牛二律各种题型

合集下载

牛顿第二定律典型题型

牛顿第二定律典型题型

牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。

2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。

选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。

而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。

由矢量合成法则,得F总=,因此答案C正确。

例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。

(3)物体从开始运动到最后停止运动的总时间。

解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。

若物块与斜面、水平面间的动摩擦因数均为μ=0.25。

斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。

求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。

牛顿第二定律(7大题型)(解析版)—2024-2025学年高一物理(人教版2019必修第一册)

牛顿第二定律(7大题型)(解析版)—2024-2025学年高一物理(人教版2019必修第一册)

牛顿第二定律(7大题型)知识点1 牛顿第二定律1、内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同。

2、表达式①比例式:Fam ∝。

②等式:F kma=,其中k是比例系数,a是物体运动的加速度。

【注】实际物体所受的力往往不止一个,式中F指的是物体所受的合力。

3、物理意义牛顿第二定律不仅阐述了力、质量和加速度三者数量间的关系,还明确了加速度的方向与力的方向一致。

知识点2 力的单位1、牛顿的含义在国际单位制中,力的单位是牛顿,符号为N ,它是根据牛顿第二定律来定义的,使质量为1kg 的物体产生1m/s 的加速度的力为1 N ,即1N=1 kg ·m/s 2。

2、比例系数k 的意义(1)在F kma =中,k 值的大小随F 、m 、a 单位选取的不同而不同。

(2)若F 、m 、a 均使用国际单位制单位,则k =1,牛顿第二定律的表达式为F ma =,式中F 、m 、a 的单位分别为牛顿(N )、千克(kg )、米每二次方秒(m/s 2)。

知识点3 对牛顿第二定律的理解1、基本特性(1)同体性:加速度、合外力和质量是对应于同一个物体(系统)的,所以分析问题时一定要确定好研究对象。

(2)因果性:力是产生加速度的原因,物体的加速度是力这一外因和质量这一内因共同作用的结果。

(3)矢量性:公式F ma =是矢量式,在任意时刻a 的方向都与F 相同,当F 方向变化时,a 的方向也同时变化。

(4)瞬时性:a 与F 同时产生、同时变化、同时消失,为瞬时对应关系。

a 为某时刻的加速度时,F 为该时刻物体所受的合力。

(5每个力产生的加速度的矢量和,分力和加速度在各个方向上的分量关系也遵从牛顿第二定律,即x x F ma =,y y F ma =。

2、合外力、加速度、速度的关系(1)合力与加速度的关系(2)直线运动中加速度与速度的关系加速度与速度同向时,物体加速,反之减速,也可以说合外力与速度同向时,物体加速,反之减速,所以要分析速度如何变,就要看合外力方向与速度方向关系如何。

牛顿第二定律25种题型

牛顿第二定律25种题型

牛顿第二定律25种题型牛顿第二定律是一个非常重要的物理定律,可以应用到各种不同的题型中。

以下是一些可能的题型:1. 计算给定物体的质量和加速度,求解作用力的大小。

2. 给定物体的质量和作用力的大小,求解加速度。

3. 给定物体的质量和加速度,求解作用力的方向。

4. 考虑多个作用力作用在物体上,求解物体的加速度。

5. 考虑摩擦力对物体运动的影响,求解加速度。

6. 考虑空气阻力对物体自由落体的影响,求解加速度。

7. 考虑弹簧力对物体振动的影响,求解加速度。

8. 考虑物体在斜面上的运动,求解加速度。

9. 考虑物体在圆周运动中的加速度。

10. 考虑物体的质量随时间变化,求解加速度。

11. 考虑非惯性系中的物体运动,求解加速度。

12. 考虑相对论效应对物体运动的影响,求解加速度。

13. 考虑电磁力对带电粒子的影响,求解加速度。

14. 考虑磁场对带电粒子的影响,求解加速度。

15. 考虑引力对天体运动的影响,求解加速度。

16. 考虑光子动量对物体的影响,求解加速度。

17. 考虑量子力学效应对微观粒子的影响,求解加速度。

18. 考虑弯曲时空对物体运动的影响,求解加速度。

19. 考虑黑洞的引力对物体的影响,求解加速度。

20. 考虑物体受到辐射的影响,求解加速度。

21. 考虑物体在非常高温或低温环境中的运动,求解加速度。

22. 考虑物体在高速运动中的加速度。

23. 考虑物体在微重力环境中的运动,求解加速度。

24. 考虑物体受到外部激励力的影响,求解加速度。

25. 考虑物体在复杂场景中的运动,求解加速度。

这些题型涵盖了牛顿第二定律在不同情景下的应用,从基本的直线运动到相对论和量子力学等高级领域。

每种题型都需要根据具体情况进行分析和计算,以求得正确的加速度。

牛顿第二定律高考题型归纳

牛顿第二定律高考题型归纳

牛顿第二定律〔1〕已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=,如下列图所示.保持小球所受风力F=不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离所需时间为多少?(g取g=10 m/s2,sin 37°=,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如下图.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如下图,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④ N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s〔2〕已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如下图,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度到达1 m/s 时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2 对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下列图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下列图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右传送带在自动输送各种粮食起很大作用,如下图.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度到达相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如下图,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s 的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=,求物体从A运动到B所需的时间是多少?(sin37°=,cos37°=,g =10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不管是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如下图为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①假设v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②假设v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①假设v2/2μg≥L,则Δt=;②假设v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体〔当成一个质点〕,分析受到的外力和运动情况,应用牛顿第二定律求出加速度〔或其他未知量〕;如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

牛顿第二定律(2024-2025学年高一物理举一反三)【四大题型】(解析版)

牛顿第二定律(2024-2025学年高一物理举一反三)【四大题型】(解析版)

4.3牛顿第二定律【四大题型】【人教版2019】【题型1牛顿第二定律】 (1)【题型2牛顿第二定律的简单应用】 (3)【题型3瞬时性问题】 (5)【题型4动态过程的分析】 (7)知识点:牛顿第二定律1.对表达式F=ma的理解(1)F的含义:①F是合力时,加速度a指的是合加速度,即物体的加速度;②F是某个分力时,加速度a是该分力产生的加速度。

(2)单位统一:表达式中F、m、a三个物理量的单位必须都用国际制单位。

2.牛顿第二定律的五个性质因果性:力是产生加速度的原因,只要物体所受的合力不为0,物体就具有加速度同体性:F、m、a都是对同一物体而言的独立性:作用在物体上的每一个力都产生加速度,物体的实际加速度是这些加速度的矢量和瞬时性:加速度与合外力是瞬时对应关系,同时产生,同时变化,同时消失矢量性:F=ma是一个矢量式。

物体的加速度方向由它受到的合力方向决定,且总与合力的方向相同【题型1牛顿第二定律】【例1】(2023安阳月考)关于牛顿第二定律的表达式F=ma,下列说法正确的是()A.物理公式只能确定物理量之间的数量关系和方向关系B.如果让10kg的物体产生大小为1m/s2的加速度,所需要的力的大小就是1NC.如果单位选取合适,牛顿第二定律的表达式可以是F=1000maD.由m=F/a可知,物体的质量与其所受的合外力成正比,与其运动的加速度成反比【答案】C【详解】重力的反作物理公式不仅可以确定物理量之间的数量关系和方向关系,同时也可以确定物理量间的单位关系,A错误;如果让10kg的物体产生大小为1m/s2的加速度,所需要的力的大小是10N,B错误;如果力的单位取N,质量单位取g,加速度单位取m/s2,牛顿第二定律的表达式就可以是F=1000ma,C正确;物体的质量是物体本身的属性,是所含物质的多少,与物体所受合外力以及物体运动的加速度无关,D错误.【变式1-1】(多选)下列关于牛顿第二定律的说法,正确的是()A.物体所受合外力的方向和加速度的方向及速度的方向总是相同的B.物体加速度的方向只由它所受合外力的方向决定,与速度的方向无关C.物体加速度的大小由物体的质量和所受合力的大小决定,与物体的速度无关D.一旦物体所受合力为零,则物体的加速度立即为零,其运动也就逐渐停止了【答案】BC【详解】物体所受合外力的方向和加速度的方向总是相同的,但是与速度的方向不一定相同,A错误;物体加速度的方向只由它所受合外力的方向决定,与速度的方向无关,B正确;物体加速度的大小由物体的质量和所受合力的大小决定,与物体的速度无关,C正确;一旦物体所受合力为零,则物体的加速度立即为零,物体将做匀速直线运动或保持静止状态,D错误。

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。

根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。

2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。

2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。

1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。

将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。

2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。

将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。

3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。

掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。

牛顿第二定律应用的常见题型

牛顿第二定律应用的常见题型

牛顿第二定律应用的常见题型以牛顿第二定律为核心的动力学是力学的重要组成部分,也是高考中的考查热点,学习时我们一定要深刻理解牛顿第二定律,并能熟练应用牛顿第二定律求解相关问题,下面介绍牛顿第二定律应用的几类典型问题。

一、连接体问题此类问题高考仅限于几个物体的加速度相同的情形,求解此类问题需灵活运用整体法和隔离法。

求解“内力”问题通常先对整体运用牛顿第二定律,求出系统的加速度,再用隔离法研究连接体中一个物体,即可求出物体间的相互作用力;求解“外力”问题,需先分析连接体中的一个物体,确定系统的加速度,再对整体运用牛顿第二定律,即可求出“外力”。

例l. 如下图所示,质量为2m的物体A与水平地面的摩擦可忽略不计,质量为m 物块B与地面间的动摩擦因数为,在已知水平推力F作用下,AB一起做加速运动,A和B间的作用力为______________。

解析:先把AB看作一个整体,系统受到的合外力为,系统的加速度为,再对物体B分析,由牛顿第二定律有,解得。

二. 瞬时问题牛顿第二定律反映了物体所受合外力与加速度的瞬时对应关系,当物体所受外力突然发生变化时,物体的加速度也会随之变化。

求解此类问题,需分别分析物体受力变化前和变化后的受力情况,确定物体受力是如何发生突变的,再分别应用牛顿第二定律列式求解。

例2. 木块A、B的质量分别为。

两木块之间用一轻弹簧相连接后放在光滑水平桌面上,用F=10N的水平恒力沿AB连线方向拉A,使A和B 沿桌面滑动,如下图所示,滑动中A、B具有相同的加速度时突然撤去拉力F,求撤去拉力F的瞬间,A和B的加速度各多大?解析:撤去拉力F时,A和B有相同加速度,对A、B整体分析,由牛顿第二定律有,得;研究木块B,它受到的弹力为,撤去拉力F的瞬间,轻弹簧的形变量没有变化,木块B受力不变,此时B的加速度与原来相同仍为;撤去拉力F的瞬间,木块A受弹簧拉力大小仍为6N,此时A的加速度为,方向向左。

三. 临界与极值问题当物体从一种物理现象转变为另一种物理现象,或从一个物理过程转入另一个物理过程,此时往往有一个临界状态,而极值问题也伴随临界问题的出现而出现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fx=ma
Fy=0
题型二:单个物体多个过程
分别研究,分别列式 (1)受力图、(2)运动草图
题型三:F合不断变化的过程
F合变化,a随之变化 看v如何变化要看v与a方向的关系 V与a同向,速度增加 V与a反向,析瞬时前物体的受力 2、对该瞬时进行受力分析 3、对该瞬时应用牛顿第二定律 注:形变量较大的物体弹力不能突变,形变 量小的物体可以
牛顿运动定律几种常见题型
1、单个物体两种基本题型 2、单个物体多种运动情况 3、F合不断变化的过程 4、瞬时加速度 5、连接体 6、极限问题 7、传送带
题型一:单个物体两个基本问题
1、已知受力情况求运动情况 a 2、已知运动情况求受力情况
基本步骤 1、选物体受力分析 2、建坐标(沿加速度方向)、列方程 3解方程
题型五:连接体
外力 整体法 内力 隔离法 1、a相同的连接体 先整体求a 再隔离分析 2、a不同的连接体 隔离法,分别分析
相关文档
最新文档