光子晶体光纤简介

合集下载

光子晶体光纤

光子晶体光纤

光子晶体光纤摘要光子晶体是一种具有光子带隙的周期性电介质结构, 落在光子带隙中的光不能传播。

由于其独特的调节光子传播状态的功能, 成为实现光通讯和光子计算机的基础。

光子晶体光纤(POF)与普通光纤在光纤结构单模特性色散特性和非线性特性等方面有着显著的差别。

光子晶体的制备是发展光子晶体的关键, 而可见光和近红外波段光子晶体的制备更是难点。

本文阐述了光子晶体的概念及其特性并简要分析了PCF的原理及其重要特性应用价值。

关键词:光子晶体;光纤;光子晶体光纤(PCF);非线性Photonic crystal fiberA bstract Photonic crystals are materials with regular periodicity of dielectric structures, which can create a range of forbidden frequencies called photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. Moreover, photonic crystals have the ability to m an ipulate, confine and control light, thus provide the opportunities to shape and mould the flow o f light for photonic communication technology and photonic computer. In present, the preparation of photonic crystals, especially those in visible or near infrared region, is the key to the development of photonic crystals. In this paper, the conception and characteristics of photonic crystal are described at first, and then the research in experiment and application are introduced respectively.Keyword:photonic crystal;optical fiber;photonic crystal fiber (PCF); nonlinerital光学晶体的基本原理:1、什么是光学晶体光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。

光纤通信中的光子晶体光纤设计与制备

光纤通信中的光子晶体光纤设计与制备

光纤通信中的光子晶体光纤设计与制备光纤通信是现代通信技术中的重要组成部分,它以光信号的传输为基础,具有高速率、大容量和低损耗等优势。

而在光纤通信系统中,光子晶体光纤(Photonic Crystal Fiber, PCF)作为一种新型光传输介质,由于其独特的结构和优异的光学性能,受到了广泛的关注与研究。

光子晶体光纤的设计与制备是实现其优异性能的关键。

在设计光子晶体光纤时,首要任务是选择合适的光子晶体结构。

光子晶体结构是指具有周期性调制折射率的光导波结构。

常用的结构包括周期性空气孔径的光子晶体光纤和光子晶体光纤的背腔结构等。

这些结构的设计需要考虑到希望实现的光学性能,例如传输带宽、波导色散特性和波导模式等。

设计合适的光子晶体结构可以在光纤中实现弥散调制、非线性光学和光谱限制等功能。

而在制备光子晶体光纤时,主要有两种方法:传统的拉制法和堆叠法。

拉制法是将预先制备好的光子晶体玻璃棒拉长成光纤的方法。

这种方法需要精确控制光子晶体结构中的孔径大小和填充材料的组成,以实现预期的光学性能。

拉制法制备的光子晶体光纤具有高组织完整性和直径可控性等优点。

而堆叠法是通过将多层光子晶体玻璃片堆叠在一起,再将其熔合成整体光纤的方法。

堆叠法相对较简单,然而由于其制备过程中的不完整性和结晶缺陷,所制备的光纤表现出较高的损耗和波导色散。

在光子晶体光纤的制备过程中,材料选择也是非常重要的一环。

通常,用于制备光子晶体光纤的材料包括玻璃、聚合物和硅等。

玻璃材料在光子晶体光纤制备中具有较好的热稳定性和光学性能,然而其制备工艺复杂且成本较高;聚合物材料则具有较高的制备灵活性和低制备成本,但其热稳定性较差;硅材料则可以通过现代微纳加工技术进行制备,具有优异的光学性能和热稳定性,但其制备工艺较为复杂。

除了设计和制备光子晶体光纤外,其它一些关键问题也值得关注。

例如,对于光子晶体光纤中的非线性效应,如自相位调制和频率倍增等,需要认真研究其对光信号传输的影响。

空芯光子晶体光纤

空芯光子晶体光纤

空芯光子晶体光纤
空芯光子晶体光纤是一种新型的光传输方法。

与传统的光纤不同
的是,空芯光子晶体光纤的芯部是空心的,而不是实心的。

其设计基
于光子晶体的原理,在光子晶体的结构中,由于周期性的介质分布,
光子禁带结构可被形成。

这种结构使得该光纤能够抑制模式色散和损耗,使得光信号能够更加稳定地传输。

与传统光纤相比,空芯光子晶体光纤具有更低的色散和更高的带宽。

由于其空芯设计,在光传输时能够避免光信号与固体材料相互作
用的干扰,避免了散射和损耗,以及光信号逐渐带来的毛刺和模式失
真等问题。

此外,在光传输过程中,光信号和空气相互作用,并避免
了温度等因素对光信号的影响,使其能够在更宽广的温度范围内工作。

空芯光子晶体光纤除了能在光通信领域中应用,也有广泛的其他
应用。

例如,空芯光子晶体光纤应用于气体检测领域,可以实现高灵
敏度的气体检测,而且对于不同的气体,探测灵敏度也有所不同。

此外,空芯光子晶体光纤也能够用于传感领域,例如用于测量温度、压力、应力等物理量,获取准确的传感数据。

空芯光子晶体光纤的出现将推动光通信和光传感领域的发展和进步。

在未来,它有望成为新一代的光纤传输技术,并且有望将成为许
多新型光学仪器和设备的重要组成部分。

然而,由于其制造技术颇为
精密,研究和制造成本较高,目前仍处于相对早期的应用阶段。

光子晶体光纤

光子晶体光纤

光子晶体的分类
一维
二维
三维
光子在光子晶体①中的运动规律类似于电子 在固体晶格中的运动规律,当光子在光子晶体中 传播时,空间周期性排列的不同介电常数材料对 光子形成布拉格散射,出现能带结构,并导致在 带与带之间出现类似于半导体禁带的光子带隙的 出现。
背景
1991年,Russell等人根据光子晶体传光原理首 次提出了光子晶体光纤(PCF)的概念。即:在石 英光纤中沿轴向周期排列着波长量级的空气孔。
4.2 光子晶体光纤的传输特性
4.2.1 损耗特性 4.2.2 色散特性 4.2.3 双折射 4.2.4 非线性 4.2.5 无截止波长单模传输
散射损耗
• • •
最初全反射型光子晶体光纤的损耗约为几百dB/km 2004年Tajima等报道了在1550nm处损耗为0.37dB/km光子 晶体光纤 2005年,NTT公司的Zhou等报到了在1550处损耗为 0.28dB/km、1380nm处损耗为1.38dB/km光子晶体光纤,该 光纤对OH-根吸收峰位置的损耗做到了很好的抑制
2005年,Shephard等使用2m19芯光子带隙光纤实现 了脉冲宽度65ns、脉冲能量为0.533mJ(对应峰值能 量14kW)、重复速率15kHz的高能激光传输。对比 7芯光子带隙光纤,由于其模式场更接近高斯线性, 耦合效率提高80%
1064nm
2008年,Amezcua-Correa等报道通过减小紧邻光纤芯子处的石英玻 璃薄层的厚度(为此前报道的一半),消除了7芯光子带隙光纤的 表面模,其宽带为1450nm-1750nm,最低损耗为15dB/km,在300nm 宽带内损耗低于50dB/km。此外光纤在1490-1690nm的200nm谱宽范 围内色散斜率为0.3ps/(nm2*km)这对高功率脉冲的孤子压缩有重 要意义。 最近,Ishaaya等通过将Ti:Sapphire激光、1kHz重复频率、中心 波长810nm脉冲能量1mJ的40fs脉冲(线偏振输入高斯脉冲)高效耦 合到光子带隙光纤(耦合效率为98%),获得了超过1014W/cm2的峰 值功率密度。

光子晶体光纤通信系统的基本原理

光子晶体光纤通信系统的基本原理

光子晶体光纤通信系统的基本原理光子晶体光纤通信系统是一种基于光子晶体光纤的光通信技术。

光子晶体光纤是一种能够在光波长范围内控制光传输的光纤结构材料,具有较低的衰减和较高的带宽。

相比传统光纤,光子晶体光纤能够实现更高的传输速率和更长的传输距离。

光子晶体光纤的基本原理是利用其特殊的周期性结构和禁带效应来控制和引导光信号的传输。

光子晶体光纤由周期性排列的亚波长级别孔隙构成,相邻的孔隙之间由材料填充。

这种排列形成了周期性的介电常数分布,从而形成了禁带结构。

在光子晶体光纤中,禁带是指某些特定频率的光信号在材料中无法传播的范围。

当光信号的频率落在禁带范围内时,其传播会受到阻碍,从而导致在禁带范围内产生高反射率或高吸收率。

而当光信号的频率落在禁带外时,则可以在光子晶体光纤中传播。

在光子晶体光纤通信系统中,光信号通过光源产生,并经过调制、放大等处理后进入光子晶体光纤中传输。

在传输过程中,光信号会受到禁带效应的影响,其中特定频率范围内的光信号将被禁止传输,而其他频率的光信号则可以在光子晶体光纤中传播。

在接收端,光信号经过光子晶体光纤传输后,经过光探测器转换为电信号,再通过解调等处理得到原始信息。

光子晶体光纤的传输特性使得光信号能够在光子晶体光纤中实现长距离传输和高速率传输,从而实现高带宽的通信。

光子晶体光纤通信系统的优点主要有以下几个方面:首先,光子晶体光纤具有较低的衰减,这意味着光信号的传输距离可以更长。

传统的光纤通信系统可能会因为衰减而导致信号的衰减和损失,而光子晶体光纤的低衰减可以有效地解决这个问题。

其次,光子晶体光纤具有较高的带宽,使得系统可以实现更高的传输速率。

传统的光纤通信系统的带宽受到一定限制,而光子晶体光纤的高带宽可以满足更高的数据传输需求。

此外,光子晶体光纤的制备和加工工艺相对成熟,可以实现大规模的生产和应用。

相比其他一些光通信技术,光子晶体光纤通信系统的成本相对较低,可以更好地满足大规模应用的需求。

光子晶体光纤简介及原理

光子晶体光纤简介及原理

光子晶体光纤简介及原理
一、光子晶体光纤简介
光子晶体光纤(Photonic Crystal Fiber,简称PCF),又称为微结构光纤,是一种新型的光纤,其特点是具有周期性的折射率分布。

这种光纤的设计灵感来源于自然界中的光子晶体,即具有周期性折射率变化的介质。

光子晶体光纤在通信、传感、激光等领域有着广泛的应用前景。

二、光子晶体光纤的原理
光子晶体光纤的核心原理是光的全内反射和光子带隙效应。

光的全内反射是指当光线在介质中遇到界面时,如果入射角大于某一临界角,光线会在介质内部发生反射而不透射。

光子带隙效应是指当光在具有周期性折射率变化的介质中传播时,某些特定波长的光会被禁止传播,这种现象类似于电子在固体材料中的能带结构。

光子晶体光纤通过控制折射率分布,使得光纤中的光波被限制在纤芯中传播,从而实现光的传输和控制。

这种光纤的折射率分布可以精确地设计,从而实现对光波的特定控制,例如改变传输模式、提高传输效率、产生特定波长的激光等。

三、光子晶体光纤的特点
1.传输特性:光子晶体光纤具有独特的传输特性,可以改变传输模式、控制
光谱特性等。

由于其周期性的折射率分布,光纤可以对光的传输进行精细化控制,使得光的传输更加稳定和高效。

2.制作工艺:光子晶体光纤的制作工艺比较复杂,需要精确控制材料的组分
和工艺参数。

但是随着技术的不断发展,人们已经可以通过多种方法制备出具有特定折射率分布的光子晶体光纤。

光子晶体光纤 (PCF)

光子晶体光纤 (PCF)

1.1 结构 • 下图是不同维数光子晶体的模型和实例
• 光子晶体里重复结构(或称晶胞)的单元尺度是光波长 (μm)量级。通过巧妙的安排和设计光子晶体可以控制光 子流
第一块光子晶体
• 1991年,Yablonovich 制作了第一块光子晶体。他所采用的方法是在折射率为3.6的材料上用 机械方法钻出许多直径为1mm的孔,并呈周期性分布。这种材料从此被称为“Yablonovich”, 它可以阻止里面的微波从任何方向传播出去。
自然界中的光子晶体结构
1.2 光子带隙基础
• 理解光波在光子晶体中的传播行为的最简单方法,就是把它与半导体内的电 子和空穴的运动作一比较
能量E 导带 禁带 由缺陷或杂质在禁带中引起的能级
在半导体禁带中由缺陷或杂质引起的能级分布图
• 当光子穿过一块含有一些排列成晶格结构的细微空气孔的 透明介电材料时,这种光学结构是带有空气孔的低折射率 区域散布在高折射率区中。
λ
n 2d sin
θ
d
当波长和周期结构的尺寸满足布拉格条件λ~2d 时, 该周期结构将反射入射波。其中d为周期常数。
• 若有一束平面波入射到晶体上,大多数波长 λ 的光波在晶 体中传播时不被散射,而当 λ ~ 2d 时,由于布拉格反射, 光波无法在晶体中传播。 • 即,某个波长范围的光子在这种结构中不能占据一个能量 状态。这些光子在该结构中是被禁止的,不能传播。这就 是光子带隙 PBG。
4. 光子晶体光纤
• 在传统的光纤中,光在中心的氧化硅纤芯里传播 • 通常采取掺杂的办法提高其折射系数,以增加传输效率,但不 同的掺杂物只能对一种频率的光有效 • 英国Bath大学的研究人员用几百个传统氧化硅棒和氧化硅毛细 管一次绑在一起组成六角阵列,在 2000 度高温下烧结后制成 了二维光子晶体光纤。在光纤的中心可以人为地引入空气孔作 为导光通道,也可以用固体硅作为导光介质 —— PCF • 光子晶体光纤在两个方面明显优于传统的光纤

光子晶体光纤的简介及其应用

光子晶体光纤的简介及其应用

光子晶体光纤的简介及其应用【摘要】光子晶体光纤(PCF)具有很多在传统光纤中无法实现的特性,吸引了学术界和产业界的广泛关注,并在近年内取得了重大的进展。

本文阐述了PCF的导光原理、分类及其在光纤通信中的应用。

【关键词】光子晶体;光子晶体光纤;光纤通信0.引言自P.S.J.Russell等于1991年首次提出光子晶体光纤概念后,引起了各国研究机构的浓厚兴趣,揭开了光纤发展的崭新的一页。

光子晶体光纤(photonic crystal fiber,PCF)是基于光子晶体技术发展起来的新一代传输光纤。

它是在普通石英光纤中沿轴向方向周期性排列空气孔,端面呈二维周期性的光子晶体结构,由于光子晶体具有光子带隙频带,如果在光子晶体中引入缺陷,则在禁带中引入缺陷模式,使光能够在缺陷内传播。

因此,与普通单模光纤不同,PCF又称为多孔光纤(holey fiber,HF)或微结构光纤(microstructure fiber,MSF)。

1996年,P.S.J.Russell 和J.C.Knight等首次在实验室成功制备了第一根光子晶体光纤。

1.光子晶体光纤的导光原理相对传统光纤而言,光子晶体光纤具有完全不同的光波传播原理。

它利用光子晶体所具有的光子频率禁带特性,将特定频率的光波强烈地束缚在纤芯内进行传导,光纤弯曲或折叠状态对光波的影响非常小,几乎在所有的传播波长处都能够保持单模运转,且其零色散波长从传统光纤的红外波段移到了可见光波段[1],可将光通信波段从1.3~1.6um扩展到整个可见光波段,这对光纤通信领域而言无疑是一种莫大幸事。

另外,光子晶体光纤具有极强的非线性效应,在低于传统光纤三个量级的脉冲峰值功率下就可产生光谱覆盖紫外到红外的超连续光,这在光频率测量、极短脉冲的产生、抽运探测光谱学等领域的研究中有着极其重要的作用。

此外,可制备光子晶体光纤激光器、干涉仪、带通滤波器等新型器件。

还可通过向微结构空芯光纤中填充介质,实现可变的光谱衰减器、光开关和高精度传感器等,极大地扩展了光通信波段,进行快速的波长变换和光放大,从而解决光通信和光网络问题等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光子晶体光纤
杨莹 物理系光学专业
光子பைடு நூலகம்体
光子晶体就是通过人工制造方法,使其制作 的晶体材料具有类似于半导体硅和其它半导体中 相邻原子所具备的周期性结构,只不过光子晶体 的周期性结构的尺度远比电子禁带晶体的大,其 大小为波长的数量级。例如,在硅和其它半导体 中,相邻原子间的距离约为0.25nm,而光子晶体 的周期结构的间距远大于0.25nm,约几百纳米, 其具体数值决定于光的波长。一种典型的光子晶 体,其结构是钻有许多柱形孔的特殊玻璃。圆柱 形空气孔紧密排列,孔距为数百纳米,这些圆柱 形空气孔类似于半导体的原子。
钻有许多圆柱形空气孔的玻璃的截面图
如果破坏光子晶体的周期性结构,使光子晶体成 为不完全的光子禁带晶体,这种不完全的光子晶 体非常有用。光子晶体光纤是不完全光子晶体的 重要应用。 光子晶体光纤的制作方法和普通光纤一样,也是 用肉眼可见的预制棒玻璃拉制而成。主要差别在 于预制玻璃棒的横截面结构,拉制光子晶体光纤 的预制棒是一束紧密排列的石英毛细管。这种有 小气孔的二维“晶体”在纤维中从头至尾延伸, 多次复制这种石英毛细管的排列,便可拉制出符 合要求的孔距的光子晶体光纤。
采用堆积石英毛细管方法拉制光子晶体光纤示意图
以英国Bath大学研制的全内反射光子晶体光纤为例,说明 其制作过程。 第一步:选用直径为30mm的石英棒为原材料,然后沿石英 棒轴线方向钻一个直径为16mm的孔。接着将石英棒磨成一 个正六棱柱,然后将这个正六棱柱放在光纤拉丝塔上拉制 成直径为0.8mm的六角形细棒,拉丝温度在2000℃左右。 第二步:将六角形细棒按三角形或蜂窝形结构堆积起来形 成所要求的晶体结构,然后放在光纤拉丝塔上拉制成空气 孔孔距为50um的细丝。接着再把这些细丝切断并再次堆积 成三角形或蜂窝形结构,其中心用一根直径完全相同的实 芯细丝替代,这样在光纤中心引入缺陷。 第三步:复制堆积拉丝过程,最终拉制成2um空气孔孔距 的光纤。在这多次的拉制过程中细棒堆熔合在一起,同时 棒间距不断缩减。
相关文档
最新文档