2020年高考理科数学《立体几何》题型归纳与训练
2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。
2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

(八) 大题考法——立体几何1.如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1.∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32, EF =42+(3-1)2=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM . ② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y 轴,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),E (0,0,3),B (3,3,0),F (0,4,1), ∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2). ∵EA ⊥平面ABC ,∴取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,AE ―→〉|=622×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22. 2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,∴CD =4, ∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为坐标原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217.3.如图,在四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴建立如图所示的空间直角坐标系C -xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1. ① 由|BS ―→|=2,得y 2+z 2-4y +1=0.②由①②,解得y =12,z =32.∴S ⎝⎛⎭⎫1,12,32,AS ―→=⎝⎛⎭⎫-1,-32,32,BS ―→=⎝⎛⎭⎫1,-32,32,DS ―→=⎝⎛⎭⎫0,12,32, ∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2). ∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n | AB ―→||n |=-2×(-3)2×7=217.故AB 与平面SBC 所成角的正弦值为217. 4.(2018·诸暨高三适应性考试)如图,四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是边长为2的等边三角形,底面ABCD 是直角梯形,∠BAD =∠CDA =90°,AB =2DC =22,E 是CD 的中点.(1)求证:AE ⊥PB ;(2)设F 是棱PB 上的点,EF ∥平面PAD ,求EF 与平面PAB 所成角的正弦值. 解:(1)证明:取AD 的中点G ,连接PG ,BG ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PG ⊥AD , ∴PG ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴AE ⊥PG . 又∵tan ∠DAE =tan ∠ABG =24, ∴∠ABG +∠EAB =∠DAE +∠EAB =∠DAB =90°, ∴AE ⊥BG .∵BG ∩PG =G ,BG ⊂平面PBG ,PG ⊂平面PBG , ∴AE ⊥平面PBG , ∴AE ⊥PB .(2)法一:作FH ∥AB 交PA 于H ,连接DH ,则HF ∥DC . ∵EF ∥平面PAD ,平面FHDE ∩平面PAD =DH , ∴EF ∥DH ,∴四边形FHDE 为平行四边形, ∴HF =DE .易知DC ∥AB ,DC =12AB ,∴HF =14AB ,即H 为PA 的一个四等分点.取PA 的中点K ,连接DK ,则DK ⊥PA .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , ∴AB ⊥平面PAD . ∵DK ⊂平面PAD , ∴AB ⊥DK , ∵PA ∩AB =A , ∴DK ⊥平面PAB .∴∠DHK 为EF 与平面PAB 所成的角, 由已知得DK =3,DH =DK 2+HK 2=132, ∴sin ∠DHK =DK DH =3132=23913,∴EF 与平面PAB 所成角的正弦值为23913.法二:以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系.则A (0,0,0),B (22,0,0),P (0,1,3),E ⎝⎛⎭⎫22,2,0,PB ―→=(22,-1,-3),EP―→=⎝⎛⎭⎫-22,-1,3. 设PF ―→=λPB ―→,则EF ―→=EP ―→+λPB ―→=⎝⎛⎭⎫22λ-22,-1-λ,3-3λ.由(1)知PG ⊥平面ABCD ,∴PG ⊥AB . ∵AD ⊥AB ,PG ⊥AD =G , ∴AB ⊥平面PAD ,∴AB ―→=(22,0,0)为平面PAD 的一个法向量. ∵EF ∥平面PAD ,∴EF ―→·AB ―→=22×⎝⎛⎭⎫22λ-22=0,解得λ=14. ∴EF ―→=⎝⎛⎭⎫0,-54,334.设平面PAB 的一个法向量为n =(x ,y ,z ), 又AB ―→=(22,0,0),PB ―→=(22,-1,-3), 则⎩⎪⎨⎪⎧n ·AB ―→=0,n ·PB ―→=0,即⎩⎨⎧22x =0,22x -y -3z =0,取y =3,得z =-1,∴n =(0,3,-1). ∴|cos 〈n ,EF ―→〉|=⎪⎪⎪⎪-534-3342×132=23913,∴EF 与平面PAB 所成角的正弦值为23913.5.(2019届高三·镇海中学检测)如图,在三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,AB =BC =2,∠ACB =30°,∠C 1CB =60°,BC 1⊥A 1C ,E 为AC 的中点,CC 1=2.(1)求证:A 1C ⊥平面C 1EB ;(2)求直线CC 1与平面ABC 所成角的余弦值. 解:(1)证明:因为AB =BC =2,E 为AC 的中点, 所以AC ⊥BE .又因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , 所以BE ⊥平面A 1ACC 1,所以BE ⊥A 1C .又因为BC 1⊥A 1C ,BC 1∩BE =B ,BC 1⊂平面C 1EB ,BE ⊂平面C 1EB , 所以A 1C ⊥平面C 1EB .(2)法一:因为平面A 1ACC 1⊥平面ABC , 所以直线CC 1与平面ABC 所成角为∠C 1CA . 因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=BC =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面A 1ACC 1,所以BE ⊥EC 1,所以EC 1= 3. 在△CC 1E 中,根据余弦定理可知,cos ∠C 1CE =33. 所以直线CC 1与平面ABC 所成角的余弦值为33. 法二:以E 为坐标原点,EC 为x 轴,EB 为y 轴建立如图所示的空间直角坐标系.因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=CB =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面AA 1CC 1,所以BE ⊥EC 1,所以EC 1= 3. 所以|CC 1―→|=2,|C 1E ―→|=3, 设C 1(x,0,y ),又C (3,0,0),所以⎩⎨⎧(x -3)2+y 2=4,x 2+y 2=3,解得⎩⎨⎧x =33,y =263,所以C 1⎝⎛⎭⎫33,0,263,则CC 1―→=⎝⎛⎭⎫-233,0,263, 易知平面ABC 的一个法向量为n =(0,0,1), 设直线CC 1与平面ABC 所成的角为α, 则sin α=|cos 〈CC 1―→,n 〉|=63,所以cos α=33.即直线CC 1与平面ABC 所成角的余弦值为33.6.如图所示,四棱锥P -ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD 交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD 的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ), 所以PB ―→=2EO ―→,所以PB ―→∥EO ―→, 即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0). 因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c ,所以m =⎝⎛⎭⎫1,0,-ac ∥m ′=(c,0,-a ). 所以cos 60°=|n ·m ′||n ||m ′|=c 2(a 2+c 2)=12,得a =c .故当AP 与正方形ABCD 的边长相等时,二面角C -AF -D 的大小为60°.。
(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。
此类题的难点就是如何构造辅助线。
构造完辅助线,证明过程只须注意规范的符号语言描述即可。
本题用到的是线线平行推出面面平行。
【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。
【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。
此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。
在此,我们需要借助倒推法进行分析。
首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。
再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。
从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。
如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。
最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。
即先证AD 平行于PN ,最后得到结论。
构造交线的方法我们可总结为如下三个图形。
一一一一一一一一一2.构造面面平行,然后推出线面平行。
此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。
2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。
高考年理科数学复习总结立体几何大题解析版

1. 【2020 年高考全国 1 卷理数 18】如图, D 为圆锥的顶点,O 是圆锥底面的圆心, AE 为底面直径, AE AD . AB C 是 6底面的内接正三角形, P 为 DO 上一点, P O (1)证明: PA 平面 PBC ; D O . 6(2)求二面角 BPC E 的余弦值.2 5【答案】(1)证明见解析;(2) .5 【解析】 【分析】 (1)要证明 PA 平面 PBC ,只需证明 PA PB ,PA PC即可;(2)以 O 为坐标原点,OA 为 x 轴,O N 为 y 轴建立如图所示的空间直角坐标系,分别算n m出平面 PCB 的法向量为 n ,平面 PCE 的法向量为 m ,利用公式cos m,n 计 | n || m |算即可得到答案.【详解】(1)由题设,知△D A E 为等边三角形,设 AE 1, 1 1 6 2 3 则 D O,C O BO AE ,所以 PO D O ,2 2 2 6 46 6 PC PO 2 OC 2,PB PO 2 OB 2, 4 4BA 3 又 AB C 为等边三角形,则2OA ,所以 BA, s in 60 23PA 2 PB 2AB 2 ,则 APB 90 ,所以 4PA PB ,同理 PA PC ,又 PC PB P ,所以 PA 平面PBC ;(2)过 O 作O N ∥BC 交 AB 于点 N ,因为 PO平面ABC ,以 O 为坐标原点,O A 为 x 轴,O N 为 y 轴建立如图所示的空间直角坐标系,12 13 1 3 则 E( ,0,0),P(0, 0,),B( , , 0),C( , 4 4 4, 0) , 24 4 PC ( , , ), PB ( , 4 4 ), PE ( ,0, 1 3 2 1 3 2 1 2, ) ,4 4 4 42 4 设平面 PCB 的一个法向量为 n (x , y , z ), 1 1 1n PC 0x 3y 2z 0 11 1 由 n PB 0 ,得 ,令 x2 1 z 1, y 0 ,得 , 1 1x 3y 2z 0 1 1 1所以 n ( 2,0,1),设平面 PCE 的一个法向量为 m (x , y , z )2 2 2m PC 0x 3y 2z 0 22 23 x 1 ,令 ,得 z 2, y 2由,得 , m PE 02x 2z 0 2 232 23 所以 m (1, , 2)3n m 2 2 2 5cos m,n故| n || m |10 35 , 32 5设二面角 B PC E 的大小为 ,则 cos 2. 【2019 年高考全国 1 卷理数 18】. 5如图,直四棱柱 ABC D –A B C D 的底面是菱形,AA =4,AB=2,∠BA D=60° 1 1 1 1 1 E ,M ,N 分别是 BC ,BB ,A D 的中点. 1 1 (1)证明:M N ∥平面 C D E ; 1(2)求二面角 A −M A −N 的正弦值. 1 解:(1)连结B C ,M E . 1因为M ,E 分别为BB ,BC 的中点, 1 1所以M E ∥B C ,且M E= B C . 1 121又因为N 为A D 的中点,所以N D= A D . 1 12D C ,可得B C A D ,故ME N D ,11由题设知A B 1 1 因此四边形M N D E 为平行四边形,M N ∥E D . 又M N 平面E D C ,所以M N ∥平面C DE . 1 1 (2)由已知可得DE ⊥D A . 以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则A(2, 0, 0) N(1, 0, 2),, A (2 , 0 , 4) , M (1, 3, 2) , 1 A A (0, 0,4) , A M (1, 3,2) , A N (1,0,2) , 1 1 1M N (0, 3, 0) .m A M 0m (x , y , z ) 1 设 为平面A M A 的法向量,则, 1 m A A 01 ,x 3y 2z 0 所以可取 m ( 3,1, 0). 4z 0., n MN 0n (p ,q ,r) 设 为平面A M N 的法向量,则1 A N 0n . 1 ,3q 0 n (2, 0,1) . 所以可取 p 2r 0.m n 2 3 15于是 cos m ,n, | m ‖n | 2 5 510 5A MA N 所以二面角的正弦值为 .1 3. 【2018 年高考全国 1 卷理数 18】如图,四边形 AB C D 为正方形,E ,F 分别为 A D ,BC 的中点,以 DF 为折痕把△DF C 折起,使点 C 到达点 P 的位置,且 PF ⊥BF.(1)证明:平面 PEF ⊥平面 ABF D ; (2)求 DP 与平面 ABF D 所成角的正弦值. 【答案】见解析。
(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形ABCD中,AM=CD=3AB=1.现将△AMD 沿MD 折起,使平面AMD⊥平面MBCD ,连接AB,AC.试判断:在AB边上是否存在点解析】线面平行,可以线线平行或者面面平行推出。
此类题的难点就是如何构造辅助线。
构造完辅助线,证明过程只须注意规范的符号语言描述即可。
本题用到的是线线平行推出面面平行。
易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。
思维点拨】此类题有两大类方法:1. 构造线线平行,然后推出线面平行。
此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。
在此,我们需要借助倒推法进行分析。
首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。
再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。
从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。
如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN。
最后我们只须严格使用正确的符号语言将证明过程反向1【答案】当AP=3AB 时,有AD ∥平面MPC.理由如下:连接BD 交MC 于点N,连接NP.在梯形MBCD 中,DC∥MB,DNNBDCMB1,2,AP 1在△ADB 中,P AP B=12,∴AD∥PN.∵AD? 平面MPC ,PN ? 平面MPC ,∴ AD∥平面MPC.P,使AD ∥平面MPC ?并说明理由写一遍即可。
即先证AD 平行于PN,最后得到结论。
构造交线的方法我们可总结为如下三个图形。
2. 构造面面平行,然后推出线面平行。
此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。
辅助线的构造理论同上。
我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。
2020全国ii卷数学立体几何

2020全国II卷数学立体几何一、概述2020年全国II卷数学考试立体几何部分是考察学生空间想象、几何推理能力的重要部分。
立体几何一直是考试的重点内容,掌握好这部分知识对于取得好成绩至关重要。
下面我们将针对2020年全国II 卷数学立体几何部分的考题进行分析和解答,帮助同学们更好地复习和备考。
二、考点分析2020年全国II卷数学立体几何考察的主要考点有:多面体的表面积和体积、空间平面图形的性质、空间几何体的性质等。
三、题目解析题目一:已知四面体$ABCD$的底面$ABC$是等边三角形,$AD=AB=6$,$CD=3$,以$AD$和$BC$为直径的球相交于点$E$,求四面体$ABCD$的体积。
解析:根据题意可知$AD=AB=6$,$CD=3$,所以四边形$ABCD$的高度为$3$。
因为$ABCD$是等边三角形,所以$AB=BC=AC=6$。
由此可得四面体$ABCD$的底面积为$\frac{\sqrt{3}}{4} \times 6^2=9\sqrt{3}$,所以四面体$ABCD$的体积为$\frac{1}{3} \times 3 \times 9\sqrt{3}=9\sqrt{3}$。
题目二:四棱锥$ABCD-A_1$的底面$ABC$是等边三角形,$AB=3$,$BC=AD=2\sqrt{6}$,$A_1$是$ABC$所在平面的重心,求四棱锥$ABCD-A_1$的体积。
解析:根据题意可知$AB=3$,$BC=AD=2\sqrt{6}$,所以四棱锥$ABCD-A_1$的底面积为$\frac{\sqrt{3}}{4} \times 3^2=\frac{9\sqrt{3}}{4}$,所以四棱锥$ABCD-A_1$的体积为$\frac{1}{3} \times 2\sqrt{6} \times \frac{9\sqrt{3}}{4}=3\sqrt{2}$。
题目三:空间四边形$ABCD$是正方形,$AB=BC=4$,$AE=2\sqrt{3}$,$AF=2$,$E,F$分别在$AB,BC$平分线上,求四边形$EFGH$的面积。
2020年高考数学(理)热点专练08 立体几何(解析版)

热点08 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到. 【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求. 内切圆问题:转化成正方体的内切圆去求. 求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标. 【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2019·安徽高考模拟(理))已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( ) A .若//,//m n αα,则//m n B .若,αγβγ⊥⊥,则//αβC .若//,//m n αα,且,m n ββ⊂⊂,则//αβD .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥【答案】D 【解析】 【分析】根据空间中直线和平面的位置关系分别去判断各个选项,,,A B C 均可举出反例;D 可证明得出. 【详解】若//m α,//n α,则//m n 或m 与n 异面或m 与n 相交,故选项A 错误; 若αγ⊥,βγ⊥,则α与β可能相交,故选项B 错误; 若直线,m n 不相交,则平面,αβ不一定平行,故选项C 错误;αβ⊥Q ,m α⊥ //m β∴或m β⊂,又n β⊥ m n ∴⊥,故选项D 正确.本题正确选项:D 【名师点睛】本题考查空间中直线、平面之间位置关系有关命题的判断,考查学生的空间想象能力和对定理的掌握程度.2.(2019·四川射洪中学高三月考(理))已知某几何体的三视图如图所示,则该几何体的最大边长为( )A B C D .【答案】B 【解析】根据三视图作出原几何体(四棱锥P ABCD -)的直观图如下:可计算PB PD BC PC ====.【名师点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.(2019·安徽高考模拟(理))当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( ) A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出BP 与AD 1所成角的取值范围. 【详解】以D 为原点,DA u u u v ,DC u u uv ,1DD u u u u v 分别为x ,y ,z 轴正向,建立空间直角坐标系D xyz -,则()11,0,1AD =-u u u u v ,()11,1,1CA =-u u u v ,设1CP CA λ=u u u v u u u v ,则[]0,1λ∈, (),,CP λλλ∴=-u u u v ,()1,,BP u u u vλλλ∴=--,故1cos ,AD BP u u u u v u u u v 11··AD BPAD BP=u u u u v u u u vu u u u v u u u v=对于函数()2321h x λλ=-+ 212333λ⎛⎫=-+ ⎪⎝⎭,[]0,1λ∈有:()min 1233h x h ⎛⎫== ⎪⎝⎭,()()max 12h x h ==,故11cos ,2AD BP ⎡∈⎢⎣⎦u u u u v u u u v ,又[]1,0,AD BP π∈u u u u v u u u v ,故1,,63AD BP u u u u v u u u v ππ⎡⎤∈⎢⎥⎣⎦.故选B .【名师点睛】本题考查异面直线所成角的取值范围的求法,考查异面直线所成角的概念等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2019·湖南高三期末(理))设a ,b 是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( ) A .a b ∥,b α⊂,则a P αB .a α⊂,b β⊂,αβ∥,则a b ∥C .a α⊂,b α⊂,a β∥,b β∥,则αβ∥D .αβ∥,a α⊂,则a β∥【答案】D 【解析】分析:在A 中,a ∥α或a ⊂α;在B 中,a 与b 平行或异面;在C 中,α与β相交或平行;在D 中,由面面平行的性质定理得a ∥β.详解:由a ,b 是空间中不同的直线,α,β是不同的平面,知:在A 中,a ∥b ,b ⊂α,则a ∥α或a ⊂ α,故A 错误; 在B 中,a ⊂α,b ⊂ β,α∥β,则a 与b 平行或异面,故B 错误; 在C 中,a ⊂α,b ⊂ α,α∥β,b ∥β,则α与β相交或平行,故C 错误; 在D 中,α∥β,a ⊂α,则由面面平行的性质定理得a ∥β,故D 正确. 故选:D .【名师点睛】:本题考查线面位置关系的判断,考查空间想象能力,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.5.(2019·贵州高考模拟(理))如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A.[,1]3 B.[3C.3D.[,1]3【答案】B 【解析】 【详解】设正方体的棱长为1,则11111A C A C A O OC OC ======所以1111332122cos ,sin 33322AOC AOC +-∠==∠=⨯,11313cos 33AOC AOC +-∠==-∠=. 又直线与平面所成的角小于等于90o ,而1A OC ∠为钝角,所以sin α的范围为,选B. 【考点定位】空间直线与平面所成的角.6.(2019·宁夏吴忠中学高考模拟(理))已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD【答案】C 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos BC BC D C D ∠===C .平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.7.(2019·广东高考模拟(理))已知三棱锥P ABC -的底面ABC 是边长为2的等边三角形,PA ⊥平面ABC ,且2PA =,则该三棱锥外接球的表面积为( ) A .683πB .20πC .48πD .283π【答案】D【解析】 【分析】由于球中球心与球的小圆圆心的连线垂直于这个小圆,利用PA 也垂直于这个小圆,即可利用球心与小圆圆心建立起直角三角形,1'12d OO PA ===,根据题意可求出r 是底面三角形的外接圆的半径,利用d =R 即可,最后即可求出球的表面积.【详解】 由已知得,作下图PA ABC ⊥平面,连结PO ,延长至圆上交于H , 过O 作'OO PA P 交ABC 平面于'O ,则PAH ∆为Rt ∆,所以,O 为斜边PH 的中点,所以,'OO 为PAH ∆的中位线,'O 为小圆圆心,则'O 为AH 的中点,则''12OO O H PA AH ==,则''O H AO ===,1'12OO PA ==,则球的半径R OH ====球的表面积为22843R ππ= 答案选D.【名师点睛】本题考查计算球的表面积,关键在于利用222d R r =-进行计算R ,难点在于构造三要素相关的直角三角形进行求解,难度属于中等.8.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC ,所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C .【名师点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.9.(2019·河北高考模拟(理))正方体1111ABCD A B C D -的棱上(除去棱AD)到直线1A B 与1CC 的距离相等的点有3个,记这3个点分别为,,E F G ,则直线1AC 与平面EFG 所成角的正弦值为( )A B C D 【答案】D 【解析】 【分析】正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为:D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出直线AC 1与平面EFG 所成角的正弦值. 【详解】解:正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为: D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设AB =2,则E (1,2,0),F (32,2,2),G (0,0,2),A (2,0,0),C 1(0,2,2),∴EF =u u u r (1022,,),GF u u u r =(3202,,),1AC =u u u u r (﹣2,2,2), 设平面EFG 的法向量n =r(x ,y ,z ),则00n EF n GF ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,即12023202x z x y ⎧+=⎪⎪⎨⎪+=⎪⎩,取x =4,得n =r (4,﹣3,﹣1). 设直线AC 1与平面EFG 所成角为θ,则直线AC 1与平面EFG 所成角的正弦值为sinθ=|cos 1n AC u u u u r r <,>|=. 故选:D .【名师点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10.(2019·湖北高考模拟(理))如图,已知四面体ABCD 为正四面体,2,AB E F =, 分别是,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( ).A .1 BCD .2【答案】A【解析】 【分析】通过补体,在正方体内利用截面为平行四边形MNKL ,有2NK KL +=,进而利用基本不等式可得解. 【详解】补成正方体,如图.,EF α⊥Q∴截面为平行四边形MNKL ,可得2NK KL +=, 又//,//,MN AD KL BC 且,AD BC KN KL ⊥∴⊥ 可得L MNK S NK KL =⋅四边形2()1,2NK KL +≤=当且仅当NK KL =时取等号,选A. 【名师点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.二、填空题11.(2019·重庆南开中学高考模拟(理))三棱锥P ABC -的4的球面上,PA ⊥平面ABC ,V ABC A 到平面PBC 的距离为______. 【答案】65【解析】 【分析】由题意,球心在三棱锥各顶点的距离相等,球心到底面的距离等于三棱锥的高PA 的一半,求出PA,,然后利用等体积求点A 到平面PBC 的距离 【详解】△ABC 的正三角形,可得外接圆的半径2r asin60==︒2,即r =1.∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h2,那么球的半径R ==,解得h=2,又PBC S ∆=由P ABC A PBC V V --= 知'113?2=?33 ,得'65d = 故点A 到平面PBC 的距离为65故答案为65. 【名师点睛】本题考查外接球问题,锥的体积,考查计算求解能力,是基础题 12.(2019·广东高考模拟(理))《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开, 得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是_________________【答案】50S π= 【解析】 【分析】根据堑堵定义以及长方体性质可得阳马111C ABB A -的外接球的直径为1A C ,再根据球的表面积公式求结果. 【详解】由于1CB,,BA BB 两两相互垂直,所以阳马111C ABB A -的外接球的直径为1A C ,即2R ==2450R ππ=.【名师点睛】若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,PA a PB b PC c ===,一般把有关元素“补形”成为一个球内接长方体,利用22224R a b c =++求解.13.(2019·山东高考模拟(理))如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.【答案】4【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,11BC C D BD ===1cos C BD ∠==.【名师点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.14.(2018·栖霞市第一中学高考模拟(理))如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①, AC BD =②, //AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45o .【答案】①③④ 【解析】 【分析】由截面PQMN 是正方形出发,利用线面平行的判定和性质,可以推出////PQ AC MN ,////PN BD MQ ,从而得到//AC 平面PQMN ,异面直线PM 与BD 所成的角和PM 与PN 所成角相等为45o ,AC BD ⊥,M N P Q 、、、不一定是中点从而AC BD ,不一定相等.【详解】解:在四面体ABCD 中,Q 截面PQMN 是正方形,//PQ MN ∴,PQ ⊄平面ACD ,MN ⊂平面ACD ,//PQ ∴平面ACD .Q 平面ACB ⋂平面ACD AC =,//PQ AC ∴,可得//AC 平面PQMN .同理可得//BD 平面PQMN ,//BD PN .PN PQ ⊥Q ,AC BD ∴⊥.由//BD PN ,MPN ∴∠是异面直线PM 与BD 所成的角,且为45o .由上面可知://BD PN ,//PQ AC .PN AN BD AD ∴=,MN DNAC AD=, 而AN DN ≠,PN MN =,BD AC ∴≠.综上可知:①③④都正确. 故答案为:①③④.利用线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角即可得出. 【名师点睛】本题考查了线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角,属于基础题.15.(2019·深圳市高级中学高考模拟(理))在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π 【解析】 【分析】在等边三角形ABC 中,取AB 的中点F ,设其中心为O ,则23AO BO CO CF ====,再利用勾股定理可得OP =O 为棱锥P ABC -的外接球球心,利用球的表面积公式可得结果.【详解】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =,得23AO BO CO CF ====, PAB ∆Q 是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,OP =则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(2448ππ⨯=,故答案为48π. 【名师点睛】本题考查主要四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题16.(2019·山东高考模拟(理))如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.【答案】(1)见解析(2)7【解析】 【分析】(1)在BAD ∆中,由余弦定理可得BD =AD DB ⊥,在直平行六面体中,GD ⊥平面ABCD ,则可得GD DB ⊥,由此说明BD ⊥平面ADG ,即可证明平面BDG ⊥平面ADG ;(2)以D 为原点建立空间直角坐标系D xyz -,表示出各点的坐标,求出平面AEFG 的法向量,由直线与平面所成角正弦值的公式即可得到直线GB 与平面AEFG 所成角的正弦值. 【详解】(1)证明:在BAD ∆中,因为22AB AD ==,60BAD ∠=︒. 由余弦定理得,2222cos60BD AD AB AB AD =+-⋅︒,解得BD =∴222AB AD DB =+,∴AD DB ⊥, 在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD , ∴GD DB ⊥ 又AD GD D ⋂=, ∴BD ⊥平面ADG ,∴平面BDG ⊥平面ADG . (2)解:如图以D 为原点建立空间直角坐标系D xyz -,因为45BAE GAD ∠=∠=︒,22AB AD ==, 所以()1,0,0A,()B,()E ,()0,0,1G ,()AE →=-,()1,0,1AG →=-,()1GB →=-.设平面AEFG 的法向量(),,n x y z →=,200n AE x z n AG x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩u u u v r u u uv r , 令1x =,得y =1z =,∴1,n →⎛⎫= ⎪ ⎪⎝⎭.设直线GB 和平面AEFG 的夹角为θ,所以sin cos ,7GB n GB n GB n θ→→→→→→⋅====⋅, 所以直线GB 与平面AEFG 所成角的正弦值为7. 【名师点睛】本题考查面面垂直的证明,以及利用空间向量求线面所成角的正弦值,熟练掌握面面垂直的判定以及线面所成角的公式是解题关键,考查学生基本的算能力,属于中档题. 17.(2019·辽宁高考模拟(理))如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(Ⅰ)证明:AE PB ⊥;(Ⅰ)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的余弦值.【答案】(I )见解析;(II ). 【解析】 【分析】(I )先证明AE POB ⊥平面,再证明AE PB ⊥;(II )在平面POB 内作PQ ⊥OB,垂足为Q ,证明OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法求二面角A PE C --的余弦值. 【详解】(I )证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,∵AB||CE,AB=CE ,∴四边形ABCE 为平行四边形,∴AE=BC=AD=DE , ∴△ADE 为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,23DAB ABC π∠=∠=, ∴在等腰ADB ∆中,6ADB ABD π∠=∠=∴2362DBC πππ∠=-=,即BD ⊥BC , ∴BD ⊥AE ,翻折后可得:OP ⊥AE,OB ⊥AE ,又,,OP POB OB POB OP OB O ⊂⊂=Q I 平面平面,AE POB ∴⊥平面,,PB POB AE PB ⊂∴⊥Q 平面;(II )解:在平面POB 内作PQ ⊥OB,垂足为Q , 因为AE ⊥平面POB ,∴AE ⊥PQ ,因为OB ⊂平面ABCE, AE ⊂平面ABCE,AE∩OB=O∴PQ ⊥平面ABCE ,∴直线PB 与平面ABCE 夹角为4PBQ π∠=,又因为OP=OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,由题意得,各点坐标为111(,0,0),(,0,(222P E C PE EC ∴==u u u r u u u r , 设平面PCE 的一个法向量为1(,,)n x y z =u r,则111002,,0102x z PE n EC n x y ⎧=⎪⎧⋅=⎪⎪∴⎨⎨⋅=⎪⎩⎪+=⎪⎩u u u v u v u u u v u v设x =y=-1,z=1,∴1n =u r,由题意得平面PAE 的一个法向量2(0,1,0)n =u u r, 设二面角A -EP -C 为α,1212|||cos |=||||n n n n α⋅==u r u u rur u u r . 易知二面角A -EP -C为钝角,所以cos α.【名师点睛】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.18.(2019·江苏高考模拟)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=u u u r u u u r.(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.【答案】(1(21 【解析】【详解】试题分析:(1)直接按照求直线与平面所成角的步骤来求即可;直线与平面α所成角θ 可先求出平面α的法向量n 与直线的方向向量,则sin cos a n a n a nθ⋅=〈⋅〉=r r r r r r ;(2)根据求二面角的步骤,列出关于实数λ的方程来求;求出二面角l αβ--的大小,可先求出两个半平面α与β的法向量12n n u r u u r ,,若二面角l αβ--所成的角θ为锐角,则1212cos cos cos n n n n θ〈〉=〈〉u r u u r u r u u r =,,;若二面角l αβ--所成的角θ钝角,则1212cos cos cos n n n n θ〈⋅〉=-〈⋅〉u r u u r u r u u r =-.试题解析:解:分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C(1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-u u u u r ,11(0,4,0)AC =u u u u r ,1(1,2,2)AD =-u u u u r ,设平面11AC D 的法向量为1(,,)n x y z =u r 则40{20y x z =-=,所以取1(2,0,1)n =u r,又111111cos ,DB n DB n DB n ⋅===u u u u r u r u u u u r u r u u u u r u r 所以直线1DB 与平面11AC D. (2)BD DC λ=u u u r u u u r Q ,24(,,0)11D λλλ∴++,11(0,4,0)AC =u u u u r Q ,124(,,2)11A D λλλ=-++u u u u r , 设平面11AC D 的法向量为1(,,)n x y z =u r ,则40{2201y x z λ=-=+, 所以取1(1,0,1)n λ=+u r .又平面111A B C 的一个法向量为2(0,0,1)n =u u r ,由题意得121cos ,2n n =u r u u r ,12=,解得1λ=-或1λ=-(不合题意,舍去), 所以实数λ1.考点:二面角;直线与平面所成角的方法.19 (2019·山东高考模拟(理))如图,在多面体ABCDEF 中,四边形ABCD 的菱形,60BCD ∠=︒,AC 与BD 交于点O ,平面FBC ⊥平面ABCD ,//EF AB ,FB FC =,3EF =.(1)求证:OE ⊥平面ABCD ;(2)若FBC ∆为等边三角形,点Q 为AE 的中点,求二面角Q BC A --的余弦值.【答案】(1)见证明;(2)13【解析】【分析】 (1)可证FH BC ⊥,再利用平面FBC ⊥平面ABCD 证得FH ⊥平面ABCD ,通过证明//OE FH ,可得要求证的线面垂直.(2)建立空间直角坐标系,求出平面BCQ 的法向量和平面ABC 的一个法向量后可求二面角Q BC A --的余弦值.【详解】(1)证明:取BC 的中点H ,连结OH 、FH 、OE ,因为FB FC =,所以FH BC ⊥,因为平面FBC ⊥平面ABCD ,平面FBC I 平面ABCD BC =,FH⊂平面FBC , 所以FH ⊥平面ABCD ,因为H 、O 分别为BC 、AC 的中点,所以//OH AB 且123OH AB ==.又//EF AB,EF =,所以//EF OH ,所以四边形OEFH 为平行四边形, 所以//OE FH ,所以OE ⊥平面ABCD .(2)解:因为菱形ABCD ,所以2OA OC OE FH ====.所以OA ,OB ,OE 两两垂直,建立空间直角坐标系O xyz -,如图所示,则(2,0,0)A,(0,3B ,(2,0,0)C -,(0,0,2)E , 所以(1,0,1)Q ,所以(2,BC =-u u u r ,(3,0,1)CQ =u u u r , 设平面BCQ 的法向量为(,,)m x y z =u r ,由00BC m CQ m ⎧⋅=⎨⋅=⎩u u u v v u u u v v得2030x y x z ⎧--=⎪⎨⎪+=⎩, 取1x =,可得(1,3)m =-u r ,平面ABC 的一个法向量为(0,0,1)n =r ,设二面角Q BC A --的平面角为θ,则cos 13m n m n θ⋅-===u r r u r r , 因为二面角Q BC A --的平面角为锐角,所以二面角Q BC A -- 【名师点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为2π得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学魁榜2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12,在△ADB 中,AP PB =12,∴AD ∥PN .∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。
此类题的难点就是如何构造辅助线。
构造完辅助线,证明过程只须注意规范的符号语言描述即可。
本题用到的是线线平行推出面面平行。
【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。
【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。
此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。
在此,我们需要借助倒推法进行分析。
首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。
再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。
从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。
如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。
最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。
即先证2AD 平行于PN,最后得到结论。
构造交线的方法我们可总结为如下三个图形。
2.构造面面平行,然后推出线面平行。
此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。
辅助线的构造理论同上。
我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。
可总结为下图例2如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC的中点.求证:GF ∥平面ADE ;【答案】解法一:(1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点,所以GH ∥AB ,且GH =12AB.又F 是CD 的中点,学魁榜所以DF=12 CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.解法2:(1)证明:如下图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.【解析】解法一为构造线线平行,解法二为构造面面平行。
【易错点】线段比例关系【思维点拨】同例一题型二线线垂直、面面垂直的证明例1如图,在三棱锥PABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC【答案】(1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,所以PA⊥平面ABC.又因为BD⊂平面ABC,所以PA⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面BDE⊥平面PAC.【解析】(一)找突破口第(1)问:欲证线线垂直,应转化到证线面垂直,再得线线垂直;第(2)问:欲证面面垂直,应转化到证线面垂直,进而转化到先证线线垂直,借助(1)的结论和已知条件可证;(二)寻关键点有什么想到什么注意什么信息①:PA⊥AB,PA⊥BC 线面垂直的判定定理,可证PA⊥平面ABC(1)证明线面平行的条件:一直线在平面外,一直线在平面内(2)证明线面垂直时的条件:直线垂直于平面内两条相交直线(3)求点到面的距离时要想到借助锥体的“等体积性”信息②:AB=BC,D为AC的中点等腰三角形中线与高线合一,可得BD⊥AC信息③:PA⊥BD 证明线线垂直,可转化到证明一直线垂直于另一直线所在平面,再由线面垂直的定义可得信息④:平面BDE⊥平面PAC 面面垂直的判定定理,线线垂直⇒线面垂直⇒面面垂直信息⑤:PA∥平面BDE 线面平行的性质定理,线面平行,则线线平行,可得PA∥DE【易错点】规范的符号语言描述,正确的逻辑推理过程。
【思维点拨】(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为4学魁榜证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,空间向平面的转化,面面⇔线面⇔线线.题型三空间向量例1如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,ABD CBD ∠=∠,AB=BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C 的余弦值.【答案】(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC .又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D AC B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC6的距离的12,即E 为DB 的中点,得,32,故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→1,32,设n =(x 1,y 1,z 1)是平面DAE 的法向量,·AD ―→=0,·AE ―→=0,x 1+z 1=0,x 1+32y 1+12z 1=0.可取n ,33,设m =(x 2,y 2,z 2)是平面AEC 的法向量,·AC ―→=0,·AE ―→=0,2x 2=0,x 2+32y 2+12z 2=0,可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D AE C 为锐角,所以二面角D AE C 的余弦值为77.【解析】(一)找突破口第(1)问:欲证面面垂直,应转化去证线面垂直或证其二面角为直角,即找出二面角的平面角,并求其大小为90°;第(2)问:欲求二面角的余弦值,应转化去求两平面所对应法向量的夹角的余弦值,即通过建系,求所对应法向量来解决问题.(二)寻关键点有什么想到什么注意什么信息①:△ABC 为正三角形,△ACD 是直角三角形特殊三角形中的特殊的边角:△ABC 中三边相等,△ACD 中的直角(1)建系时要证明哪三条线两两垂直,进而可作为坐标轴(2)两平面法向量的夹角不一定是所求的二面角,也有可能是两法向量夹角的补角,因此必须说明角的范围信息②:∠ABD =∠CBD ,AB =BD边角相等关系可证两三角形全等,进而可证AD =DC ,∠ADC =90°信息③:证明:平面ACD ⊥平面ABC面面垂直的证明方法:几何法或定义法信息④:体积相等由体积的大小关系转化到点学魁榜到面的距离的大小关系,进而知点E为DB的中点【易错点】正确建立空间直角坐标系,确定点的坐标,平面法向量的计算。
【思维点拨】1.利用空间向量求空间角的一般步骤(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标;(3)结合公式进行论证、计算;(4)转化为几何结论.2.求空间角应注意的3个问题(1)两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cosβ|.(2)直线与平面所成的角的正弦值等于平面的法向量与直线的方向向量夹角的余弦值的绝对值,注意函数名称的变化.(3)两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.【巩固训练】题型一线面平行的证明1.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【答案】详见解析【解析】(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.8(2)连接SD ,∵F 、G 分别是DC 、SC 的中点,∴FG ∥SD.又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1,∴FG ∥平面BDD 1B 1,又EG ⊂平面EFG ,FG ⊂平面EFG ,EG∩FG =G ,∴平面EFG ∥平面BDD 1B 1.2.如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱P A上的中点.求证:PC ∥平面BDE ;【答案】详见解析【解析】证明:连接AC 交BD 于点O ,连接OE ,如图:∵四边形ABCD 是正方形,∴O 是AC 的中点.又E 是PA 的中点,∴PC ∥OE.∵PC ⊄平面BDE ,OE ⊂平面BDE ,∴PC ∥平面BDE.3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB的中点.学魁榜求证:C1M∥平面A1ADD1;【答案】详见解析【解析】证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC.又由M是AB的中点,因此CD∥MA且CD=MA.连接AD1,在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1M∥D1A,又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.题型二线线垂直、面面垂直的证明1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)证明:CD⊥AE;(2)证明:PD⊥平面ABE;【答案】详见解析【解析】(1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD,∵AC⊥CD,PA∩AC =A,∴CD⊥平面PAC,而AE⊂平面PAC,∴CD⊥AE,(2)由PA=AB=BC,∠ABC=60°,可得AC=PA,∵E是PC的中点,∴AE⊥PC,由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD,而PD⊂平面PCD,∴AE⊥PD,∵PA⊥底面ABCD,PD在底面ABCD内的射影是AD,AB⊥AD,∴AB⊥PD,又∵AB∩AE=A,综上可得PD⊥平面ABE.102.如图,在三棱锥P -ABC 中,PA =PB =PC =AC =4,AB =BC =22.求证:平面ABC ⊥平面APC ;【答案】详见解析【解析】(1)证明:如图所示,取AC 中点O ,连接OP ,OB .∵PA =PC =AC =4,∴OP ⊥AC ,且PO =4sin60°=2 3.∵BA =BC =22,∴BA 2+BC 2=16=AC 2,且BO ⊥AC ,∴BO =AB 2-AO 2=2.∵PB =4,∴OP 2+OB 2=12+4=16=PB 2,∴OP ⊥OB .∵AC ∩OB =O ,∴OP ⊥平面ABC .∵OP ⊂平面PAC ,∴平面ABC ⊥平面APC .3.如图所示,四棱锥P -ABCD 中,底面ABCD 为平行四边形,AB =2AD =2,BD =3,PD ⊥底面ABCD .证明:平面PBC ⊥平面PBD ;【答案】详见解析【解析】(1)证明:1,2,CB CD BD === ∴CD 2=BC 2+BD 2,∴BC ⊥BD .又∵PD ⊥底面ABCD ,∴PD ⊥BC .又∵PD ∩BD =D ,∴BC⊥平面PBD .而BC ⊂平面PBC ,学魁榜∴平面PBC ⊥平面PBD .题型三空间向量1.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =2,AA 1=4,D 是棱AA 1的中点.如图所示.(1)求证:DC 1⊥平面BCD ;(2)求二面角A -BD -C 的大小.【答案】详见解析【解析】(1)证明:按如图所示建立空间直角坐标系.由题意,可得点C (0,0,0),A (2,0,0),B (0,2,0),D (2,0,2),A 1(2,0,4),C 1(0,0,4).于是,1DC =(-2,0,2),DC =(-2,0,-2),DB =(-2,2,-2).可算得1DC DC ⋅ =0,1DC DB ⋅ =0.因此,DC 1⊥DC ,DC 1⊥DB .又DC ∩DB =D ,所以DC 1⊥平面BDC .(2)设n =(x ,y ,z )是平面ABD 的法向量,又AB =(-2,2,0),AD =(0,0,2),2x +2y =0,z =0.取y =1=1,=1,=0,即平面ABD 的一个法向量是n =(1,1,0).由(1)知,1DC 是平面DBC 的一个法向量,记n 与1DC 的夹角为θ,则cos θ=-12,θ=2π3.结合三棱柱可知,二面角A -BD -C 是锐角,故所求二面角A -BD -C 的大小是π3.2.如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE ⊥BD 于点E ,延长AE 交BC 于点F ,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.12(1)求证:AE ⊥平面BCD ;(2)求二面角A -DC -B 的余弦值;(3)在线段AF 上是否存在点M 使得EM ∥平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.【答案】详见解析【解析】(1)证明:因为平面ABD ⊥平面BCD ,交线为BD ,又在△ABD 中,AE ⊥BD 于点E ,AE ⊂平面ABD ,所以AE ⊥平面BCD.(2)由(1)中AE ⊥平面BCD 可得AE ⊥EF .由题意可知EF ⊥BD ,又AE ⊥BD ,如图,以E 为坐标原点,分别以EF ,ED ,EA 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系E -xyz ,不妨设AB =BD =DC =AD =2,则BE =ED =1.由图1条件计算得AE =3,BC =23,BF =3,则E (0,0,0),D (0,1,0),B (0,-1,0),A (0,0,3),,C (3,2,0),DC =(3,1,0),AD =(0,1,-3).由AE ⊥平面BCD 可知平面DCB 的法向量为EA ,EA =(0,0,3),设平面ADC 的法向量为n =(x ,y ,z ),+y =0,-3z =0.令z =1,则y =3,x =-1,所以n =(-1,3,1).因为平面DCB 的法向量为EA ,所以cos 〈n ,EA 〉==55.所以二面角A -DC -B 的余弦值为55.(3)设AM =λAF ,其中λ∈[0,1].由于AF所以AM =λAF =0λ∈[0,1].所以EM EA AM =+=3,0,(13λλ⎛- ⎝.由EM ·n =0,即-33λ+(1-λ)3=0,解得λ=34∈[0,1].所以在线段AF 上存在点M 使EM ∥平面ADC ,且AM AF =34.3.在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1为矩形,AB =1,AA 1=2,D 为AA 1的中点,BD 与AB 1交学魁榜于点O ,CO ⊥侧面ABB 1A 1.(1)证明:BC ⊥AB 1;(2)若OC =OA ,求直线C 1D 与平面ABC 所成角的正弦值.【答案】详见解析【解析】(1)证明:由题意tan ∠ABD =AD AB =22,tan ∠AB 1B =AB BB 1=22,注意到0<∠ABD ,∠AB 1B <π2,所以∠ABD =∠AB 1B .所以∠ABD +∠BAB 1=∠AB 1B +∠BAB 1=π2.所以AB 1⊥BD .又CO ⊥侧面ABB 1A 1,所以AB 1⊥CO .又BD 与CO 交于点O ,所以AB 1⊥面CBD .又因为BC ⊂面CBD ,所以BC ⊥AB 1.(2)如图,分别以OD ,OB 1,OC 所在的直线为x 轴、y 轴、z 轴,以O 为原点,建立空间直角坐标系O -xyz ,则,-33,-63,0,,0B 1,233,,D0,.又因为CC 1→=2AD →,所以C ,233,所以AB -63,33,AC ,33,1DC ,233,设平面ABC 的法向量为n =(x ,y ,z ),则根据AB ·n =0,AC ·n =0可得n =(1,2,-2)是平面ABC 的一个法向量,设直线C 1D 与平面ABC 所成角为α.则sin α=35555.。