轴强度计算
轴的三种强度计算方法

轴的三种强度计算方法
轴是一种机械零件,用于传递转矩和转速,而轴的强度对于机器的有效运行非常重要。
在工程设计中,有三种主要的轴强度计算方法,分别是静力学法、弹性力学法和塑性力学法。
静力学法是一种最简单和最常用的轴强度计算方法。
它基于平衡原理和力的分析,使用各种力学公式来计算轴的扭转、弯曲和剪切强度。
这种方法通常适用于小型和低速机器,因为它没有考虑材料的弹性和塑性变形。
弹性力学法是一种更准确和精细的轴强度计算方法,它考虑轴材料的弹性模量和截面形状的影响。
这种方法使用梁理论和材料力学原理来计算轴的应力、应变和变形,从而确定轴的强度和变形极限。
这种方法适用于大型和高速机器,因为它考虑了材料的弹性变形。
塑性力学法是一种针对高应力和高变形机器的轴强度计算方法,它考虑了材料的塑性变形和材料失效的可能性。
这种方法使用塑性流动理论和材料失效准则来计算轴的应力、应变和塑性变形,从而确定轴的强度和失效极限。
这种方法适用于高应力和高变形机器,因为它考虑了材料的塑性变形和失效可能性。
综上所述,轴的强度计算方法是一个重要的工程问题,需要根据具体
的机器要求和材料特性来进行选择。
静力学法、弹性力学法和塑性力学法都有其优点和限制,需要根据实际情况进行综合考虑。
轴的强度和刚度计算

轴的强度和刚度计算一、轴的强度计算轴的强度是指在受到外界载荷作用下,轴能够抵抗破坏的能力。
轴的强度计算通常分为以下几个步骤:1.确定轴的应力状态首先需要确定轴在受载过程中的应力状态。
一般情况下,轴受力状态可以分为以下几种情况:拉伸、压缩、弯曲、剪切和扭转。
根据轴的几何形状、受载方式和材料性质,可以确定轴的应力状态。
2.计算轴的受力根据轴所受到的外界载荷,可以计算轴的受力。
在拉伸和压缩情况下,轴的受力可以通过受力公式F=σA来计算,其中F是轴所受到的载荷,σ是轴的应力,A是轴的截面积。
在弯曲情况下,轴的受力可以通过受力公式M=σS来计算,其中M是轴的弯矩,S是轴的截面模数。
在剪切和扭转情况下,轴的受力可以通过受力公式τ=T/(2A)来计算,其中τ是轴所受的剪应力,T是轴的剪矩,A是轴的等效截面面积。
3.计算轴的抗力轴的抗力是指轴抵抗外界载荷作用下破坏的能力。
轴的抗力通常由材料的强度指标来表示,如抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度等。
根据轴的应力状态和材料的强度指标,可以计算轴的抗力。
4.比较轴的受力和抗力最后,需要比较轴的受力和抗力。
如果轴的受力小于轴的抗力,则表明轴具有足够的强度;如果轴的受力大于轴的抗力,则表明轴的强度不足,需要采取相应的加强措施。
二、轴的刚度计算轴的刚度是指轴在受力过程中不发生明显变形的能力。
轴的刚度计算通常分为以下几个步骤:1.确定轴的变形状态首先需要确定轴在受载过程中的变形状态。
轴的变形状态可以分为弹性变形和塑性变形两种情况。
在弹性变形情况下,轴在受载后可以恢复到原始形状;在塑性变形情况下,轴在受载后无法恢复到原始形状。
2.计算轴的变形根据轴所受到的外界载荷和轴的受力分布情况,可以计算轴的变形。
在拉伸和压缩情况下,轴的变形可以通过变形公式δ=FL/(EA)来计算,其中δ是轴的变形,F是轴所受到的载荷,L是轴的长度,E是轴材料的弹性模量,A是轴的截面积。
在弯曲情况下,轴的变形可以通过变形公式δ=ML/(EI)来计算,其中δ是轴的变形,M是轴的弯矩,L是轴的长度,E是轴材料的弹性模量,I是轴的截面二阶矩。
轴的强度计算

(3)改變零件的結構可以改變軸的類 型
a)T由捲筒傳遞,軸僅受M(心軸) b)T由軸傳遞,軸受M、T(轉軸)
M max M max
軸的結構設計
2.軸在軸上零件定位、固定可靠、裝拆方便
3.良好的工藝性 (1)退刀槽
需磨削處 需車螺紋處 (2)倒角 易對中安裝(緊配合處),安全 倒角、圓角一致。 (3) 鍵槽:在同一母線上
軸
功用:軸的主要功用是支承回轉零件及傳遞運動和動力。
軸的分類
按照承受載荷的不同,軸可分為:
1. 轉軸─同時承受彎矩和轉矩的軸,如減速器的軸。
如:齒輪軸
Ft
Fr
T
2. 心軸─只承受彎矩的軸,如火車車輪軸。
b
轉動心軸 t
固定心軸
火車輪軸
概述
3. 傳動軸─主要承受轉矩的軸,不受彎矩或彎矩很小, 如汽車的傳動軸。
(16.1) (16.2)
軸的強度計算
按許用彎曲應力計算(彎扭組合計算) 1.應用 (1)(初步結構化)已知跨度的轉軸(支點確定) (2)一般為重要的轉軸 2.算式
彎曲應力 b 一般計算順序如下:
(1)畫空間受力簡圖;
(2)作水準、垂直平面受力圖;
(3)作M H (M xy ) 作 MV (M xz );
bmax b
t bmin
max
t min 0
和-影响弯曲应力和切应 力的尺寸系数(附录表 6); 和-应力幅等效系数(见 式3.9和式3.10);
16.3 軸的強度計算
M、T综合作用,综合安全系数为: S S S [S] S2 S2
式中,[S] 许用安全系数,取值见 P316。
1、1 材料对称循环下弯曲、 扭转疲劳极限;
轴的强度计算

轴的强度计算一、按扭转强度初步设计阶梯轴外伸端直径由实心圆轴扭转强度条件τ=33102.09550⨯=nd P W T ρ≤[τ]式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。
对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。
将上式改写为设计公式d ≥[]33332.0109550nPA n P =⨯τ (16.1)式中,A 是由轴的材料和承载情况确定的常数。
见表16.7;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴径,mm 。
表16.7常用材料的[τ]和A 值轴的材料 Q235,20 35 45 40Cr ,35SiMn ,42SiMn ,38SiMnMo ,20CrMnTi[τ]/MPa12~20 20~30 30~40 40~52 A160~135135~118118~107107~98注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。
2.用Q235、3SiMn 时,取较大的A 值。
3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。
可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。
二、按弯扭组合强度计算轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。
如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。
力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。
轴的强度计算

对于只传递扭转的圆截9.55 10 6 P 0.2d 3n
[ T ]
设计公式为:d 3 9.55106 3 P C 3 P
0.2[ ] n
n
MPa
mm
计算结果为:最小直径! 考虑键槽对轴有削弱,可按以下方式修正轴径:
轴径d>100mm 轴径d≤100mm
有一个键槽 d 增大3% d 增大5%~7%
有两个键槽 d 增大7% d 增大10%~15%
二、按弯扭合成强度计算
一般转轴强度用这 种方法计算,其步 骤如下:
减速器中齿轮轴的受力为典型的弯扭合成。
A
B CD
潘存云教授研制
L1
L2
L3
在完成单级减速器草图设计后,外载荷与支撑 反力的位置即可确定,从而可进行受力分析。
T A
1)轴的弯矩和扭矩分析 水平面受力及弯矩图→
铅垂面受力及弯矩图→ 水平铅垂弯矩合成图→
L1
L2
Fr
L3
Ft
Fa
F’NV1B
C
D
潘存云教授研制
FNV1 FNH1
ω
FNV2 FNH2
FNH1
F’NV1 FNV1
MH
FNH2
MH
Fr
Ma=Fa Fa
r
MV1
FNV2
MV2 M1 M2
扭矩图→
T
2)轴的强度校核
300
140
80
1000
330
150
90
铸钢
400
500
100
50
30
120
70
40
轴的设计实例
a
举例:计算某减速器输出轴危 d
轴的三种强度计算方法

轴的三种强度计算方法
轴是一种常见的机械零件,它经常用于承受旋转或者转移动力。
轴的强度是保证机械正常运转的关键因素之一。
通常,轴的强度由三个方面决定,包括材料强度、几何形状和外部载荷。
第一种计算轴强度的方法是通过材料强度。
轴的材料决定了它的承载能力和强度。
常见的轴材料包括钢、铝、铜等。
对于每种材料,都有一些标准的强度值,例如屈服强度和抗拉强度等。
根据轴的形状和尺寸,可以计算出它的截面面积和材料的应力。
这样就可以确定轴的材料强度。
第二种计算轴强度的方法是通过几何形状。
轴的几何形状对其强度有很大的影响。
通常,轴的截面形状可以是圆形、方形、六角形等。
不同形状的轴截面面积不同,这也会影响其承载能力。
此外,轴的长度和直径也是影响其强度的重要因素。
为了确定轴的强度,可以利用几何公式和截面积计算出轴的几何参数。
第三种计算轴强度的方法是考虑外部载荷。
轴通常用于承受旋转动力或者传递动力。
外部载荷可能包括转矩、弯曲力和剪切力等。
这些载荷会产生内部应力,从而影响轴的强度和稳定性。
为了计算轴的强度,需要考虑外部载荷和内部应力之间的关系,以及轴的材料强度和几何形状。
利用这些信息,可以计算出轴的最大应力和安全系数等参数,
从而确定轴的强度是否满足要求。
综上所述,计算轴强度的三种方法包括材料强度、几何形状和外部载荷。
这些方法都是非常重要的,可以帮助机械设计师确定轴的强度和稳定性,保证机械设备的正常运转。
机械设计(8.4.1)--轴的强度计算

已知:作用在轴上的转矩T 适用: 1. 传动轴的设计; 2. 弯矩较小的转轴;3. 粗(初)估轴的直8-4 轴的强度计算一、按扭转强度条件轴的强度计算通常是在初步完成轴的结构设计后进行校核计算。
8-4轴的强度计算 一、按扭转强度条件[]23N/mm 2.01095503T T T dn PW T ττ≤⨯==τT ——轴的扭转应力,N/mm ,T ——轴传递的扭矩,N.mmW T ——轴的抗扭截面模量,mm 3;P ——轴传递的功率,kW ;n ——轴的转速,r/min ;[τT ]——许用扭转应力,N/mm ;8-4 轴的强度计算一、按扭转强度条件[]mm2.0109550 3.03.3nP A n P d T =⨯≥τ轴的最小直径设计公式:A 0——由轴材料及承载情况确定的系数,A 0=110~160, 材质好、弯矩较小、无冲击和过载时取小值;反之取大值。
β——空心轴内外径的比值,常取0.5~0.6。
当轴上有键槽时,应适当增大轴径:单键增大3%-5%8-4 轴的强度计算 一、按扭转强度条件实心圆轴[]mm )1( )1(2.0109550 3.403.43nPA n P d T βτβ-=-⨯≥空心圆轴已知:各段轴径,轴所受各力、轴承跨距计算:轴的强度步骤:可先画出轴的弯矩扭矩合成图,然后计算危险截面的最大弯曲应力。
二、按弯扭合成强度计算主要用于计算一般重要,受弯扭复合的轴。
计算精度中等。
[]222N/mm 4b T b ca στσσ≤+=第三强度理论[]b T caT T b WT M W T W M WT d T W T dM W M σστσ≤+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==≈=≈=222332422.01.0122][)(-≤+==b caca WT M W M σασ弯曲应力 对称循环弯曲应力与扭转切应力的循环特征不同所以引入的应力校正系数α扭转应力不变化的转矩脉动变化的转矩频繁正反变化的转矩[][],3.011≈=+-b b σσα[][],6.001≈=-b b σσα[][],111≈=--b b σσα[σ]-1对称循环应力下轴的许用应力[σ]0脉动循环应力下轴的许用应力[σ]+1静应力下轴的许用应力轴的许用弯曲应力,表8-3[]311.0-≥b caM d σ122][)(-≤+==b cacaWT M W M σασ计算弯矩或校核轴径已知:轴的结构和尺寸、轴所受各力、轴承跨距、过渡圆角、表面粗糙度、轴毂配合计算:轴的强度用于重要的轴,计算精度高且复杂三、按疲劳强度计算安全系数8-4 轴的强度计算三、按疲劳强度计算安全系数轴的疲劳强度许用安全系数[S]=1.3-1.5,用于材料均匀;[S]=1.5-1.8,用于材料不够均匀;[S]=1.8-2.5,用于材料均匀性及计算精确度很低,或轴径 d>200mm 。
轴的强度计算.

轴的强度计算一、按扭转强度条件计算适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算;②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936TT T d n P W T ττ≤⨯== Mpa (11-1) 设计公式: 3036][1055.95nP A n P d T =⨯⨯≥τ(mm )⇒轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。
⇒取标准植][T τ——许用扭转剪应力(N/mm 2),表11-3 T ][τ——考虑了弯矩的影响A 0——轴的材料系数,与轴的材料和载荷情况有关。
注意表11-3下面的说明 对于空心轴:340)1(β-≥n P A d (mm )⇒ 6.0~5.01≈=d d β, d 1—空心轴的内径(mm )注意:如轴上有键槽,则d ⇒放大:3~5%1个;7~10%2个⇒取整。
二、按弯扭合成强度条件计算条件:已知支点、距距,M 可求时步骤:如图11-17以斜齿轮轴为例1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a )2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b )3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c )4、作合成弯矩图22V H M M M +=(图11-17d )5、作扭矩图T α(图11-17e )6、作当量弯矩图22)(T M M ca α+=α——为将扭矩折算为等效弯矩的折算系数∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力∴α与扭矩变化情况有关1][][11=--b b σσ ——扭矩对称循环变化 α=6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
40CrNi
调质
≤100
>100~300
270~300
240~270
900
785
735
570
430
370
260
210
75
用于很重要的轴
38SiMnMo
调质
≤100
>100~300
229~286
217~269
735
685
590
540
365
345
210
195
70
用于重要的轴,性能近于40CrNi
38CrMoAlA
以转轴为例,轴的强度计算的步骤为:
1、按扭转强度条件初步估算轴的直径
机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。
根据扭转强度条件确定的最小直径为:
调质
≤60
>60~100
>100~160
293~321
277~302
241~277
930
835
785
785
685
590
440
410
375
280
270
220
75
用于要求高耐磨性,高强度且热处理(氮化)变形很小的轴
20Cr
渗碳
淬火
回火
≤60
渗碳
56~62HRC
640
390
305
160
60
用于要求强度及韧性均较高的轴
800
480
290
250
往上
表2零件倒角C与圆角半径R的推荐值
直径d
>6~10
>10~18
>18~30
>30~50
>50~80
>80~120>
120~180
C或R
0.5
0.6
0.8
1.0
1.2
1.6
2.0
2.5
3.0
往上
表3轴常用几种材料的[ ]和A0值
轴的材料
Q235
1Cr18Ni9Ti
35
45
40Cr,35SiMn,2Cr13,20CrMnTi
45
正火
回火
≤10
170~217
590
295
225
140
55
应用最广泛
>100~300
162~217
570
285
245
135
调质
≤200
217~255
640
355
275
155
60
40Cr
调质
≤100
>100~300
241~286
735
685
5404Βιβλιοθήκη 0355355200
185
70
用于载荷较大,而无很大冲击的重要轴
[ ]
12~20
12~25
20~30
30~40
40~52
A0
160~135
148~125
135~118
118~107
107~98
往上
表4抗弯抗扭截面模量计算公式
往上
2、按弯扭合成强度计算轴的直径
l)绘出轴的结构图
2)绘出轴的空间受力图
3)绘出轴的水平面的弯矩图
4)绘出轴的垂直面的弯矩图
5)绘出轴的合成弯矩图
6)绘出轴的扭矩图
7)绘出轴的计算弯矩图
8)按第三强度理论计算当量弯矩:
式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值:
a)扭切应力理论上为静应力时,取α=0.3。
(mm)
式中:P为轴所传递的功率(KW)
n为轴的转速(r/min)
Ao为计算系数,查表3
若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将dmin增大5%,若同一剖面有两个键槽,则增大10%。
以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。
3Cr13
调质
≤100
≥241
835
635
395
230
75
用于腐蚀条件下的轴
1Cr18Ni9Ti
淬火
≤100
≤192
530
195
190
115
45
用于高低温及腐蚀条件下的轴
180
110
100~200
490
QT600-3
190~270
600
370
215
185
用于制造复杂外形的轴
QT800-2
245~335
表1轴的常用材料及其主要力学性能
材料牌号
热处理
毛坯直径
(mm)
硬度
(HBS)
抗拉强度极限σb
屈服强度极限σs
弯曲疲劳极限σ-1
剪切疲劳极限τ-1
许用弯曲应力[σ-1]
备注
Q235A
热轧或锻后空冷
≤100
400~420
225
170
105
40
用于不重要及受载荷不大的轴
>100~250
375~390
215
b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0.59。
c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。
9)校核危险断面的当量弯曲应力(计算应力):
式中:W为抗扭截面摸量(mm3),查表4。
为对称循环变应力时轴的许用弯曲应力,查表1。