电力电子与电机集成系统概述(研究生)
电力电子技术

图7.32 电压型交直交系统再生制动时的等值电路
38
电力电子技术 PWM整流器在可再生能源中的应用
– 可再生能源(风能、太阳能、潮汐发电、水 力发电等)不可控 ,不能直接并入电网 。
– 太阳能发电并网系统
TD1 TD3 TD5
L C
Salor Array
VDC
Lf
Cf
TD4
TD6
TD2
图7.36 太阳能发电并网系统原理图
18
电力电子技术
其它方面的应用
• 常规电源:不停电电源、开关电源、微机及仪器 仪表电源、航空电源、通信电源等。 • 专用电源:电化学电源、蓄电池充电放电、电子 模拟负载、电解水电源、交流电子稳 压电源、脉冲功率电源等; • 新型能源:如太阳能电池,风力发电等; • 节能: 如利用变频器调节电动机转速
30
电力电子技术
三、整流电路基本工作原理
• 整流——交流到直流的变换
– 不控整流(二极管) – 相控整流(晶闸管) – PWM整流(IGBT)
31
电力电子技术
相控整流电路的一般结构
• 主电路: -交流电源:工频电网或整流变压器
-滤波器:为保证电流连续
-负载:阻性负载、阻感负载、反电势负载等 • 控制电路:模拟控制、数字控制、单片机、DSP
32
电力电子技术
单相桥式全控整流电路
• 工作原理(正半周)
ud
0 π
2 π
-ωt=:发脉冲,T1T4导通
-ωt=π:iT1=iT4=Id,T1T4仍然 导通,T2T3承受正电压
Ud
ωt
a
i2
u2 u2
i2 Id
u2
-ωt =π+:T2T3导通,T1T4
电子信息技术中的电力电子与电机控制技术

电子信息技术中的电力电子与电机控制技术电力电子技术与电机控制技术是现代电子信息技术中重要的组成部分。
电力电子技术广泛应用于电网、电动汽车、太阳能发电、风能发电等领域,而电机控制技术则是实现电机的精确控制和高效运行的关键。
本文将分别介绍电力电子技术和电机控制技术的基本原理、应用和发展趋势。
电力电子技术是研究通过电子器件和电气设备实现电能的转换、控制和调节的技术领域。
它的应用范围非常广泛,包括变频调速、无功补偿、电压变换、电流变换等。
电力电子技术的核心是功率半导体器件的应用,如晶闸管、功率晶体管、IGBT等。
这些器件具有高功率、高频率和高效率的特点,可以实现电能的快速转换和调节。
例如,变频调速技术可以实现电机的无级调速,提高电机的效率和控制精度。
无功补偿技术可以实现电网的功率因数校正,提高电网的稳定性和可靠性。
电机控制技术是研究如何通过控制电机的转矩、速度和位置,实现电机的精确控制和高效运行的技术领域。
它是电力电子技术的重要应用之一。
电机控制技术可以分为传统控制和先进控制两种。
传统控制主要包括PID控制、模糊控制和自适应控制等。
这些控制方法通过对电机的输入输出关系建立数学模型,并根据误差进行修正,实现对电机的控制。
而先进控制技术则采用更加先进的控制算法,如神经网络控制、模型预测控制和自适应模糊控制等,提高了电机控制的性能和精度。
电力电子技术和电机控制技术相辅相成,共同应用于众多领域。
例如,电机控制技术可以应用于电动汽车的电机控制,实现电动汽车的高效运行和行驶安全。
电力电子技术可以应用于太阳能发电系统的电力转换和储能控制,提高太阳能发电的效率和稳定性。
在风能发电系统中,电力电子技术可以实现对风力发电机组的变频调速,提高了风能发电的可利用率和经济性。
随着科技的不断发展,电力电子技术和电机控制技术也在不断创新和改进。
未来的发展趋势主要包括以下几个方面。
功率半导体器件将实现更高的功率密度和更高的工作温度,提高电力电子装置的可靠性和散热能力。
电力电子技术(第二版)课件

电力电子技术的发展趋势
总结词
未来电力电子技术的发展趋势包括更高频率的电能转换、更高效的能量管理和系统集成、 以及更智能的控制策略。
详细描述
随着电力电子技术的不断发展,未来的电能转换将向更高频率的方向发展,这将有助于减小设备体积和重量, 提高系统效率。同时,随着能源危机和环境问题的日益严重,更高效的能量管理和系统集成成为电力电子技 术的重要发展方向。此外,人工智能和自动控制技术的不断发展,也将推动电力电子技术向更智能的控制策
VS
详细描述
交流调压电路主要由自耦变压器或接触器 组成,通过控制自耦变压器或接触器的通 断状态,改变交流电的电压波形,从而实 现交流电压的调节。交流调压电路广泛应 用于灯光调节、电机调速、加热器控制等 场合。
04
电力电子技术的应用
电力系统
电力系统控制
分布式发电与微电网
利用电力电子技术实现对电力系统电 压、电流、频率等的精确控制,提高 电力系统的稳定性和可靠性。
电力电子技术(第二版)课件
• 电力电子技术概述 • 电力电子器件 • 电力电子电路 • 电力电子技术的应用 • 电力电子技术的未来展望
01
电力电子技术概述
定义与特点
总结词
电力电子技术是利用半导体电力电子器件进行电能转换和控制的学科领域。
详细描述
电力电子技术主要研究将电能从一种形式转换为另一种形式,例如从交流(AC)转换为直流(DC),或从一个 电压级别转换到另一个电压级别。它涉及的半导体电力电子器件包括晶体管、可控硅整流器(SCR)、可关断晶 闸管(GTO)等。
节能控制
通过电力电子技术实现设备的节能控制,降低能耗,提高能源利用 效率。
智能家居与楼宇自动化
利用电力电子技术实现智能家居和楼宇自动化,提高居住环境的舒 适度和节能性。
高性能的电机系统集成设计与研究

高性能的电机系统集成设计与研究下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!现代工业中,电机系统作为重要的能源转换设备,对于提高生产效率和降低能源消耗具有至关重要的作用。
电力电子与电动机

目录 1 为什么电力电子很重要?2电力电子应用 3 电力电子与新能源应用4 电力电子技术演进5 功率半导体器件发展 6 电力电子变流器发展 7 传动电机发展1~3、(略)4电力电子技术的演进电力电子技术的发展阶段:电力电子和电机驱动历史上的几个重要事件1897 年三相二极管桥式整流器的开发1906年Peter Cooper Hewitt 演示玻璃壳汞弧整流器1907 年 Kramer 驱动器1926 年 Scherbins 驱动器年热阴极闸流管是引入l 1930 年纽约地铁安装了用于直流驱动器的 3mw 电网控制汞弧整流器l 1931 年在德国铁路上引入了汞弧循环转换器,用于电动机牵引驱动l 1934 年安装了充气晶闸管管式循环转换器 - 同步电机(400 马力)在洛根发电站进行引风机驱动(首次实现交流变频驱动)l 1948 年贝尔实验室发明晶体管l 1956 年硅功率二极管问世l 1958 年通用电气将商用半导体晶闸管(scr)推向市场公司l 1971 矢量控制(或磁场定向控制)问世l 1975 日本东芝公司引进l 1978年ir公司推出功率moseet市场l 1980年日本大功率gtol1981年二极管钳位多电平逆变器l 1983年通用电气推出igbt l 1983年推出空间(电压)矢量pwm技术l 1986年直接传递转矩控制技术(dtc)问世l 1987年,模糊逻辑首次应用于电力电子l 1991年,人工神经网络应用于直流电机驱动l 1996年,abb公司将正向阻断型igct推向市场5 功率半导体器件的发展l 二极管 (1955)l 晶闸管 (1958)l 双向可控硅 (1958)l Gate可以关断晶闸管(gto)(1980)l 双极功率晶体管(bjt 或 gtr)(1975)l 功率场效应管 (1975)l 绝缘栅双极晶体管(1985)l 绝缘栅双极晶体管(igbt)(1985)l 静电感应晶体管(坐)(1985)l 集成门极整流晶闸管(igct)(1996)l 碳化硅器件器件工频趋势如图3所示。
《电力电子技术》PPT课件

可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换
。
电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。
电力电子技术概述
(汞弧整流器、闸流管) (采用的主要材料硅)
目前,除了在大功率高频微波电路中仍使用真空管
(电真空器件)外,其余的电力电子电路均由功率
半导体器件组成
32
1.4 电力电子器件
-----概念、分类、特征、损耗
同处理信息的电子器件相比的一般特征
☞能处理电功率的能力,一般远大于处理信息的电子器
☞飞机、船舶和电梯都离不开电力电子技术。
18
1.3 电力电子技术的应用
◆电力系统 ☞直流输电在长距离、大容量输电时有很大的优
势,其送电端的整流阀和受电端的逆变阀都采用
晶闸管变流装置,而轻型直流输电则主要采用全 控型的IGBT器件。 ☞晶闸管控制电抗器(TCR)、晶闸管投切电容器 (TSC)、静止无功发生器(SVG)、有源电力 滤波器(APF)等电力电子装置大量用于电力系统
☞1904年出现了电子管,它能在真空中对电子流进行控 制,并应用于通信和无线电,从而开启了电子技术用于电
力领域的先河。
☞20世纪30年代到50年代,水银整流器广泛用于电化学 工业、电气铁道直流变电所以及轧钢用直流电动机的传 动,甚至用于直流输电。这一时期,各种整流电路、逆变
电路、周波变流电路的理论已经发展成熟并广为应用。在 这一时期,也应用直流发电机组来变流。
13
硬开关和软开关
☞硬开关:
开关过程中电压和电流均不为零,出现了重叠。 电压、电流变化很快,波形出现明显得过冲,导致
开关噪声。
14
硬开关和软开关
☞软开关:
在原电路中增加了小电感、电容等谐振元件,在开
关过程前后引入谐振,消除电压、电流的重叠。 降低开关损耗和开关噪声。
15
1.3 电力电子技术的应用
《电力电子》课件
智能控制是一种基于人工智能的控制 方法,其工作原理是通过人工智能算 法实现电力电子设备的智能控制。
数字控制
数字控制是一种现代的控制方法,其 工作原理是通过数字电路和微控制器 实现电力电子设备的控制。
03
电力电子系统设计
系统设计方法
确定系统目标
明确电力电子系统的功能要求,如电压转换、功 率控制等。
电力电子的发展历程
1940年代
1950年代
1960年代
1970年代
1980年代至今
开关管和硅整流器的出 现,开始应用于信号放 大和处理。
晶体管的发明,开始应 用于信号放大和处理以 及无线通信等领域。
可控硅整流器(SCR) 的出现,开始应用于电 机控制和电力系统等领 域。
出现了可关断晶闸管( GTO)等更加高效的电 力电子器件。
• 高效性:电力电子技术可以实现高效地转换和控制电能,从而提高能源利用效率。 • 灵活性:电力电子器件具有较小的体积和重量,可以方便地集成到各种系统中,实现灵活的电能转换和控制。 • 应用广泛:电力电子技术在能源转换、电机控制、电网管理和可再生能源系统中有着广泛的应用。
电力电子的应用领域
电机控制
电网管理
05
电力电子技术技术
随着电力电子器件性能的不断提 升,电力电子系统的频率逐渐提 高,实现了更高的转换效率和更 小的体积。
高效化技术
为了降低能源消耗和减少环境污 染,电力电子系统正在不断追求 更高的效率。高效化技术包括拓 扑结构优化、控制策略改进等。
电力电子在智能电网中的应用前景
THANK YOU
感谢观看
IGBT是一种广泛应用于电力电子领域的半导体器 件,其工作原理是通过控制栅极电压来调节漏极 和源极之间的电流。
电气工程研究生阶段课程(3篇)
第1篇一、引言电气工程是一门涉及电力系统、电机、电子、通信等多个领域的综合性学科。
随着科技的飞速发展,电气工程在国民经济和人民生活中扮演着越来越重要的角色。
为了培养具有创新精神和实践能力的高层次人才,我国高校普遍设立了电气工程研究生教育。
本文将详细介绍电气工程研究生阶段的课程设置,旨在为有志于从事电气工程领域研究的学生提供参考。
二、课程设置1.公共课程(1)高等数学:主要包括高等数学、线性代数、概率论与数理统计等课程。
这些课程为研究生阶段的专业课程学习奠定了坚实的数学基础。
(2)英语:英语是国际学术交流的重要工具,电气工程研究生需要具备良好的英语听说读写能力。
因此,英语课程在研究生阶段尤为重要。
(3)政治理论:政治理论课程主要包括马克思主义基本原理、中国特色社会主义理论体系等。
这些课程旨在培养学生的政治素养和道德品质。
2.专业基础课程(1)电力系统分析:主要研究电力系统的稳态和暂态过程,包括电力系统元件、电力系统稳定性、电力系统运行等方面的知识。
(2)电机学:主要研究电机的基本原理、结构、性能和制造工艺,包括同步电机、异步电机、直流电机等。
(3)电力电子技术:主要研究电力电子器件及其在电力系统中的应用,如变频调速、逆变技术等。
(4)自动控制理论:主要研究自动控制系统的基本理论、分析方法及其应用,包括线性系统、非线性系统、现代控制理论等。
3.专业课程(1)电力系统保护与自动化:主要研究电力系统保护原理、保护装置及其在电力系统中的应用,如继电保护、自动化装置等。
(2)电力系统优化:主要研究电力系统运行优化、调度优化等方面的知识,如经济调度、最优潮流等。
(3)高电压技术:主要研究高电压技术的基本原理、设备及其在电力系统中的应用,如绝缘、击穿、雷电等。
(4)电机设计与制造:主要研究电机的设计原理、制造工艺及其在电力系统中的应用,如电机设计、电机试验等。
4.实践环节(1)实验课:实验课旨在培养学生的实践操作能力和实验技能,如电力系统实验、电机实验、电力电子实验等。
电气研究生的研究内容
电气研究生的研究内容电气研究生的研究内容涵盖了广泛的领域和主题。
以下将介绍一些常见的研究方向和内容。
1. 电力系统和电力工程电力系统是电力输送和分配的关键组成部分,电力工程则涵盖了电力系统的设计、运行和维护。
电力系统的研究内容包括电力传输、电力负荷管理、电力网络优化以及电力系统的可靠性和稳定性分析等。
电力工程的研究内容包括电力设备的设计和优化、电力系统的保护和控制、电力市场和电力经济等。
2. 电机与电力电子技术电机是将电能转化为机械能的装置,是电力系统中至关重要的组成部分。
电机的研究内容包括电机的设计和优化、电机控制技术、电机故障诊断和维修等。
电力电子技术是指应用电子元器件和电力电子器件来实现电能的转换和控制。
电力电子技术的研究内容包括功率电子器件的设计和应用、电力电子变换器的控制和优化、电力电子的故障检测和故障保护等。
3. 智能电网与可再生能源智能电网是指利用先进的通信和信息技术来实现电力系统的智能化和优化。
智能电网的研究内容包括智能电网的建模和仿真、智能电网的优化调度、智能电网的安全和稳定性分析等。
可再生能源是指利用自然界可再生的能源来产生电能,如太阳能、风能、水能等。
可再生能源的研究内容包括可再生能源的发电技术、可再生能源的储能技术、可再生能源的智能管理和控制等。
4. 电磁场与电磁波技术电磁场是电荷和电流产生的物理现象,电磁波是电磁场传播的形式。
电磁场与电磁波技术的研究内容包括电磁场的数值计算和仿真、电磁波的传播特性和辐射特性分析、电磁波的应用和工程设计等。
电磁场与电磁波技术在通信、雷达、无线电等领域具有广泛的应用。
5. 电气测量与仪器电气测量与仪器是指用于测量和检测电气量和信号的仪器和设备。
电气测量与仪器的研究内容包括电气量的测量原理和方法、电气信号的采集和处理、电气仪器的设计和校准等。
电气测量与仪器在电力系统、电力设备和电子设备的测试和检测中起着重要的作用。
电气研究生的研究内容广泛而深入,涵盖了电力系统、电机与电力电子技术、智能电网与可再生能源、电磁场与电磁波技术以及电气测量与仪器等多个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1电力电子与电机集成系统
概述
清华大学电机工程与应用电子技术系
2006年10月
赵争
鸣
其主要特征为:
4德国楞茨公司集成式风机及其系统
6
发电站
配电系统
负荷系统
推进负载
Switch (IGBT)
Rectifier
PWM Controller
Induction Motor
Load
Triangle carrier
Sinusoidal
Reference
((((
14
Z(
16 cr
等效阻抗幅频特性
22函数
)
(
2
λ
λ
λ
λ
cu
f
c
b
a
⋅
+
+
1o
D
开关磁阻电机
27
三电平明显优于两电平的电压、电流波形比较
多重SPWM
SDM-PWM
Cuk converter Buck-boost converter
Boost converter Buck converter
O
特点:
1、可视化
2、模块化
3、场路结合
4、设计、分析和
仿真一体化5、自适应功能
变频调速三相异步电动机(55kW,380V,1487rpm)
平均效率提高
平均功率因数提高
平均功率密度提高
M-ASD-III型交流电机
变频调速控制柜
(30kW~300kW,
0~380V,3~55Hz)
三电平明显优于两电平的电压、电流波形比较
样机内部电路
44
首都体育馆太阳能照明灯
(2001年1月建成)
奥体中心太阳能扬水系统
(2001年1月建成)
47
48目前正在进行城市太阳能应用研究,2002年完成300瓦的城市功能路灯研制,2003年将完成太阳能发电与大电网联网的研究,为绿色建筑所用。
电机系西主楼光伏阵列。