰凉,若触摸时间较长会产生刺骨痛感。10℃左右时,手感较凉,但一般能忍受。20℃左右时,手感稍凉,随着接触时间延长,手感渐温。30℃左右时,手感微温,有舒适感。40℃左右时,手感较热,有微烫感觉。50℃左右时,手感较烫,若用掌心按的时间较长,会有汗感。60℃左右

水泵机械密封常见故障及解决办法

水泵机械密封常见故障及解决办法 机械密封亦称端面密封,其有一对垂直于旋转轴线的端面,该端面在流体压力及补偿机械外弹力的作用下,依赖辅助密封的配合与另一端保持贴合,并相对滑动,从而防止流体泄漏。 一、常见的渗漏现象机械密封渗漏的比例占全部维修泵的50%以上,机械密封的运行好坏直接影响到水泵的正常运行,现总结分析如下 1.周期性渗漏 (1)泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。对策:在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。(2)密封面润滑油量不足引起干摩擦或拉毛密封端面。对策:油室腔内润滑油面高度应加到高于动、静环密封面。 (3)转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡,汽蚀或轴承损坏(磨损),这种情况会缩短密封寿命和产生渗漏。对策:可根据维修标准来纠正上述问题。 2.小型潜污泵机封渗漏引起的磨轴现象 (1)715kW以下小泵机封失效常常产生磨轴,磨轴位置主要有以下几个:动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。 (2)磨轴的主要原因: ①BIA型双端面机械密封,反压状态是不良的工作状态,介质中的颗粒、杂质很容易进入密封面,使密封失效。 ②磨轴的主要件为橡胶波纹管,且是由于上端密封面处于不良润滑状态,动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。 ③动、静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀,橡胶件已无弹性。有的已腐烂,失去了应有的功能,产生了磨轴的现象。 (3)为解决以上问题,现采取如下措施: ①保证下端盖、油室的清洁度,对不清洁的润滑油禁止装配。 ②机封油室腔内油面线应高于动静环密封面。 ③根据不同的使用介质选用不同结构的机封。对高扬程泵应重新设计机封结构,对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶。机封静环应加防转销。

高压断路器典型机械故障模拟与诊断

高压断路器典型机械故障模拟与诊断 发表时间:2019-11-19T17:06:19.517Z 来源:《河南电力》2019年5期作者:柳贡强 [导读] 本文分析了断路器操动机构分合闸操作中的机械运动过程,结合振动信号确定了以振动事件作为振动信号特征的提取方法,对高压断路器典型故障进行模拟,并利用振动事件时间特征参量对其进行诊断,建立断路器故障与振动图谱间的关系,为断路器状态监测技术的研究应用奠定了理论基础。 (国网黑龙江省电力有限公司黑龙江哈尔滨 150000) 摘要:本文分析了断路器操动机构分合闸操作中的机械运动过程,结合振动信号确定了以振动事件作为振动信号特征的提取方法,对高压断路器典型故障进行模拟,并利用振动事件时间特征参量对其进行诊断,建立断路器故障与振动图谱间的关系,为断路器状态监测技术的研究应用奠定了理论基础。 关键词:高压断路器;典型;机械故障;模拟;诊断 引言 高压断路器是电力系统的关键设备之一,当它发生故障时往往会带来严重的后果。许多断路器的故障率并不因为周期性检修而降低,而且有些断路器在被检修后可靠性反而大大降低,每台断路器的实际故障情况不能预测。国内外对断路器故障的统计分析表明,高达60%~70%的断路器故障(包括拒分、拒合和误动)源于机械原因,而操动机构和传动系统的故障是造成拒分、拒合和误动的主要原因;同时据统计在断路器严重和危机缺陷中,电气控制回路与机械故障是主要缺陷,占68%,其中传动机构松动变形、储能系统故障、弹簧机构弹簧出现裂纹等缺陷占主要缺陷的46%,因此加强断路器机械状态的检测和诊断对保证断路器安全稳定运行具有重要意义。 1 振动事件提取方法 断路器在操作过程中会产生一系列的撞击或摩擦,这些撞击和摩擦事件可以通过振动信号反映出来。通过对断路器机构动作原理的分析及关键部位的检测,就可以确定断路器动作过程中反映断路器机械状态的关键事件[1]。 测量系统测得振动信号后,需经过一定的信号分析处理方法,才能得到表征断路器机械状态的特征参量,综合使用小波分析方法、包络分析方法和突变信号起始点提取方法对振动信号进行处理,提取振动事件的起始点作为特征量[2]。 首先使用数据格式转换程序模块对采集到的信号进行格式转换以便于快速分析处理,然后对原信号进行小波去噪处理,处理掉试验现场噪声。而后对去噪后的数据进行希尔伯特变换、低通滤波等处理得到清晰的包络谱线,最后再使用突变信号起始点提取法,得到振动事件的发生时刻并以此作为断路器的振动信号的特征参量。图1为振动信号分析处理流程图。 图2 分闸电磁铁图3 分闸脱扣器 缺陷特征参量比较图缺陷特征参量比较图 2.2 脱扣器故障 断路器在合闸状态时,分闸电磁铁顶杆与脱扣器锁闩间隙正常值范围为0.8-1.0mm。分别调节顶杆与脱扣器锁闩间隙至0.5mm和 1.7mm,其他间隙距离不变,这样就可以模拟脱扣器锁闩松动造成的脱扣器故障。两种状态下,分别进行了5次合闸操作和5次分闸操作。图2为分闸脱扣器缺陷特征参量比较图,代表顶杆与锁闩间距小状态的上部曲线与标准状态的中间曲线相比,有20ms的延后。这是因为顶杆与锁闩的间距小,顶杆在运动速度较小时即有较大的反力,造成了振动事件发生时刻的延后和较大的发生时刻分散性(可达8ms以上)。下部曲线代表顶杆与锁闩间距大状态,该曲线与标准状态中间曲线相比,有1ms左右的提前,分散性也较小,较为稳定。分析原因为:顶杆与锁闩间距大,动铁芯所带动的顶杆有较长的加速运动距离,从而可以较快的带动锁闩完成分闸操作,致使分闸振动事件有提前的趋势。 2.3 传动机构故障 调节输出拉杆可以改变凸轮与主拐臂之间的距离,模拟断路器传动机构故障。断路器分闸状态下,凸轮与主拐臂间正常距离为 1.0mm,试验中分别调节此距离至0.4mm、和1.9mm,每种距离条件下分别进行了5次合闸操作和5次分闸操作。合闸操作中的前四个振动事

旋转机械常见故障

旋转机械常见故障 1. 转子质量不平衡 转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。 转子质量不平衡的一般特征 (1)量值上,工频振幅的绝对值通常在30μm以上,相对于通频振幅的比例大于80% (2)频振幅为主的状况应该是稳定的,这包括: 1) 各次启机 2) 升降速过程 3) 不同的工况(负荷,真空,油温,氢压,励磁电流等) (3)工频振动同时也是稳定的 1.1原始质量不平衡 原始质量不平衡指的是转子开始转动之前在转子上已经有的不平衡。它通常是在加工制造过程中产生的,或是在检修时更换转动部件造成的。这种不平衡的特点除了上面介绍的振幅和相位的常规特征外,它的最显著特征是“稳定”,这个稳定是指在一定的转速下振动特征稳定,振幅和相位受机组参数影响不大,与升速或带负荷的时间延续没有直接的关联,也不受启动方式的影响。具体所测数据中,在同一转速下,工况相差不大时,振幅波动约20%,相位在10°~20°范围内变化的工频振动均可视为是稳

定的。 1.2松动 发生松动的部件可能有转子线圈.槽楔.联轴器等。这类松动包括设备底脚、基础平板和混凝土基础强度刚度不够,出现变形或开裂,地脚螺栓松动等。这类松动的振动频谱中占优势的是工频(或转速频率),这与不平衡状态相同,但振动幅值大的部位很确定,有局限性,这点与不平衡或不对中情况不同。另外,还要进一步比较各方向之间的相对幅值,观察它们的相位特性。如轴承座水平与垂直方向振幅、相位差,这类松动的振动具有方向性,在松动方向振动较大,如垂直方向振动远大于水平方向,水平和垂直方向相位差为0°或180° (而不平衡故障中水平和垂直方向相位差约为90°)。 详见《振动故障松动》pdf文档 1.3 部件缺损、飞脱 振动发生转动部件飞脱可能有叶片、围带、拉金以及平衡质量块。飞脱时产生的工频振动是突发性的,在数秒内以某一瓦振或轴振为主,振幅迅速增大到一个固定值,相位也同时出现一个固定的变化。相邻轴承振动也会增大,但变化的量值不及前者大。这种故障一般发生在机组带有某一负荷的情况。 1.4 转子热弯曲 转子热弯曲引起的质量不平衡的主要特征是工频振动随时间的变化,随机组参数的提高和高参数下运行时间的延续,工频振幅逐渐增大,相位也随之缓慢变化,一定时间内这种变化趋缓,基本保持不变。

(企业诊断)设备故障诊断与维修最全版

(企业诊断)设备故障诊断 与维修

《设备故障诊断和维修》学习提纲 第壹章绪论 掌握设备故障诊断的意义、目的、任务及其发展概况,熟悉设备故障诊断的概念、意义和目的,熟悉状态监测和故障诊断的任务,了解设备故障诊断技术的发展概况。 1、设备诊断技术、修复技术和润滑技术已列为我国设备管理和维修工作的三项基 础技术。 2、设备故障诊断是指在设备运行中或在基本不拆卸的情况下,通过各种手段,掌握设备运行状态,判定产生故障的部位和原因,且预测、预报设备未来的状态,从而找出对策的壹门技术。 3、设备故障诊断既要保证设备的安全可靠运行,又要获取更大的经济效益和社会效益。 4、设备故障诊断的任务是监视设备的状态,判断其是否正常;预测和诊断设备的故障且消除故障;指导设备的管理和维修。 5、设备故障诊断技术的发展历程:感性阶段→量化阶段→诊断阶段(故障诊断技术真正作为壹门学科)→人工智能和网络化阶段(发展方向)。 第二章设备故障诊断的基本概念 了解设备故障诊断的壹些基本概念和基本方法,明确设备故障诊断的重要目标——状态维修。要求掌握设备和设备故障的基本概念,全面、深入了解设备故障的概念、原因、机理、类型、模式、特性、分析及管理;了解设备故障诊断的基本方法和分类;熟知设备维修方式的发展和状态维修,认识设备故障诊断技术和状态维修的“因果”关系。 1、从系统论的观点,设备是由有限个“元素”,通过元素之间的“联系”,按照壹定的规律聚合而构成的。 2、设备的故障,是指系统的构造处于不正常状态,且可导致设备相应的功能失调,致使设 备相应行为(输出)超过允许范围,这种不正常状态称为故障状态。

3、理解故障原因、故障机理、故障模式、故障分析等概念。设备故障具有层次性、传播性、 放射性、相关性、延时性、不确定性等基本特性。 4、对故障进行分类的目的是为了弄清不同的故障性质,从而采取相应的诊断方法 5、设备故障诊断的基本方法包括传统的故障诊断方法、故障的智能诊断方法和故障诊断的 数学方法。 6、设备故障诊断的分类根据诊断对象、诊断参数、诊断的目的和要求、诊断方法的完善程 度等不同能够有各种分类方法。 7、我国的维修体制也在发生着深刻而巨大的变化,已从早期的事后维修和实施多年的定期 预防维修开始进入现代的预知性的视情(状态)维修。 8、实施设备状态维修的指导思想。 第三章设备故障诊断的技术基础 掌握设备故障诊断特别是振动诊断的技术基础,要求熟悉设备故障诊断技术的内容,掌握设备故障信息获取和检测方法的框架知识,了解设备故障常用的三种评定标准及相对判断标准的制定方法,熟悉故障诊断中的信号处理。掌握傅里叶变换在故障诊断中的应用。 1、设备故障诊断的内容包括状态监测、分析诊断和故障预测三个方面。其具体实施过程 为信息采集、信号处理、状态识别、诊断决策。 2、设备故障信息的获取方法包括直接观测法、参数测定法、磨损残渣测定法及设备性能 指标的测定。 3、设备故障的检测方法包括振动和噪声的故障检测、材料裂纹及缺陷损伤的故障检测、 设备零部件材料的磨损及腐蚀故障检测及工艺参数变化引起的故障检测。 4、设备故障的评定标准常用的有三种判断标准,即绝对判断标准、相对判断标准以及类 比判断标准。可用平均法制定相对判断标准。

水泵机械密封常见故障及解决办法

水泵机械密封常见故障及解决办法 一、常见的渗漏现象机械密封渗漏的比例占全部维修泵的50%以上,机械密封的运行好坏直接影响到水泵的正常运行,现总结分析如下 1、周期性渗漏 (1)泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。 对策:在装配机械密封时,轴的轴向窜动量应小于0、1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。 (2)密封面润滑油量不足引起干摩擦或拉毛密封端面。 对策:油室腔内润滑油面高度应加到高于动、静环密封面。 (3)转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡,汽蚀或轴承损坏(磨损),这种情况会缩短密封寿命和产生渗漏。 对策:可根据维修标准来纠正上述问题。2、小型潜污泵机封渗漏引起的磨轴现象 (1)715kW以下小泵机封失效常常产生磨轴,磨轴位置主要有以下几个:动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。 (2)磨轴的主要原因:①BIA型双端面机械密封,反压状态是不良的工作状态,介质中的颗粒、杂质很容易进入密封面,使密封失

效。②磨轴的主要件为橡胶波纹管,且是由于上端密封面处于不良润滑状态,动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。③动、静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀,橡胶件已无弹性。有的已腐烂,失去了应有的功能,产生了磨轴的现象。 (3)为解决以上问题,现采取如下措施:①保证下端盖、油室的清洁度,对不清洁的润滑油禁止装配。②机封油室腔内油面线应高于动静环密封面。③根据不同的使用介质选用不同结构的机封。对高扬程泵应重新设计机封结构,对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶。机封静环应加防转销。 二、由于压力产生的渗漏 (1)高压和压力波造成的机械密封渗漏由于弹簧比压力及总比压设计过大和密封腔内压力超过3MPa时,会使密封端面比压过大,液膜难以形成,密封端面磨损严重,发热量增多,造成密封面热变形。对策:在装配机封时,弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,高压条件下的机械密封应采取措施。为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的润滑措施,选用可*的传动方式,如键、销等。 (2)真空状态运行造成的机械密封渗漏泵在起动、停机过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,密封腔内若是负压,会引起密封端面干摩擦,内装式机械

电气高压断路器中高压断路器的机械故障监测研究

电气高压断路器中高压断路器的机械故障监测研究 随着用电需求的规模不断增长,使得我国的电网规模越来越大。如何保障供电网络的安全性和可靠性是电力行业发展面临的重要问题。断路器断路器机械检修系统可以有效保障供电网络的安全性和可靠性,但是在实际运行过程中可能存在着机械故障,因此本文在此基础上重点分析了电气高压断路器中高压断路器的机械故障的相关问题,从而更好促进我国电力行业的发展。 标签:电力行业;电网系统;漏电器隐形故障;电力系统连锁故障;稳定性 前言 近些年,随着信息技术不断发展,电力系统的自动化水平取得了很大的发展,为保障国民经济发展做出了重要的贡献。但随着我国对于电力需求越来越大,使得电力网络的规模越来越大,电力系统的结构越来越复杂,在电力系统工作的各个环节容易出现各种机械事故,给电力系统的人员造成一定的伤害。因此如何开展断路器断路器机械故障技术对于电力系统的安全运行至关重要,也保障了工作人员的生命财产安全,从而保障了电力系统的安全稳定的运行。 1.断路器断路器机械检修的重要性 断路器断路器机械检修的主要原理是通过相关的断路器断路器机械检修装置来切断相关的故障电路,从而保护相关电力人员和电力高压断路器的安全,因此断路器断路器机械检修技术对于保护相关人员的安全具有重要的意义。随着我国不断电力技术的不断发展,我国在断路器断路器机械检修技术方面也取得了很大的发展,目前在电力行业常用的主要有四种断路器断路器机械检修类型:1.零序电流互感器;2.总开关;3.分离脱扣线圈;4.脱扣装置。当电力工程人员在使用断路器断路器机械检修装置是,相关高压断路器能够检测电力系统相关的电力参数,主要通过检测电压电流参数的异常,通过一定的放大措施,如果发现异常就进行相关的切断电源处理,从而实现断路器断路器机械检修。 在我国电力行业的发展过程中,电力工程师在电力工程项目中常使用的断路器断路器机械检修装置主要是两种类型:第一种是电流动作保护器,第二种是电源动作保护器。同时在保护方式上也可以分为直接保护和间接保护的方式。直接保护是通过覆盖的技术直接来保护电路,而间接保护采用的是通过隔离的措施来进行相关电路的保护。断路器断路器机械检修对于保护电力系统人员安全和电力高压断路器具有重要的意义,能够有效降低电力事故的破坏范围,有效降低企业的经济损失,同时也能够最大程度保障电力系统的安全性。 2.机械振动信号的监测 高压断路器依靠其机械部件的正确动作来发挥其功能,因此各部件的机械可靠性极为重要。加强对机械故障的监测,提前发现潜在故障,对于降低高压断

煤矿掘进机常见故障及处理方法

煤矿用掘进机常见故障及处理方法安徽恒源煤电股份有限公司毛玉虎郭涛 随着科技的发展,越来越多的煤矿采用掘进机进行巷道掘进,但限于使用者的文化素养及其它原因,掘进机在使用中并没有发挥出应有的优势,常常表现在故障频繁发生且不能迅速的进行故障判断和处理,笔者结合多年的实践经验,以MRH-S100型掘进机为例,对掘进机经常出现的故障进行原因分析并提出快速的处理方法,供大家参考。 1截割头不转动 (1)截割电动机过负荷、温度过高当截割负荷超过额定值20%以上且持续时间超过10s,就会导致截割电动机快速升温。当截割电动机温度超过170℃时,定子绕组的热敏元件通过转换发出指令讯号,继电器就动作,电磁开关箱信号显示器的绿色灯亮,截割电动机停止运转。温度下降约3min后,电动机能自动恢复运转。 (2)零部件损坏截割头轴承、伸缩部轴承、减速器轴承或者齿轮损坏;花键套定位销脱落,导致花键套从花键轴上滑落等都导致不能正常传递转动扭矩,因而导致截割头不动作。处理的方法是更换损坏的零部件。 (3)截割电动机损坏用欧姆表检测电动机的绝缘电阻,如果电阻小于0.2MΩ以下,就可判定电机损坏;或者一启动截割电机,便顶掉馈电开关,也可判定截割电机损坏。处理的方法是更换截割电机。 2截割电动机转而滚筒不转 (1)电动机与减速器与滚筒的连接轴、销、键等严重磨损电动机与对轮采用销子连接;对轮与减速器通过花键联接(对轮的一端为花键套,花键轴为减速机的一轴);截割头减速机的输出扭矩,通过内花键套传递到转动主轴;截割滚筒与输出主轴通过内花键联接(输出主轴是花键轴,滚筒为花键套)。如果任何一个销、轴、键磨损严重都会出现滚销子、滚轴、滚键的现象,电动机的输出扭矩都不能传递到截割头,因而截割头不转动.处理的方法是更换磨损严重的销、轴、键。 (2)减速机内部轴承或齿轮损坏故障原因及处理方法同1.2。 3伸缩筒不动作 (1)伸缩液压缸故障故障原因有:①伸缩液压缸活塞杆弯曲。②伸缩液压缸活塞串液。处理的方法是:更换伸缩油缸。 (2)截割头主轴弯曲或者花键扭曲拆卸截割头伸缩部,检查截割头主轴、花键轴,发现弯曲或扭曲现象,应更换截割头伸缩部。 (3)伸缩机构密封装置损坏由于压紧外毡圈压板的螺钉松动后未能及时紧固,致使外毡圈座上的螺钉也松动,外毡圈座和内毡圈座之间产生间隙。且伸缩筒前后反复滑动,使由两半圆组成的内毡圈座的对口发生错牙、重叠,卡住了切割臂,使之不能伸缩。处理的方法是拧下全部螺钉,重新对好内毡圈座,上好压板并重新紧固内外毡圈螺钉,消除其间的间隙。4耙爪转动慢或者不转 (1)液压不够造成液压不够的原因有二:一是由于液压泵的效率降低;二是由于单联阀损坏或者溢流阀调整的压力过低造成的。对于第一种原因造成的耙爪转动慢,可更换液压泵解决;对于第二种原因造成的耙爪转动慢,可通过调整溢流阀的压力解决;如果单联切换阀故障,可更换单联阀来解决。 (2)液压马达泄漏大或内部损坏液压马达内部损坏、泄漏大会造成液压马达功率降低,输出的扭矩及功率较小,因而造成耙爪转动慢。处理的方法是更换新马达。 (3)液压马达连接内花键严重磨损马达与左耙爪减速器通过花键联接,如果马达花键轴或者减速器输入轴的花键套磨损严重,都不能正常地传递扭矩,导致耙爪转动慢或不转动。处理的方法是更换马达或更换左耙爪减速器输入轴。 (4)左右耙爪相互碰撞主要原因是左右耙爪减速器中,有一个减速器的内部齿轮滚轴磨损严重所致。处理的方法是更换损坏的耙爪减速器。 5单耙爪转动 5.1左耙爪转,右耙爪不转 (1)原因是:①左耙爪输出轴磨损严重;②右耙爪减速器内部的齿轮、轴承磨损严重;③由于中间传动轴对轮、弹性接合子损坏,造成中间轴脱位所致。 (2)处理的方法是:①对于左耙爪输出轴损坏,可拆卸一边的侧铲板,拉出左耙爪减速器,更换输出轴。②如果是右耙爪减速内部轴承、齿轮磨损严重,可更换右耙爪减速器。③如果是中间传动轴对轮、弹性接合子损坏,可更换对轮或弹性接合子。 5.2右耙爪转、左耙爪不转 主要原因是左耙爪减速机内部齿轮、轴承损坏严重,不能正常输出扭矩所致。处理的方法是更换左耙爪减速机。 6刮板运输机速度低 (1)液压油的压力不够故障原因及处理的方法同4.1。 (2)液压马达泄漏大或者损坏液压马达泄漏大或内部损坏,会导致马达功率明显降低,转速慢或者不转,有异常声响。处理方法是更换新马达。 (3)链条过紧链条过紧会造成马达负荷过大,导致刮板运输机速度降低。处理的方法是调整链条,使链条松紧度适宜。 (4)链轮处或溜槽内卡有岩石或浮煤这种情况也会导致运输及负荷加大,降低刮板运输机运转速度。处理的方法是清除卡有的岩石或浮煤,保持链轮处及溜槽内畅通。 (5)刮板运输机齿轮、轴承磨损严重这种现象同样会导致刮板运输机速度降低或不动作。处理方法是更换刮板运输机减速器。 (6)刮板运输机过负荷运输机过负荷会导致速度降低或 73··

高压断路器的常见故障分析和维修分析

高压断路器的常见故障分析和维修分析 摘要:电作为人们生活最必不可少的能源之一给人们的生活带来便捷。在经济发展迅猛的时代里,电力需求不断的增加,但高负荷也带来一定的危险,在实际过程中常出现因电网负载量过高而产生的不安全事件。国家十分重视电网安全问题,并不断对电网进行相应的工程改造,以保障其符合现代人的用电需求。在改造过程中,断路器作为重要的设备,需加以重视与维护。 关键词:高压断路器;故障;维修 为了符合现时代的发展,电力企业不断的更新改革,以求提升服务质量,保障电力系统的顺利运行。断路器的应用对于维护电力系统安全具有至关重要的作用,一方面可以轻松变换电网运行状态,在发生故障后可对电路进行紧急切换,使得电网能够无故障的运行;另一方面,在出现较大的故障时,可以控制故障范围不被扩大,减少对整个电网所造成的影响。然而在实际运行期间,高压断路器常发生故障,因此对高压断路器的常见故障作分析,同时制定出相应的对策有利于维护电网的稳定。 1断路器的常见故障分析和处理方法 1.1拒绝合闸故障 拒绝合闸故障所产生的原因一方面出自机构本身,如自身电源电压不足,亦或操作回路出现断线等。除上述原因外,另一种原因则多操作机构未锁于合闸位置,这时高压状态下合闸时则会受到冲击,也无法锁住。 针对上述情况,首先需对操作机构进行检修,保障操作电源的电压值属于正常范围内再合闸。其次还需对操作回路或熔断器进行检修,发现故障时及时的确定故障原因,而后再及时解决,并应当将操作电压设为额定值,以减少后期出现相同的故障。 1.2 拒绝分闸故障 拒绝分闸故障的原因也较多,其所涉及的设备、原件种类也较多,如因继电保护故障而导致拒绝分闸故障;也可能是因为分闸线圈无电压而导致故障。诸如此类因素在此不一一介绍。 针对上述原因,首先需明确故障原因,而后再进行针对性的修理。 1.3断路器误动作故障 该故障的形成原因则可分为两类,一方面是因为人员操作失误;另一方面则是绝缘体受损、挂钩故障等因素而引发。 针对上述情况,应当按照正确的、规范的流程对其进行重新投入,仔细检查电气与机械故障部位,对其进行仔细筛查与修理。 1.4 断路器缺油故障 若出现断路器缺油,仅需仔细查看是否存在漏油情况即可。 针对该种情况,首先需将操作电源切断,同时在周围放置警告牌,确保在检修期间无人拉闸以保障安全。在加油前需将先转移该线路的全部负载,同时需关闭所有的电源,避免出现安全事故。若故障断路器所连接的线路不可另行供电时,则需将断路器所供负载全部拉断而后再加油处理。 1.5 断路器着火故障 断路器着火可能原因如下:(1)外部套管受潮后未能及时进行干燥处理,从而导致地闪络或相间闪络;(2)内部的油中有杂质不纯或同样受潮,使得断路器内部闪络;(3)在切断断路器时较为缓慢,不能及时将其切断;(4)过多的油量造成油面上的缓冲空间不足。 对上述因素,可进行如下的处理:立即断开断路器线路与电源,并将断路器两侧的开关拉开。在使用灭火器进行扑火前需保障电源被切断,而后再进行灭火,必要时以泡沫灭火器进行灭火。 2 断路器的维护修理 2.1灭弧室的检修方法 2.1.1 常规检修项目

相关文档
最新文档