立体几何高考内容分析及复习建议
立体几何考点剖析与复习建议

,
x
y
1
道 选 择题
4
,
1
道 填 空题 及
道 解答 题
,
B
,
( 2
A
,
,
2
,
0
)
,
C ( 0
,
2
,
全卷 的 1
%左 右
.
E (0
,
2
,
1 )
,
l
( 2 ,0
,
, 4 )
.
碲
我们对
,
一
(0
一
2
1)
2
,
魂
一
一
(2
4 )
,
,
2
,
o )
,
20 0 8
年
1 9
套 数学 高考 卷作 了初 步 的统
5
万z
(2
2
,
交
/ g
一
c
于 点 G
t
由于
c o
等 拿 筹
一
,
复 习建 议
浙 江
刘
故 R
△ A
,
l
A C
R
t
△ F CE
。
,
么 AA
互
l
C
么 CF E
A
。
么 CF E 与 么 A CA
.
余
,
于 是
舸
沈 新 权 (特 级 教 师 )
C上E F A
。
C
与平 面 B E
D
,
内
2
条 相 交 直
A
。
高考立 体几 何试 题
高考数学立体几何知识要点知识点总结及解题思路方法

高考数学立体几何知识要点知识点总结及解题思路方法一、知识提纲(一)空间的直线与平面⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途.⑵斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑴公理四(平行线的传递性).等角定理.⑵异面直线的判定:判定定理、反证法.⑶异面直线所成的角:定义(求法)、范围.⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑴直线和平面垂直:定义、判定定理.⑵三垂线定理及逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平面所成的角、直线和平面所成的角.⑵二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑴点到平面的距离.⑵直线到与它平行平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑴多面体.⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、正方体;平行六面体的性质、长方体的性质.⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑸直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑴简单多面体的欧拉公式.⑵正多面体.11.球⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离. ⑵球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;c o s c o s c o s 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
高考立体几何专题复习公开课获奖课件

第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
立体几何在高考中的命题分析-2023届高三数学一轮复习课件

由于 = 与 = ,底面正方形的边长相等,所以当 =
时,此时正四棱锥的底面积与高都是最小值,此时体积
取得最小值。
方法一
通过求导,判断函数的
单调性,来求最值
方法二
也可以通过三元的基本不
等式来求最大值
2、几何图形的内切球、外接球
(2020 年全国统一高考数学试卷(文科)
(2)夹角,距离问题;
(3)空间几何体的体积、表面积计算;
(4)空间几何体与球的组合体;
(5)立体几何与其它知识的交汇。
3、具体措施:
(1)抓源固本,把握通性通法
近年高考命题的一个显著变化是:由知识立意转为能力立意,在知识网络的交汇点处设计试
题,往往遵循大纲又不拘泥于大纲。但是,对高考试卷进行分析就不难发现,许多题目都能
(1)第一问突破原来的“证明”题型,改为考查“距离”
(2) 从以往由已知棱长求值的直接结构变为需要通过给出的
条件得出棱长再求值的间接结构,且隐性考查的空间中垂直关
系的证明不是特别容易;(该题的一个难点)
方法一
A1
C1
B1
D
E
M
几何法对学生的空间
想象能力要求较高,
是学生的一大弱点,
所以学生通常选择向
(2)理解空间中点、线、面的位置关系,能用空间中线面平行、垂直的有关性质与判定
定理进行证明;
(3)能用向量方法证明线线、线面、面面的平行和垂直;
(4)能用向量方法求解线线、线面、面面的夹角问题;
(5)能用向量方法求解点到直线、点到平面的距离问题。
2、关注考查热点:
(1)空间线线、线面、面面的平行和垂直问题;
数学高职高考专题复习——立体几何+考纲解读(面向普高)

(三)立体几何初步1.空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
③了解平行投影与中心投影,了解空间图形的不同表示形式。
④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
2.点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。
◆公理2:过不在同一条直线上的三点,有且只有一个平面。
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
◆公理4:平行于同一条直线的两条直线互相平行。
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理。
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。
◆垂直于同一个平面的两条直线平行。
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
③能运用公理、定理和已获得的结论推断一些空间位置关系的简单命题。
立足教材_锚定真题_实现高品质备考——2023年高考全国甲卷数学立体几何考题分析与备考建议

图1 ABCD-A1B1C1D1中,E,为直径的球面与。
其实EF的长2倍,只是选取了文科卷第16题:在正方体ABCD-A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球所成角的正弦值。
这两道解答题都是以考查三棱柱的基本概念为重点考查学生对直线与直线、直线与平面、平面与平面的位置关系等基本知识的理解与应用。
无论还是文科卷中四棱其实质是考查考生逻辑推理能力和运算求解能力。
的距离。
;所成角的余弦值。
高考命题的基本模型来源于教材,师生必(二)考查作图能力与建模能力考生需要能够借助几何直观和空间想象感知事图2图3图4图5图6专题研究·高考数学试题研究之后,求体积便迎刃而解了。
为有效地考查考生的作图能力与建模能力,高考数学试题会有针对性地设置不同的题型,考生需要在平时的学习中多加练习,掌握相关的基础知识和技能,并且能够灵活运用所学知识解决实际问题。
(三)考查数学抽象与空间想象能力数学抽象与空间想象能力主要是指对客观事物的空间形式进行观察、分析、抽象、思考和创新的能力。
立体几何专题的教学目标非常明确,就是通过高中立体几何的学习,学生能够将生活中的物体形态抽象为空间几何图形,并能借助所学的知识想象出给定立体图形的实体形态,用符号或数学式将实体形态中的几何元素如长度、角度、位置关系、面积、体积等表达出来,正确解答题目,从而提升学生解决生活问题的能力。
高考真题一般只是简单描述模型及问题,对学生的数学抽象能力和空间想象能力都提出了非常高的要求。
比如理科卷第11题:在四棱锥P-ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为()。
A.22B.32C.42D.52题目的图形为底面是正方形的四棱锥,并不是正四棱锥,但给出了其中两条侧棱相等且给出了具体长度。
解决本题的办法之一是通过证明全等三角形依次证得△PDO≅△PCO,△PDB≅△PCA,从而得到PA=PB,再在△PAC中利用余弦定理求得PA= 17,从而求得PB=17,由此在△PBC中利用余弦定理与三角形面积公式即可得解。
高中数学立体几何学习的六点建议

高中数学立体几何学习的六点建议【编者按】立体几何的证明是数学学科中任一分之也替代不了的。
因此,历年高考中都有立体几何论证的考察。
因此我们专门针对立体几何总结了这六点学习建议,以便同学们更好的把握有关立体几何的内容。
一、逐步提高逻辑论证能力论证时,第一要保持严密性,对任何一个定义、定理及推论的明白得要做到准确无误。
符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。
切忌条件不全就下结论。
其次,在论证问题时,摸索应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出二、立足课本,夯实基础直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径确实是认真学习定理的证明,专门是一些专门关键的定理的证明。
例如:三垂线定理。
定理的内容都专门简单,确实是线与线,线与面,面与面之间的关系的阐述。
但定理的证明在出学的时候一样都专门复杂,甚至专门抽象。
把握好定理有以下三点好处:(1)深刻把握定理的内容,明确定理的作用是什么,多用在那些地点,如何用。
(2)培养空间想象力。
(3)得出一些解题方面的启发。
在学习这些内容的时候,能够用笔、直尺、书之类的东西搭出一个图形的框架,用以关心提高空间想象力。
对后面的学习也打下了专门好的基础。
三、“转化”思想的应用我个人觉得,解立体几何的问题,要紧是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是专门关键的。
例如:(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。
斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离能够转化为直线和与它平行的平面间的距离,也能够转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者能够相互转化。
而面面距离能够转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何高考内容分析与复习建议内容提要:本文通过对新旧教材在内容、考试要求、教学重点难点、以及近几年来的新旧课程的高考试题特点等进行研究,制定相应的复习策略。
本文还提出了几种对空间角与距离的解法。
关键词:空间想象能力,转化化归思想、向量代数法。
2004年是广东省采用数学新课程的第一次高考,虽说高考对立体几何的考查一直是以能力为主,对能力考查的要求有一年比一年提高的趋势,题型也相对较为稳定。
但新旧课程在内容、考试要求、教学要求、教材的编排体系等毕竟有相当大的改变,因此我们进行高三立体几何复习时,有必要对新旧教材在内容、考试要求、教学重点难点、以及近几年来的新旧课程的高考试题特点等进行研究,制定相应的复习策略,争取在2004年高考中获得全面丰收。
以下谈谈笔者的一些看法:一、立体几何内容分析(一)新旧教材比较:在考试内容方面:新教材中删除了棱台,旋转体(圆锥、圆柱、圆台、球冠及球缺等)。
增加了正多面体与欧拉定理;增加了空间向量及其加、减法,与数乘运算;空间向量的数量积;空间向量的坐标表示,及其对应的加减法,数乘与数量积运算;平面法向量等内容。
在考试要求方面:删除了棱台,旋转体(圆锥、圆柱、圆台、球冠及球缺等)的面积与体积公式,淡化了三垂线定理及其逆定理的要求,增加了理解空间向量与空间向量坐标的概念,掌握空间向量的加减法、数乘与数量积的概念;及其对应坐标的加减法,与数乘运算;理解直线的方向向量、平面的法向量等内容。
突出了利用空间向量知识解决求空间角、空间距离;证明平行与垂直的问题,明确了对传统几何的向量化思想。
同时也体现了对解决问题的方法上的灵活性,重点让学生掌握向量代数法,同时也兼顾传统几何综合推理方法。
(二)复习重点:(1)线线、线面、面面平行和垂直的判定与性质;三垂线定理及其逆定理的应用;(2)空间向量的概念、性质与运用;(3)空间角与距离的概念和计算;(4)特殊棱柱、棱锥的定义、性质;(5)棱柱、棱锥中线线、线面与面面的位置关系,线线、线面与面面所成角的构造与计算;(特别注重向量代数法来计算角)(三)复习难点:(1)找到要计算的角、距离等;(2)掌握应用向量解决立体几何的问题;(3)平面图形与空间图形相互转换,即空间想象能力进一步提高;以及转化化归思想、类比思想等的培养。
二、高考考点剖析立体几何三大考点:(1)线面位置关系的推理判断(小题)、证明(大题);(2)空间角;(3)空间距离。
线面位置关系突出平行和垂直,又侧重于垂直关系,因为空间直角坐标系的建立和空间角的平面角的构造与求解离不开垂直;空间距离也离不开垂直。
主要以三棱柱、四棱柱(正方体)、三棱锥、四棱锥为载体。
与球有关的问题也是高考常考点。
立体几何大题不独立考查单纯的线面位置关系,而明确以多面体为载体,综合考查概念、性质、线面关系、角与距离。
三、考题特点分析每年的数学高考立体几何题中,有2~3道选择题,1道填空题及1道解答题。
分值占全卷的18%~20%。
考题属于“理解”和“掌握”这两个层次,难度中等,试题常有课本背景。
总结2000~2003年两省一市(晋津赣)或江苏、辽宁等省新教材高考卷与全国高考卷的立体几何题可以看到以下几个特点:(1)新教材立体几何试题中大题以棱柱或棱锥为载体,融线面关系于几何体中。
继续采取传统的小步设问、逐层加深的模式。
第一小问考查线线、线面、面面的位置关系、后几问考查空间角,空间距离等度量关系,解题方法是向量代数法,其解题思路:“建立坐标系——求向量坐标——用公式计算”。
旧教材相对稳定。
(2) 在考查空间概念的基础上,强调作图、证明和计算相结合,融推理论证于几何量的计算中,逻辑思维能力、空间想象能力的考查存在于运算中。
(3) 对空间想象能力的要求进一步提高,试题直接对空间想象能力的考查;如(2000年天津卷第16题),如图,E 、F 分别为 D 1 C 1正方体的面ADD 1A 1,面BCC 1B 1的中心,则四 A 1 B 1边形BFD 1E 在该正方体的面上射影可能是 。
E FD CA B本题需从不同的角度来观察图形,直接体现了对空间想象能力的考查。
再如,2001年北京春季高考卷第11题;2003年全国卷第16题。
(4)重点考查基础知识的同时,也注重形式的多样性,如与简易逻辑、排列组合等的小综合题型也常出现,这也是一种传统。
如:(2002年山西卷)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A )8种B )12种C )16种D )20种又如:2003年江苏卷第16题是与简易逻辑相结合。
(5)重视对数学素质的基本数学思想方法的考查;试题体现了立体几何学科特点的通性、通法,突出和加大了对转化、化归思想,类比思想及等积变化等基本方法的考查力度。
如:2003年新课程卷第15题,考查类比思想。
如:(2003年江苏卷第12题)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) 此题的最优解法是:将这个正四面体放入一个正方体中,再将这个正方体放入球中与球相外接。
因为正方体的对角线就是球的直径,而正四面体的棱就是正方体的侧面对角线。
所以,设正方体的棱长为a ,则有2a =2,a =1,.3,23,332π==∴==∴球S R a R 故选A 。
此题是典型的考查转化、化归思想。
四、复习建议由于高考立体几何题是中低档题为主,所以在复习时一定要抓好基础,注意以下几个方面。
1. 回归课本,加强基本概念、定义、定理的理解和应用,加强归纳总结,将基础知识条理化、网络化,以利于记忆。
对课本上的每一条定义(或概念)、定理、公理、法则等,要求学生首先要叙述出来,其次是分清它们的条件与结论,再次转换成用符号语言表述,并要能画出正确的图,定理甚至要求掌握它的证明。
对课本上一些重要题目也要求学生能用文字语言表述清楚,用数学符号语言表示正确,画出立体感比较明显的几何图。
如:经过一个角的顶点引这个角所在平面的斜线,如果它和已知角两边的夹角为锐角且相等,那么这条斜线在平面内的射影是在这个角的角平分线上。
对这个常用的结论,一般可要求学生填空,画出其图形;又如,对常用公式21cos cos cos θθθ=,要求学生不仅要理解其意义,而且还得画出图形。
对各种角、距离的定义与操作过程要认真总结归纳。
(具体小结如附1)2. 进一步对空间想象能力的培养,为此可以从两个方面来入手:(1) 重视看图能力的培养:对于一个几何体,可要求学生从不同的角度去观察,可以是俯视、仰视、侧视、斜视,让学生体会不同的感觉,可以开拓学生的空间视野,培养空间感;从而也使学生明白,当从一个角度去观察一个几何图形而解决不了问题时,可以换一个观察角度。
(2) 加强画图能力的培养:要求学生掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还让学生体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。
对于诸如过多面体上的已知点作截面,或作二面角的棱等问题,主要作图依据是平面的三条性质和“三平面两两相交,得到三条交线,则三条交线或者互相平行或者交于一点”。
(3)加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。
能实现这一些,可使有些问题一眼看穿。
3.加强审题能力的培养。
一般地方法是:先一句一句理解,再全面考虑,要注意文字语言、符号语言、图形语言的互译。
对于未给出图形的题和判断位置关系的问题,先用手头的工具比划它们的位置关系(桌面、书、笔、教室等等),如果需要画图,再选择恰当的方位画图。
如果有图,边读题边想象实际图形,再综合分析线面关系。
4.应注重让学生掌握解题方法中的通法通则,特别是转化化归思想,向量代数法。
在授课时讲清讲透彻,让学生不仅理解深刻而且能牵牵掌握。
如线面和面面关系的转化;三棱锥等积法要熟练掌握;面面平行转化为线面平行,可再转化为线线平行来处理。
再如,点到面距离,可转化为线到面距离,又可转化为面面距离;证明两线平行,可转化为两直线同时垂直于一个平面的证明。
又如求二面角的向量代数法、三垂线定理法和射影面法;求点到面的距离的向量代数法和等体积法等这一些都是立体几何中的通法;5.引导学生多积累。
如(1)注意平面几何和立体几何概念的区别与联系,如:空间的垂直未必相交;正三棱锥不仅要底面是正三角形,还要顶点在底面上的射影是底面三角形的中心;三棱锥顶点在底面上的射影是底面三角形的外心、内心、垂心的条件各是什么等问题。
(2)记住一些特殊图形的线面关系和有关量。
如:正方体中对角线与侧面对角线异面时,它们互相垂直;正四面体相对棱相互垂直;直角四面体的三个侧面面积的平方和等于底面面积的平方等等;若能记住它,将提高解题速度。
还使学生对问题的理解更加快捷。
6.严抓解题的表述与书写的规范性。
在传统的逻辑推理方法中的基本步骤是:“一作(作辅助线),二证明(如证明直线与平面所成的角),三求(求解角或距离等)”;在用向量代数法时,必须按照“一建系(建立空间直角坐标系),二求点的坐标,三求向量的坐标,四运用向量公式求解”;如在证明线面垂直时,应证线线垂直时,学生容易只证与平面内一条直线垂直就下结论,这里应强调证两条相交直线,缺一不可;用空间向量解决问题时,需要用建立坐标系时,一定要说清楚;用三垂线定理作二面角的平面角时,一定得点明斜线在平面上射影;书写解题过程的最后都必须写结题语。
7.在面积、体积计算中,要抓住基本图形的基本量,利用基本量可用方程思想处理计算问题。
长方体的长、宽、高;正三棱锥的侧棱与底面边长;球的半径等等;这些基本量是列关系式的基本元素。
8.加强与球有关的问题。
球内接长方体的对角线等于球的直径;球内接正四面体的棱长与球的直径的关系则可以通过相应的球内接正方体来作中间桥梁,即正四面体的棱长等于正方体的侧面对角线长;如2003年全国卷第12题便是考查这一点。
球与截面的问题可类比于圆与弦的问题。
9.培养学生两种意识:(1)特殊化意识。
许多线面关系的问题要特别注意它们的特殊位置关系,在一些计算问题在一般位置(图形)和特殊位置(图形)的答案是不变的,从特殊中寻找快捷的解题思路。
要培养学生的这种意识,以提高解题速度。
有时,由特殊图形的关系可引出一般在关系。
(2)运动的观点。
平移不改变角的大小,在立体几何中,所有角的求解都可做平行线(平移)来解决,这样我们可将不相交的线的夹角转化为相交线的夹角;直线不能移动,但其方向向量可以按需要任意平移。