光子晶体光纤设计与分析
光纤通信中的光子晶体光纤设计与制备

光纤通信中的光子晶体光纤设计与制备光纤通信是现代通信技术中的重要组成部分,它以光信号的传输为基础,具有高速率、大容量和低损耗等优势。
而在光纤通信系统中,光子晶体光纤(Photonic Crystal Fiber, PCF)作为一种新型光传输介质,由于其独特的结构和优异的光学性能,受到了广泛的关注与研究。
光子晶体光纤的设计与制备是实现其优异性能的关键。
在设计光子晶体光纤时,首要任务是选择合适的光子晶体结构。
光子晶体结构是指具有周期性调制折射率的光导波结构。
常用的结构包括周期性空气孔径的光子晶体光纤和光子晶体光纤的背腔结构等。
这些结构的设计需要考虑到希望实现的光学性能,例如传输带宽、波导色散特性和波导模式等。
设计合适的光子晶体结构可以在光纤中实现弥散调制、非线性光学和光谱限制等功能。
而在制备光子晶体光纤时,主要有两种方法:传统的拉制法和堆叠法。
拉制法是将预先制备好的光子晶体玻璃棒拉长成光纤的方法。
这种方法需要精确控制光子晶体结构中的孔径大小和填充材料的组成,以实现预期的光学性能。
拉制法制备的光子晶体光纤具有高组织完整性和直径可控性等优点。
而堆叠法是通过将多层光子晶体玻璃片堆叠在一起,再将其熔合成整体光纤的方法。
堆叠法相对较简单,然而由于其制备过程中的不完整性和结晶缺陷,所制备的光纤表现出较高的损耗和波导色散。
在光子晶体光纤的制备过程中,材料选择也是非常重要的一环。
通常,用于制备光子晶体光纤的材料包括玻璃、聚合物和硅等。
玻璃材料在光子晶体光纤制备中具有较好的热稳定性和光学性能,然而其制备工艺复杂且成本较高;聚合物材料则具有较高的制备灵活性和低制备成本,但其热稳定性较差;硅材料则可以通过现代微纳加工技术进行制备,具有优异的光学性能和热稳定性,但其制备工艺较为复杂。
除了设计和制备光子晶体光纤外,其它一些关键问题也值得关注。
例如,对于光子晶体光纤中的非线性效应,如自相位调制和频率倍增等,需要认真研究其对光信号传输的影响。
光子晶体光纤的研究

光子晶体光纤的研究光子晶体光纤是一种由光子晶体材料制成的光纤结构,具有一系列独特的光学和传输特性。
它相比传统的光纤,具有更低的损耗和更大的带宽,适用于光通信、光传感、光声学等领域。
在过去的几十年中,光子晶体光纤的研究取得了许多重要的进展,本文将对其中的关键问题进行综述。
首先,我们将介绍光子晶体光纤的基本原理。
光子晶体是具有周期性结构的光学材料,其周期往往与入射光的波长相当。
通过精确设计和控制光子晶体的结构参数,比如晶格常数、填充率等,可以实现对光的传输和控制。
在光子晶体光纤中,光的传输是通过光子晶体的周期性折射率变化引导的,从而实现低损耗和大带宽的特性。
其次,我们将重点介绍光子晶体光纤的设计和制备方法。
光子晶体光纤可以通过多种方法来制备,包括体外法、孔蚀法和结合法等。
其中,体外法是最常用的方法之一,其基本步骤是将光子晶体材料制备成光纤的预制坯料,然后通过拉伸和微调制得到所需的光纤结构。
在制备过程中,需要注意光子晶体的晶格参数和填充率对光纤性能的影响,以及如何实现精确控制和调节。
然后,我们将介绍光子晶体光纤的光学特性。
光子晶体光纤的光学特性主要是由光子晶体的结构和材料的选取所决定的。
光子晶体的周期结构可以实现对光的波长选择性传输,从而实现对光的色散和非线性效应的控制。
此外,光子晶体材料的选择也决定了光纤的损耗和带宽,常用的材料包括硅、玻璃、聚合物等。
通过设计和优化光子晶体光纤的结构和材料,可以实现对光纤的性能的控制和调节。
最后,我们将讨论光子晶体光纤在实际应用中的一些研究进展和挑战。
光子晶体光纤具有许多潜在的应用,例如高速通信、传感和光声学等领域。
在高速通信中,光子晶体光纤可以实现更高的传输速率和更长的传输距离,从而提高光纤通信系统的性能。
在传感方面,光子晶体光纤可以实现对温度、压力、化学成分等的高灵敏度测量。
在光声学中,光子晶体光纤可以实现对声波的传输和控制,为光声成像、光声治疗等提供新的可能性。
具有高双折射光子晶体光纤特性分析与研究

具有高双折射光子晶体光纤特性分析与研究具有高双折射光子晶体光纤特性分析与研究摘要:光子晶体光纤作为一种新兴的光纤传输技术,在光通信、光传感等领域具有广泛的应用前景。
本文通过对具有高双折射特性的光子晶体光纤的研究与分析,从光纤的制备过程、光纤的传输特性、光纤的偏振相关特性等方面进行了深入的阐述与探讨。
1. 引言在光通信和光传感领域,光纤作为一种重要的传输介质,以其带宽大、传输损耗小等优势而备受关注。
传统的光纤具有单折射特性,然而在某些应用中,需要一种具有高双折射特性的光纤来满足特定的传输需求。
光子晶体光纤作为一种新型的光纤结构,在光传输中具有独特的优势,具有高双折射特性的光子晶体光纤更是引人注目。
2. 光子晶体光纤的制备过程光子晶体光纤的制备通常采用光纤拉制技术。
首先,通过高纯度的石英玻璃材料制备光纤的芯杆材料,然后通过拉伸和熔融等工艺形成一种具有周期性微结构的光子晶体结构。
制备过程中的参数调控直接影响光子晶体光纤的性能,例如芯杆材料的纯度、拉伸速度、拉伸温度等。
3. 光子晶体光纤的传输特性与传统的单模光纤相比,具有高双折射特性的光子晶体光纤在传输中表现出独特的特性。
首先,光子晶体光纤具有较大的模场面积,可以实现更低的非线性效应和更低的色散效应。
其次,光子晶体光纤具有高度的模式选择性,可以实现光波在特定频率范围内的选择性传输。
此外,光子晶体光纤还具有较低的损耗和高的带宽等优点。
4. 光子晶体光纤的偏振相关特性光子晶体光纤的偏振相关特性是其独特性能的重要组成部分。
具有高双折射特性的光子晶体光纤能够实现偏振保持和调控等功能。
通过调节光子晶体光纤的结构参数,可以实现对特定偏振模式的选择传输,实现偏振编码和解码等应用。
5. 应用前景与展望在光通信、光传感等领域,具有高双折射特性的光子晶体光纤具有广阔的应用前景。
其高度的模式选择性和低损耗特性使其在多通道传输、色散补偿等方面具备重要的应用潜力。
此外,光子晶体光纤还可以应用于光传感领域,通过光纤中的微小结构变化实现对环境参数的高灵敏度检测。
光子晶体光纤性质分析及其在量子通信中的应用的开题报告

光子晶体光纤性质分析及其在量子通信中的应用的开题报告一、研究背景随着信息通信技术的高速发展,量子通信逐渐成为一种新型的通信方式,具有不可破解性和高度安全性等优点,因而备受关注。
在量子通信中,光子晶体光纤作为一种新型的光波导,具有较好的传输性能和波导特性,因而逐渐成为研究的热点之一。
光子晶体光纤中有序的空气孔道阵列具有优异的光学性能,如色散和模式耦合等现象,为实现量子信息的可控和可编程提供了新思路和可能性。
二、研究内容和目标本文研究内容为光子晶体光纤的基本性质分析及其在量子通信中的应用。
具体分为以下几个方面:1.光子晶体光纤的结构分析与特点;2.光子晶体光纤的波导特性和色散性能分析;3.光子晶体光纤在量子通信中的应用,如量子信道、量子加密和量子传感等方面的研究。
本文研究目标为深入分析光子晶体光纤的基本性质和优异的光学特性,探究其在量子通信中的应用模式和机制,并通过实验和模拟研究验证其性能和可行性。
三、研究方法和步骤本文采用实验和模拟相结合的方法,具体分为以下几个步骤:1.实验研究:利用自行设计的实验平台,研究光子晶体光纤的结构与特性,测量其色散性能和波导特性;2.数值模拟:采用有限元法数值模拟软件COMSOL Multiphysics对光子晶体光纤进行电磁场分析、色散分析和波导传输分析,提取其光学特性与性能;3.量子通信应用实验:在实验平台中搭建量子通信系统,研究光子晶体光纤在量子通信中的应用,如量子信道、量子加密和量子传感等方面的研究;4.结果分析:通过实验和模拟的结果,深入分析光子晶体光纤的基本性质和优异的光学特性,探究其在量子通信中的应用模式和机制。
四、论文预期成果1.深入分析与总结光子晶体光纤的基本性质和优异的光学特性;2.研究光子晶体光纤的波导特性和色散性能;3.探究光子晶体光纤在量子通信中的应用模式和机制;4.验证光子晶体光纤在量子通信中的可行性和性能;5.对于后续相关领域的研究提供一定参考价值。
光子晶体光纤的制备与应用

光子晶体光纤的制备与应用随着信息技术的不断进步,对于光通信领域的研究也越来越深入。
而在光学通信中,光纤起到了至关重要的作用,然而,传统的光纤略显单调。
因此,科研人员们又开始寻找新的光纤材料,其中,光子晶体光纤被认为是最具有潜力的新光纤材料。
光子晶体光纤的制备光子晶体光纤是一种新型的光导材料,其中包含了空气和玻璃两种材料。
光子晶体由于其结构具有带隙效应(能量隙),因此它能够将光能够束缚在其中,从而形成光波导。
与传统的光纤材料不同,光子晶体光纤的表面是需要精确控制的,因为它们的结构是有序的,其中的控制尺寸的缺陷锁定了光子在其中的传播路径,因此具有更高的光传输效率,且能够将波长的选择性强制约束在更窄的区域之内。
在光子晶体的制备中,首先需要确定其结构,这样有助于确定制备过程中所需要的材料和技术。
除此之外,光子晶体中的结构是需要全息光阻控制技术来保证其制备质量和形貌的。
最终制备出的光子晶体光纤极具有光学性质,因此极具潜力。
光子晶体光纤的应用对于光子晶体光纤,它在不同应用场景下能够发挥出不同的作用。
具体而言,光子晶体光纤的应用有以下几个方面:1.传感:光子晶体光纤能够用于传感器中,通过其光学结构可以感知光的强度、波长以及光的方向等信息,从而实现温度、压力、湿度等物理或化学量的测量。
2.激光:光子晶体光纤还可以作为纳秒脉冲激光器的中心材料用于激光加工等领域。
光子晶体光纤和其他的激光产生材料相比,具有更高的激光输出功率,更长的寿命和更大的波长范围。
3.光子晶体光纤传输线:光子晶体光纤可以用作长距离信号传输的媒介,它在传输行程中能够减少光信号的损失,同时也可以帮助用户在一定的范围内扩展传递的信号。
4.光纤光栅:光子晶体光纤可以用于光纤光栅的制作,光纤光栅是通常用于传感和滤波的一种传感器,能够运用其制作材料的反射光线频率信息进行信号检测。
因此,可见光子晶体光纤在不少领域有广泛的应用。
虽然其制备和生产工艺较为复杂,但是其高的光学质量和光学性能的同时也表明了它具有广阔的研究和应用前景。
光子晶体光纤简介及原理

光子晶体光纤简介及原理
一、光子晶体光纤简介
光子晶体光纤(Photonic Crystal Fiber,简称PCF),又称为微结构光纤,是一种新型的光纤,其特点是具有周期性的折射率分布。
这种光纤的设计灵感来源于自然界中的光子晶体,即具有周期性折射率变化的介质。
光子晶体光纤在通信、传感、激光等领域有着广泛的应用前景。
二、光子晶体光纤的原理
光子晶体光纤的核心原理是光的全内反射和光子带隙效应。
光的全内反射是指当光线在介质中遇到界面时,如果入射角大于某一临界角,光线会在介质内部发生反射而不透射。
光子带隙效应是指当光在具有周期性折射率变化的介质中传播时,某些特定波长的光会被禁止传播,这种现象类似于电子在固体材料中的能带结构。
光子晶体光纤通过控制折射率分布,使得光纤中的光波被限制在纤芯中传播,从而实现光的传输和控制。
这种光纤的折射率分布可以精确地设计,从而实现对光波的特定控制,例如改变传输模式、提高传输效率、产生特定波长的激光等。
三、光子晶体光纤的特点
1.传输特性:光子晶体光纤具有独特的传输特性,可以改变传输模式、控制
光谱特性等。
由于其周期性的折射率分布,光纤可以对光的传输进行精细化控制,使得光的传输更加稳定和高效。
2.制作工艺:光子晶体光纤的制作工艺比较复杂,需要精确控制材料的组分
和工艺参数。
但是随着技术的不断发展,人们已经可以通过多种方法制备出具有特定折射率分布的光子晶体光纤。
光子晶体光纤的制备与应用研究

光子晶体光纤的制备与应用研究光子晶体光纤的制备主要分为两种方法:传统方法和新型方法。
传统方法是将光子晶体纳米颗粒混入熔融的硅酸盐玻璃中,通过拉伸和制作纤芯来制备光纤。
新型方法则是通过叠加不同颜色的光子晶体微球堆积来制作纤芯。
这些方法制备的光子晶体光纤具有高透明度、低损耗、高灵敏度和宽带宽等优点。
光子晶体光纤的应用研究主要集中在通信、传感和激光技术等领域。
在通信方面,光子晶体光纤可以提供更高的带宽和更低的损耗,可以用于长距离传输和高速数据传输。
在传感方面,光子晶体光纤具有较好的灵敏度和可调谐性,可以用于气体、液体和生物传感。
在激光技术方面,光子晶体光纤可以用作激光波导器件,用于光子晶体激光器和光纤拉曼激光器等的输出波导。
光子晶体光纤的研究还包括光纤传输特性和光纤结构改进等方面。
光子晶体光纤的光传输特性主要通过调整光子晶体光纤的纤芯结构和纤芯材料来实现,以改变纤芯的折射率和色散特性。
光纤结构改进主要通过改变纤芯的孔径和填充材料来实现,以提高光子晶体光纤的性能和应用范围。
光子晶体光纤的应用前景广阔。
随着信息技术的发展和需求的增加,对光纤通信和数据传输的需求也越来越大。
光子晶体光纤由于其独特的光学和物理特性,可以满足高带宽和低损耗的需求,因此在通信领域具有广阔的应用前景。
同时,光子晶体光纤在传感和激光技术领域也有很大的应用潜力,可以用于生命科学、环境监测和材料研究等方面。
总之,光子晶体光纤的制备与应用研究是一项具有重要意义的研究领域。
通过对光子晶体光纤的制备方法和应用特性的研究,可以推动光子晶体光纤在通信、传感和激光技术等领域的广泛应用,为信息技术的发展和创新做出贡献。
光子晶体光纤的基本特性研究及结构分析的开题报告

光子晶体光纤的基本特性研究及结构分析的开题报告1. 研究背景和意义光子晶体光纤作为一种新型的光纤器件,具有许多优异的性能,例如发光效率高、能够支持高速传输、带宽宽广等。
因此,这种光纤器件被广泛应用于通信、传感、光学仪器等领域。
然而,光子晶体光纤的结构较为复杂,研究其基本特性和结构分析非常有必要,可以为进一步深入应用提供有力支撑。
2. 研究目标和内容本课题的研究目标是通过对光子晶体光纤的基本特性和结构分析,探究其光学特性、传输特性和微结构性质,并尝试优化其结构和性能。
具体的研究内容包括:(1)分析光子晶体光纤的结构特点和光学特性,研究其光学传输机制;(2)对光子晶体光纤的微结构进行模拟和分析,寻求机制优化;(3)基于已有研究成果,构建光子晶体光纤的模型,计算其光学特性和传输特性;(4)搭建实验平台,用于验证模型计算结果,分析与比较实验结果与模型的差异,验证模型的准确性。
3. 研究方法本课题的研究方法主要包括理论计算和实验验证两个方面。
理论计算方面,通过数学方法和数值模拟等手段,确定光子晶体光纤的基本光学和传输特性,研究其微观结构、折射率、相位等参数。
实验验证方面,通过搭建实验平台,对光子晶体光纤进行光学特性和传输特性的实验观测和测试,以验证模型计算结果的准确性。
4. 预期成果及意义通过本课题的研究,预期可以获得如下成果:(1)理论计算模型:建立一套适用于光子晶体光纤的模型计算方法,能够预测光纤的基本光学特性和传输特性,为进一步优化其性能提供理论支撑;(2)实验验证数据:通过实验测试和观测,验证计算模型的准确性,为进一步调整和优化光纤结构提供参考;(3)应用价值:研究成果具有广泛的应用价值,例如在通讯、传感等领域中得到切实的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光子晶体光纤设计与分析摘要:光学物理学家探索的光子晶体材料应用中,光纤无疑是最具有前景的一项应用。
光子晶体光纤(以下简称PCF)是一种新型光波导,具有与普通光纤截然不同的特性。
这种新型光纤可以分为两个基本类型——折射率波导和带隙波导。
由于横向折射率分布有很大的自由度,所以折射率波导型PCF可以设计成具有高度反常色散、非线性以及双折射等特性的光纤。
关键词:PCF原理结构分析制备特性应用正文:一.PCF的导光原理按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。
1.1折射率导光机理周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故[3]。
1.2光子能隙导光机理理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。
如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。
当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。
最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。
空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光机理是利用包层对一定波长的光形成光子能隙,光波只能在空气芯形成的缺陷中存在和传播。
虽然在空芯PCF中不能发生全内反射,包层中的小孔点阵结构起到反射镜的作用,使光在许多小孔的空气和石英玻璃界面多次发生反射。
二.PCF的结构与制作PCF的结构一般是在石英光纤中沿径向有规律地排列着许多空气孔道,这些微小的孔道沿光纤轴线平行排列。
根据其结构类型可以分为实心光纤和空心光纤。
实心光纤是纤芯为石英玻璃、包层为石英玻璃中分布许多空气孔道和石英玻璃壁的组合体。
空心光纤的纤芯为一条直径较大的空气孔道,包层与实心光纤类似。
通过设计这些空气孔的位置、大小、间距及占空比等波长量级的特征参数,对某以波段形成带隙,从而对这一波段的光传播是实现控制。
光子晶体的制作都要经过拉伸、堆积和熔合等过程,如Knight J C等的制作方法:(1)取一根直径为30mm的石英棒,沿其轴线方向上钻一条直径为16mm的孔,随后将石英棒研磨成一个正六棱柱;(2)把该石英棒放在2000℃的光纤拉丝塔中,将它拉成直径为0.8mm的细长正六棱柱丝;(3)把正六棱柱丝切成适当长度的若干段,然后堆积成需要的晶体结构,再把它们放到拉丝塔中熔合、拉伸,使内部空气孔的间距减小到50Λm左右,形成更细的石英丝;(4)在以上工作的基础上,把上述石英丝高温拉伸,形成最后的PCF。
在以上3个阶段的拉伸过程中,晶胞减少了104数量级以上,最后形成的光子晶体的孔间距在2Λm左右。
PCF 沿着石英丝的轴向均匀排列着空气孔,从PCF 的横切面看,存在着周期性的二维结构。
如果核心处引入一个多余的空气孔,或者在应该出现空气孔的地方由均匀硅代替,从而在光子晶体中引入一个“缺陷”作为核心。
三.PCF的参数特性3.1空心PCF空心PCF中的光是在由周期性排列的硅材料空气孔围成的空心中传输。
因为只有很少一部分光在硅材料中传输,所以相对于常规光纤来说,材料的非线性效应明显降低,损耗也大为减少。
据预测,空心光子晶体光纤最有可能成为下一代超低损耗传输光纤,在不久的将来,空心PCF将广泛应用于光传输,脉冲整形和压缩,传感光学和非线性光学中。
目前,已开发出多种商用空心光子带隙光纤,波长覆盖440nm~2000nm。
3.2高非线性PCF高非线性PCF中的光是在由周期性排列的硅材料空气孔围成的实心硅纤芯中传输。
通过选择相应的纤芯直径,零色散波长可以选定在可见光和近红外波长范围(670nm~880nm),使得这些光纤特别适合于采用掺钛蓝宝石激光或Nb3+泵浦激光光源的超连续光发生器。
Blaze photonics的PCF非线性效应可达245W-1km-1,可用于频率度量学、光谱学或光学相干摄影学中超连续光发生器。
3.3宽带单模PCF常规单模光纤实际上是波长比二次模截止波长小的多模光纤,而宽带单模光子晶体光纤是真正意义上的单模光纤。
这种特性是由于其包层由周期性排列的多孔结构构成。
Blaze photonics 的宽带单模光子晶体光纤的损耗低于0.8dB/km,主要用于空间单模场宽带辐射传输,短波长光传输,传感器和干涉仪。
3.4保偏PCF传统保偏光纤双折射现象由纤芯附近差异热扩张的合成材料形成,当光纤在拉制降温过程中差异热扩张产生压力。
相反保偏光子晶体光纤是由非周期结构纤芯中空气和玻璃的大折射率差而形成双折射现象,从而得到更小的拍长,减小偏振态和保偏消光比之间的耦合曲率[7]。
例如Blaze photonics的保偏光子晶体光纤还有比传统保偏光纤低得多的温度敏感性,其拍长可小于4mm(1550nm波长),损耗小于1.5dB/km。
3.5超连续光谱发生器的PCF超连续PCF是特别设计用来把一种新的Q变换Nb3+微芯片激光器变成一种结构紧密,低成本,谱宽覆盖550nm~1600nm范围,平坦度好于5dB的超亮光超连续光源。
由于有较好的色散系数,20m长的这种光纤就可以实现与脉冲为1ns,重复率为6k,与1064nm平均功率为几十毫瓦激光器具有几乎相同的变换效率。
超连续光源主要应用于光子学设备的测试、低相干白光干涉计、光相干摄像和光谱学中[8]。
3.6大数值孔径多模PCF大数值孔径多模PCF中的光是在由同心环的硅材料空气孔围成的实心硅纤芯中传输。
由于实心纤芯和包层的大折射率差,使得该光纤数值孔径比全硅多模光纤大得多。
大数值孔径增加了从白炽灯或弧光灯热光源和从低亮度半导体激光器获取光的能力。
这种光纤在633nm处数值孔径可达0.6,主要应用于白炽灯或弧光灯光的传输、低亮度泵浦激光的传输以及光传感器中。
四.PCF的特性PCF有着以下许多奇异特性:4.1无截止单模( Endlessly Single Mode)传输普通单模光纤随着纤芯尺寸的增加会变成多模光纤。
而对于PCF ,只要其空气孔径与孔间距之比小于0. 2 ,无论什么波长都能单模传输,似乎不存在截止波长。
这就是无截止单模传输特性。
这种光纤可在从蓝光到2μm 的光波下单模传输。
更为奇特的是这种特性与光纤的绝对尺寸无关,因此通过改变空气孔间距可调节模场面积。
在1 550 n m可达1~800 μm2 ,实际上已制成了680 μm2 的大模场PCF ,大约是常规光纤的10 倍。
小模场有利于非线性产生,大模场可防止发生非线性。
这对于提高或降低光学非线性有极重要的意义。
这种光纤具有很多潜在应用,如激光器和放大器(利用高非线性光纤) ,低非线性通信用光纤,高光功率传输。
4.2不同寻常的色度色散真空中材料色散为零,空气中的材料色散也非常小。
这使得空气芯PCF 的色散非常特殊。
由于光纤设计很灵活,只要改变孔径与孔间距之比,即可达到很大的波导色散,还可使光纤总色度色散达到所希望的分布状态。
如零色散波长可移到短波长,从而导致在1 300 n m 实现光弧子传输;具有优良性质的色散平坦光纤(数百n m 带宽范围接近零色散) ;各种非线性器件以及色散补偿光纤(可达2 000 ps/ n m·km) 都应运而生。
4.3极好的非线性效应双折射效应G.652光纤中出现的非线性效应是由于光纤的单位面积上传输的光强过大造成严重损伤系统传输质量的一个现象。
然而,在光子能隙导光PCF中,我们可以通过增加PCF纤芯空气孔直径(即PCF的有效面积)来降低单位有效面积上的光强,从而达到大大减少非线性效应的目的。
光子能隙导光的这个特性为制造大的有效面积的PCF奠定了技术基础。
4.4优良的双折射效应对于保偏光纤而言,双折射效应越强,波长越短,所保持的传输光偏振态越好。
在PCF中,只需要破坏PCF剖面圆对称性,使其构成二维结构就可以形成很强的双折射。
通过减少空气孔数目或者改变空气孔直径的方式,可以制造出比常用的熊猫牌保偏光纤高几个数量级的高双折射率PCF保偏光纤。
光子晶体光纤在光纤通信中的应用5.1色散补偿光纤普通色散补偿光纤的纤芯和包层之间的折射率差较小,所以其色散补偿能力差,而PCF的纤芯和包层之间的折射率差较大,所以具有很强的色散补偿能力。
C.Trebuchet等人利用5.6Km 的PCF线路进行工作波长为1550nm的40Gbit/s的传输实验中,利用PCF的非线性效应四波混频制作了光相位共轭器进行色散补偿,将光相位共轭器与2.6Km和3Km的PCF链路级联时,通过光相位对前后两段PCF进行色散补偿,使得整条PCF的色散的累计之和为零。
由于PCF的优良的色散补偿性能,使其有望代替普通的色散补偿光纤成为新一代色散补偿光纤。
5.2作为光信号传输媒质目前PCF已进入实验室的光纤通信系统传输试验研究阶段,K.Tajik等人于2003年通过改进PCF的制作工艺,制成了在1550nm波长处衰减为0.3dB/km长度超过10km的超低衰减的PCF,并利用他们所设计出的超低衰减的PCF成功的进行了810Gbit/s的波分复用传输试验,证明了PCF在实际的通信系统中使用的可行性[11]。
2004年,K.Kaimakam等人利用他们所研制的Λ=5.6um,d/Λ=0.5的零色散波长在850~1550nm的超低衰减的60孔PCF进行了19×10Gbit/s的波分复用传输实验,证实了这种PCF可以在850nm波段实现单模传输,并且没有明显的模式延迟。
5.3光纤激光器和光纤放大器通过调整包层空气孔直径及其间距可以灵活设计出模场面积范围为1~1000um2的PCF,使得PCF在光纤激光器和光放大器研制中比G.652光纤具有更大的优势。
2000年,英国Bath 大学的Wads worth和Knight等第一个实验报道了连续波的掺镱光子晶体光纤激光器,实验中泵浦功率为300mw,耦合效率为40%时,最大实现了18mw的激光输出,激光阈值小于10mw。
总结光子晶体光纤的出现打破了传统光纤光学的束缚,正以极快的速度影响中现代科学的多个领域,给多个研究和技术领域带来了新的复兴潜力。
从光子晶体光纤在模式、色散及非线性等方面所具有的特性及其广阔的应用范围来看,光子晶体光纤将给光通信技术、微光电子学、微纳米化学、强场物理学、光测量学、超短脉冲技术等等多个学科带来极大的冲击。
所以有理由认为光子晶体光纤是一种带来革命性变革的新型光波导。
它的特性是传统光纤无法比拟的,代表了新一代的快速发展的光纤技术与产业。