常用的抽样方法总结

合集下载

食品抽样知识点归纳总结

食品抽样知识点归纳总结

食品抽样知识点归纳总结抽样是指从总体中选取一部分样本,通过对样本的研究和分析来推断总体的特征和情况的一种统计方法。

在食品领域中,抽样是非常重要的,因为食品是与人们的生命和健康直接相关的,抽样的质量直接影响到食品质量和安全问题的判断和控制。

二、抽样的目的1. 获取总体情况的估计值。

通过对样本的研究和分析来推断总体的特征和情况。

2. 降低调查的成本。

通过合理的抽样方法可以减少实际调查的工作量和成本。

3. 保证抽样结果的可信度。

通过科学合理的抽样方法来确保抽样结果的可信度和准确性。

三、抽样的方法1. 简单随机抽样:从总体中任意地抽取若干个不重复的样本,每个样本被选中的概率相等。

2. 系统抽样:按照一定的规律从总体中选取样本,如每隔几个单位选取一个样本。

3. 分层抽样:将总体分为若干层,然后在每一层中进行简单随机抽样。

4. 整群抽样:将总体分为若干个群体,然后随机抽取若干个群体作为样本。

5. 多阶段抽样:先进行分组抽样,然后在每组内进行简单随机抽样。

四、食品抽样的特点1. 食品抽样的样本数量要足够大,以保证抽样结果的可信度和准确性。

2. 食品抽样的方法要科学合理,考虑到食品的特性和生产流程。

3. 食品抽样的过程要严格控制,避免因为操作不当导致抽样结果的失真。

4. 食品抽样要充分考虑食品的多样性和变异性,选取合适的抽样方法和抽样比例。

5. 食品抽样要考虑到食品质量和安全问题,及时发现和解决潜在的问题。

五、食品抽样的应用1. 食品生产过程中的抽样检验。

对原料、半成品和成品进行抽样检验,保证食品质量和安全。

2. 食品流通环节的抽样检验。

对市场上销售的食品进行抽样检验,发现和解决食品安全问题。

3. 食品法规的执行和监督。

对食品法规的执行情况进行抽样检验,保证政策的执行和食品市场的秩序。

六、食品抽样的挑战和解决方法1. 食品抽样的样本数量问题。

解决方法:根据食品特性和生产流程合理确定抽样数量。

2. 食品抽样的方法选择问题。

抽样调查方法

抽样调查方法

抽样调查方法抽样调查是社会科学研究中常用的一种数据收集方法,通过对样本进行调查和研究,来推断总体的特征和规律。

在实际调查中,选择合适的抽样方法对于研究结果的准确性和可靠性至关重要。

本文将介绍几种常见的抽样调查方法,并对它们的特点和适用范围进行简要分析。

一、简单随机抽样。

简单随机抽样是最基本的抽样方法之一,其特点是每个样本被选中的概率是相等的,且相互独立。

这种方法适用于总体中各个个体的特征分布均匀的情况,操作简单,且具有较好的代表性。

但是在总体分布不均匀或者样本容量较大时,可能会导致抽样误差较大,需要较大的样本容量来保证结果的可靠性。

二、分层抽样。

分层抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样,最后将各层的样本组合在一起,形成最终的样本。

这种抽样方法可以有效控制样本的代表性,保证各个层次的特征都能得到充分的反映。

但是在实际操作中,需要提前了解总体的分层情况,并对各层样本的比例进行合理的确定,操作相对复杂一些。

三、整群抽样。

整群抽样是将总体分成若干个群体,然后随机抽取其中的若干个群体作为样本。

这种方法在总体分布不均匀,且群体内部差异较大的情况下比较适用,可以减小抽样误差,提高调查效率。

但是需要注意的是,群体内部的差异也可能会影响样本的代表性,需要根据实际情况进行合理的选择。

四、系统抽样。

系统抽样是按照一定的规则从总体中选择样本,例如每隔若干个个体进行抽样。

这种方法操作简单,适用于总体有序排列的情况,且样本容量较大的情况下比较有效。

但是需要注意的是,如果总体的周期性规律与抽样规则相吻合,可能会导致样本的偏倚,需要进行合理的调整。

综上所述,不同的抽样调查方法各有特点,适用于不同的调查对象和研究目的。

在实际应用中,需要根据具体情况选择合适的抽样方法,并结合其他调查技术和分析方法,以确保研究结果的准确性和可靠性。

同时,对于抽样调查过程中可能出现的偏倚和误差,也需要进行合理的控制和修正,以提高研究的科学性和实用性。

系统抽样实践总结

系统抽样实践总结

系统抽样实践总结引言抽样是统计学中一种常用的方法,通过从总体中抽取样本来推断总体的特征。

在实际应用中,我们往往无法获取到总体的全部数据,因此需要借助抽样方法来进行数据分析和决策。

本文将对系统抽样方法进行总结和实践,介绍其原理、应用场景以及实际操作步骤等内容。

一、系统抽样原理系统抽样是一种比较简单且常用的抽样方法,其基本原理是按照一定的系统规则从总体中抽取样本。

具体而言,系统抽样的步骤如下:1.确定总体大小:首先需要确定总体的大小,即N值。

2.计算抽样间隔:根据抽样比例,计算出抽样间隔(k值),即每隔多少个样本选择一个样本。

3.随机起点:随机选择一个起始样本,然后按照抽样间隔向后选择样本。

4.选择样本:从起点开始,每隔k个样本选择一个样本,直到达到抽样数量要求。

系统抽样的原理相对简单,能够保证样本的随机性,并且具有一定的代表性。

二、系统抽样应用场景系统抽样适用于以下场景:1.总体数据结构有规则性:当总体数据呈现一定的规律、周期性或者有序性时,系统抽样能够保证样本的代表性。

2.总体数据的分布未知:当总体数据的分布未知或者复杂时,系统抽样是一种简单有效的抽样方法。

在具体应用中,系统抽样经常用于市场调查、社会调查、科学实验等领域,能够提供客观、可靠的样本数据供分析和研究使用。

三、系统抽样实践步骤系统抽样的实践步骤如下:1.确定总体大小:根据研究目的和特点,确定总体的大小。

2.计算抽样间隔:根据抽样比例和总体大小,计算抽样间隔k值。

3.随机起点:使用随机数表或计算机程序,随机选择一个起始样本。

4.选择样本:从起点开始,按照抽样间隔k值依次选择样本,直到满足抽样数量要求。

对于较大的总体,可以使用编制抽样框架的方法,将总体按照某种规则进行分组,然后在每个分组中按照系统抽样的方法选择样本。

四、系统抽样的优缺点系统抽样作为一种常用的抽样方法,具有以下优点:1.简单易行:系统抽样的原理和操作较为简单,容易实施。

2.保证随机性:系统抽样能够保证样本的随机性,具有一定的代表性。

抽样调查工作总结5篇

抽样调查工作总结5篇

抽样调查工作总结5篇第1篇示例:抽样调查工作总结抽样调查是社会科学研究中常用的一种方法,通过在总体中选择一部分样本进行调查观察,从而推断总体的特征和规律。

在实际工作中,抽样调查需要综合考虑样本的代表性、样本的大小和抽样的方法等因素,以确保最终得到的数据具有可靠性和有效性。

在过去的一段时间里,我所参与的抽样调查工作也积累了一些经验和感悟。

在进行抽样调查之前,我们需要明确研究的目的和范围,确定好调查的内容和重点。

只有明确了调查目的和范围,才能更有针对性地设计问卷和确定抽样方案。

在实际工作中,我们遇到过一些调查目的不明确的情况,导致最终得到的数据无法有效解读和分析。

在未来的工作中,我们需要更加认真地研究调查目的,以确保数据的准确性和可靠性。

在确定抽样方案时,我们需要综合考虑多种因素,包括总体规模、资源限制、调查对象的分布等。

选择适当的抽样方法和确定合理的样本数量对于保证调查结果的可靠性至关重要。

在过去的工作中,我们采用了简单随机抽样、分层抽样、整群抽样等方法,根据实际情况灵活运用,取得了较好的效果。

这些抽样方法都有各自的优缺点,需要根据具体情况选择最适合的方法。

在实际调查过程中,我们需要保证问卷的设计合理、调查过程规范和数据的准确性。

问卷设计应充分考虑被调查者的实际情况和心理特点,避免出现引导性或歧义性问题。

调查过程要求调查人员按照统一的标准进行,确保数据的真实性和准确性。

在数据处理阶段,我们需要进行数据清洗、分析和解释,从而得出科学的结论,为决策提供参考。

在过去的调查中,我们注重数据质量和数据分析,尽可能减少误差和偏差,以提高调查结果的准确性和可靠性。

抽样调查工作是一项细致耐心的工作,需要全程把控各个环节,确保数据的准确性和可靠性。

在今后的工作中,我们将进一步加强团队协作,提高调查人员的专业素质和工作效率,不断提升抽样调查的质量和水平,为科研工作和社会决策提供更为可靠的数据支持。

【2000字】【结语】抽样调查是一项重要的社会科学研究方法,通过我们的不懈努力和不断实践,相信我们将能够更好地利用这一方法,取得更为丰硕的成果。

抽样方法和抽样方案

抽样方法和抽样方案

抽样方法和抽样方案抽样方法是研究中用来从总体中抽取样本的方式。

常用的抽样方法有以下几种:1.随机抽样:随机抽样是指从总体中以随机的方式选择样本的方法。

这种方法能在一定程度上减小选择样本时的主观性和偏见,增加样本的代表性。

随机抽样又分为简单随机抽样、系统抽样和分层抽样等方式。

2.非随机抽样:非随机抽样是指从总体中以非随机的方式选择样本的方法。

这种方法常用于总体中一些特定群体的研究,如专业人员、地区居民等。

非随机抽样又分为便利抽样、判断抽样和配额抽样等方式。

3.多阶段抽样:多阶段抽样是指将总体分成多个较小的群组或阶段,然后在每个群组或阶段中进行抽样的方法。

这种方法常用于总体中存在明显层次结构的研究对象,例如不同地区的居民或不同学校的学生等。

4.整群抽样:整群抽样是指将总体分成多个群组,然后在每个群组中选择全体样本的方法。

这种方法常用于总体中的群组间差异较小,但群组内差异较大的情况,例如同一学校的不同班级。

抽样方案是研究中具体实施抽样方法的方案。

一个好的抽样方案应当包含以下几个方面的内容:1.抽样目标:明确研究的目标和需要回答的问题,确定所需的样本规模和要求。

2.总体定义:清楚地定义研究对象的总体,明确总体的边界和范围,以及总体中存在的各种特征和差异。

3.抽样框架:确定用于抽样的框架,即总体中包含的样本单位,例如个人、家庭、组织等。

抽样框架应能反映总体的特征和结构。

4.抽样方案:根据研究的目标和总体的特征,选择适当的抽样方法和抽样比例。

同时,要确定具体的实施步骤和时间安排,以确保样本的有效抽取。

5.抽样误差控制:考虑到抽样过程中的误差,必须采取相应的措施来控制误差的大小。

例如,通过增加样本量、优化抽样方法和加强质量管理等方法来降低抽样误差。

6.数据分析计划:在抽样方案中应当明确研究中将使用的数据分析方法和统计工具,以尽量充分地利用样本数据进行研究。

综上所述,抽样方法和抽样方案对研究的质量和可靠性有着重要影响。

抽样技术期末总结

抽样技术期末总结

抽样技术期末总结一、引言抽样技术是在统计学中广泛运用的一种方法,用于从总体中选择部分个体进行研究和分析,以便推断总体的特征和性质。

抽样技术的优势在于可以节省时间和成本,同时能够提供相对准确的结果。

本文将对抽样技术的类型、特点和应用进行总结和分析。

二、抽样技术的类型1. 简单随机抽样简单随机抽样是指从总体中选择的每个个体都有相等的机会被选中。

这种抽样方法是最基础的、最公平的方法,能够确保样本与总体的代表性,减小抽样误差。

但是,在实际应用中,简单随机抽样可能会遇到困难,比如当总体容量较大时,抽样操作可能非常繁琐。

2. 分层抽样分层抽样是将总体分为若干个层次,然后在层次内进行抽样。

这种方法能够确保每一层次都被充分地代表,不会因为抽样误差而影响结果的准确性。

分层抽样能够提高效率,减少样本数量,但需要较多的前期调查工作,确定和划分各个层次。

3. 整群抽样整群抽样是指将总体分为若干个互不重叠的群体,然后从这些群体中选择一部分进行抽样。

整群抽样适用于总体中个体间差异较小,但群体之间差异较大的情况。

相对于分层抽样,整群抽样有更大的灵活性,样本数量相对较少。

4. 系统抽样系统抽样是按照一定的规则和步长选择个体进行抽样。

这种方法简单易行,适用于总体容量较大的情况。

系统抽样可能会有一定的随机机会导致样本的偏差,但在很多情况下,其误差可忽略不计。

5. 整体抽样整体抽样是指从总体中选择若干个共同体,而不是个体作为样本。

这种方法适用于特殊情况下,比如对人群的调查研究,可以通过抽取一些代表性的单位进行调查,从而得到整体的结果。

三、抽样技术的特点1. 代表性抽样技术的核心目标是能够从总体中选择具有代表性的样本,以便能够推断总体的性质。

因此,在选择样本的过程中,应尽量确保样本与总体的特征和结构相似,以获得准确的结果。

2. 随机性抽样技术的另一个重要特点是随机性。

在进行抽样时,应确保每个个体有相等的机会被选中,以避免选择偏差和人为干扰的影响。

抽样方法有些抽样方法大全

抽样方法有些抽样方法大全

抽样方法有些抽样方法大全抽样方法是指从总体中选取一部分样本进行调查或研究的方法。

抽样方法的选择对于研究结果的可靠性和推广性有着重要的影响。

下面是一些常用的抽样方法:1. 简单随机抽样(Simple Random Sampling):在总体中的每个个体具有相同的被选中的机会,通过随机抽取样本来代表总体。

2. 分层抽样(Stratified Sampling):将总体分成若干层次,每一层次中的个体具有相似的特征,然后从每个层次中随机抽取样本。

3. 整群抽样(Cluster Sampling):将总体划分为若干个群组,然后通过随机抽取部分群组来代表总体,然后在所选的群组中进行全面调查。

4. 系统抽样(Systematic Sampling):根据固定的抽样间隔,从总体中随机选择一个起始点,然后按照固定的间隔依次选取样本。

5. 多阶段抽样(Multistage Sampling):将总体分层和分群组,然后通过多个抽样阶段来实现抽样,通常用于大规模调查。

6. 比率抽样(Ratio Sampling):根据总体中的其中一特征的比例,确定样本的大小。

例如,如果总体中男性比例是60%,则样本中男性比例也应该是60%。

7. 效应抽样(Convenience Sampling):根据研究者的方便或可获得性,选择样本。

这种方法容易产生偏差,结果可能无法推广到整个总体。

8. 整齐抽样(Quota Sampling):根据总体中一些特征的比例,确定样本的大小。

例如,如果总体中男性比例是60%,则样本中男性数量也应该是60%。

9. 小组抽样(Snowball Sampling):从已经选择的样本中获取参与者的指引,逐渐扩大样本规模,并在招募新样本时依靠参与者的推荐。

10. 专家抽样(Expert Sampling):指选择一些具有特定知识、经验或技能的专家作为样本,以获取专业领域的意见或建议。

以上是一些常用的抽样方法,每种方法都有其适用的场景和限制,研究者需要根据研究目的、总体特征、样本大小和可行性等因素综合考虑选择最合适的抽样方法。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的抽样方法总结1.非概率抽样(Non-probability sampling)又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。

其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。

当研究者对总体具有较好的了解时可以采用此方法,或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。

常用的非概率抽样方法有以下四类:方便抽样(Convenience sampling)指根据调查者的方便选取的样本,以无目标、随意的方式进行。

例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。

优点:适用于总体中每个个体都是“同质”的,最方便、最省钱;可以在探索性研究中使用,另外还可用于小组座谈会、预测问卷等方面的样本选取工作。

缺点:抽样偏差较大,不适用于要做总体推断的任何民意项目,对描述性或因果性研究最好不要采用方便抽样。

判断抽样(Judgment sampling)指由专家判断而有目的地抽取他认为“有代表性的样本”。

例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行;也有家庭研究专家选取某类家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样本时,可以使用这种方法。

优点:适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。

缺点:该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。

配额抽样(Quota sampling)指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。

相当于包括两个阶段的加限制的判断抽样。

在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。

在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。

例如:定点街访中的配额抽样。

优点:适用于设计调查者对总体的有关特征具有一定的了解而样本数较多的情况下,实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。

缺点:容易掩盖不可忽略的偏差。

滚雪球抽样(Snowball sampling)指先随机选择一些被访者并对其实施访问,再请他们提供另外一些属于所研究目标总体的调查对象,根据所形成的线索选择此后的调查对象。

第一批被访者是采用概率抽样得来的,之后的被访者都属于非概率抽样,此类被访者彼此之间较为相似。

例如:如在目前中国的小轿车车主等。

优点:可以根据某些样本特征对样本进行控制,适用寻找一些在总体中十分稀少的人物。

缺点:有选择偏差,不能保证代表性。

2.概率抽样(Probability sampling)又称随机抽样,指在总体中排除人的主观因素,给予每一个体一定的抽取机会的抽样。

其特点为,抽取样本具有一定的代表性,可以从调查结果推断总体;操作比较复杂,需要更多的时间,而且往往需要更多的费用。

常用的有以下六种类型:简单抽样(Simple sampling)即简单随机抽样,指保证大小为n的每个可能的样本都有相同的被抽中的概率。

例如:按照“抽签法”、“随机表”法抽取访问对象,从单位人名目录中抽取对象。

优点:随机度高,在特质较均一的总体中,具有很高的总体代表度;是最简单的抽样技术,有标准而且简单的统计公式。

缺点:未使用可能有用的抽样框辅助信息抽取样本,可能导致统计效率低;有可能抽到一个“差”的样本,使抽出的样本分布不好,不能很好地代表总体。

系统抽样(Systematic random sampling)将总体中的各单元先按一定顺序排列,并编号,然后按照不一定的规则抽样。

其中最常采用的是等距离抽样,即根据总体单位数和样本单位计算出抽样距离(即相同的间隔),然后按相同的距离或间隔抽选样本单位。

例如:从1000个电话号码中抽取10个访问号码,间距为100,确定起点(起点<间距)后每100号码抽一访问号码。

优点:兼具操作的简便性和统计推断功能,是目前最为广泛运用的一种抽样方法。

如果起点是随机确定的,总体中单元排列是随机的,等距抽样的效果近似简单抽样;与简单抽样相比,在一定条件下,样本的分布较好。

缺点:抽样间隔可能遇到总体中某种未知的周期性,导致“差”的样本;未使用可能有用的抽样框辅助信息抽取样本,可能导致统计效率低。

分层抽样(Stratified random sampling)是把调查总体分为同质的、互不交叉的层(或类型),然后在各层(或类型)中独立抽取样本。

例如:调查零售店时,按照其规模大小或库存额大小分层,然后在每层中按简单随机方法抽取大型零售店若干、中型若干、小型若干;调查城市时,按城市总人口或工业生产额分出超大型城市、中型城市、小型城市等,再抽出具体的各类型城市若干。

优点:适用于层间有较大的异质性,而每层内的个体具有同质性的总体,能提高总体估计的精确度,在样本量相同的情况下,其精度高于简单抽样和系统抽样;能保证“层”的代表性,避免抽到“差”的样本;同时,不同层可以依据情况采用不同的抽样框和抽样方法。

缺点:要求有高质量的、能用于分层的辅助信息;由于需要辅助信息,抽样框的创建需要更多的费用,更为复杂;抽样误差估计比简单抽样和系统抽样更复杂。

整群抽样(Cluster sampling)是先将调查总体分为群,然后从中抽取群,对被抽中群的全部单元进行调查。

例如:入户调查,按地块或居委会抽样,以地块或居委会等有地域边界的群体为第一抽样单位,在选出的地块或居委会实施逐户抽样;市场调查中,最后一级抽样时,从居委会中抽取若干户,然后调查抽中户家中所有18岁以上成年人。

优点:适用于群间差异小、群内各个体差异大、可以依据外观的或地域的差异来划分的群体。

缺点:群内单位有趋同性,其精度比简单抽样为低。

多级抽样(Multistage sampling)也叫多阶段抽样或阶段抽样,以二级抽样为例,二级抽样就是先将总分组,然后在第一级和第二中分别随机地抽取部分一级单位和部分二级单位。

例如:以全国性调查为例,当抽样单元为各级行政单位时,按社会发展水平分层后(或按经济发展水平,或按地理位置分层),从每层中先抽几个地区,再从抽中的地区抽市、县、村,最后再抽至户或个人。

优点:具体整体抽样的简单易行的优点,同时,在样本量相同的情况下又整群抽样的精度高。

缺点:计算复杂。

抽中概率与规模成比例抽样(PPS)是不等概率中最常用的一种方法,指在总体中参照各单位的规模进行抽样,规模大的被抽取的机会大,总体中每个个体被抽中的概率与该个体的规模成正比的抽样。

例如:在进行企业调查时,根据PPS抽样方法抽取企业,令规模大的企业被抽取机会大。

优点:使用了辅助信息,可以提高抽样方案的统计效率。

缺点:如果研究指标与规模无直接关系时,不合适采取这种方法。

此外,在抽样方法划分上,还有多阶段抽样和两相抽样等,有兴趣的读者可参阅其他相关书籍。

前面谈到抽样方法的一些基本分类和各自特点,需要注意的是,在实际的运用中,一个调查方案常常不是只局限于使用某一种抽样方式,而根据研究时段的不同采用多种抽样方法的组鸽为实现不同的研究目的,有时甚至在同一时段综合运用几种抽样方法。

例如,设计一个全国城市的入户项目,在抽样上可以分为几个不同的步骤,包括:1)在项目正式开始前,可以采用判断抽样法选出某一城市先作试点,在问卷设计初期可以采用任意抽样法选出部分人群进行问卷试访。

2)采用分层随机抽样法,确定全国要分别在多少个超大型市、多少个大型市、多少个中型市、多少个小型市实施(先分出城市的几个层次,再依据研究需要在各层用PPS法选取具体城市)3)采用简单抽样法或PPS抽样法,确定抽出城市中应抽的地块或居委会;4)采用整群抽样法,确定抽出地块或居委会应访问的家庭户;5)在项目后期,可以采用判断抽样法选取某城市进行深入研究。

本书着重介绍市场研究的现场执行中的抽样技术,有关的理论知识只作简单介绍,如需深入了解探讨有关抽样的理论知识请参看其他相关书籍。

1.非概率抽样(Non-probability sampling)又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。

其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。

当研究者对总体具有较好的了解时可以采用此方法,或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。

常用的非概率抽样方法有以下四类:方便抽样(Convenience sampling)指根据调查者的方便选取的样本,以无目标、随意的方式进行。

例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。

优点:适用于总体中每个个体都是“同质”的,最方便、最省钱;可以在探索性研究中使用,另外还可用于小组座谈会、预测问卷等方面的样本选取工作。

缺点:抽样偏差较大,不适用于要做总体推断的任何民意项目,对描述性或因果性研究最好不要采用方便抽样。

判断抽样(Judgment sampling)指由专家判断而有目的地抽取他认为“有代表性的样本”。

例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行;也有家庭研究专家选取某类家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样本时,可以使用这种方法。

优点:适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。

缺点:该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。

配额抽样(Quota sampling)指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。

相当于包括两个阶段的加限制的判断抽样。

在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。

相关文档
最新文档